File size: 9,673 Bytes
996895d c0447ed 0c38083 b2de29e 0c38083 93d2288 ca5d527 83ea845 31ad35a 83ea845 cb2f705 9494251 9be4c60 586518f 0c38083 586518f 996895d 586518f 6696134 0c38083 8be1cbc 6696134 9494251 b67c020 0c38083 6696134 0c38083 6696134 83ea845 0c38083 996895d b67c020 9694503 0c38083 83ea845 b2de29e ca5d527 83ea845 ca5d527 98c9c23 83ea845 9be4c60 ca5d527 9be4c60 0c38083 83ea845 31ad35a b67c020 b2de29e 6696134 0c38083 83ea845 c0447ed ca5d527 83ea845 ca5d527 9be4c60 f13dceb 0c38083 83ea845 9694503 93a0cf7 1b8024b 9694503 2a2d4ba ca5d527 93a0cf7 9be4c60 83ea845 9694503 98c9c23 1b8024b 9694503 ca5d527 1b8024b ca5d527 b12f0fd 9694503 ca5d527 5518c26 9be4c60 ca5d527 d3badad 0a6c788 0b2caa6 f13dceb 24e1205 f13dceb 24e1205 f13dceb 9be4c60 f13dceb 9be4c60 996895d 31ad35a 0c38083 1f45d99 83ea845 31ad35a 0c38083 c6b44fd 8be1cbc 83ea845 0c38083 1b8024b c6b44fd c0447ed 8be1cbc 2aed46a 83ea845 2aed46a e046f39 0c38083 ab22d1a 0c38083 730ea7e 0c38083 ab22d1a 0c38083 586518f 0c38083 83ea845 8be1cbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import queue
import threading
import time
from logging import getLogger
import asyncio
import numpy as np
import config
import collections
from api_model import TransResult, Message
from .utils import log_block, start_thread, get_text_separator, filter_words
from .processing import ProcessingPipes
from .pipelines import MetaItem
logger = getLogger("TranscriptionService")
class WhisperTranscriptionService:
"""
Whisper语音转录服务类,处理音频流转录和翻译
"""
def __init__(self, websocket, pipe: ProcessingPipes, language=None, dst_lang=None, client_uid=None):
print('>>>>>>>>>>>>>>>> init service >>>>>>>>>>>>>>>>>>>>>>')
print('src_lang:', language)
self.source_language = language # 源语言
self.target_language = dst_lang # 目标翻译语言
self.client_uid = client_uid
# 转录结果稳定性管理
self.websocket = websocket
self.translate_pipe = pipe
# 音频处理相关
self.sample_rate = config.SAMPLE_RATE
self.frame_lock = threading.Lock()
self.segment_lock = threading.Lock()
# 文本分隔符,根据语言设置
self.text_separator = get_text_separator(language)
self.loop = asyncio.get_event_loop()
# 原始音频队列
self.frame_queue = queue.Queue()
# 音频队列缓冲区
self.frames_np = np.array([], dtype=np.float32)
# 音频开始的时间点 用于约束最小断句时间
self.frames_np_start_timestamp = None
# 完整音频队列
self.full_segments_queue = collections.deque()
# 启动处理线程
self._stop = threading.Event()
self.translate_thread = start_thread(self._transcription_processing_loop)
self.frame_processing_thread = start_thread(self._read_frame_processing_loop)
# 行号
self.row_number = 0
def add_frames(self, frame_np: np.ndarray) -> None:
"""添加音频帧到处理队列"""
self.frame_queue.put(frame_np)
def _apply_voice_activity_detection(self, frame_np:np.array):
"""应用语音活动检测来优化音频缓冲区"""
processed_audio = self.translate_pipe.voice_detect(frame_np.tobytes())
speech_audio = np.frombuffer(processed_audio.audio, dtype=np.float32)
speech_status = processed_audio.speech_status
return speech_audio, speech_status
def _read_frame_processing_loop(self) -> None:
"""从队列获取音频帧并合并到缓冲区"""
while not self._stop.is_set():
frame_np = self.frame_queue.get()
frame_np, speech_status = self._apply_voice_activity_detection(frame_np)
if frame_np is None:
continue
with self.frame_lock:
self.frames_np = np.append(self.frames_np, frame_np)
# 音频开始时间节点 用来统计时间来 达到最小断句时间长度
if speech_status == "START" and self.frames_np_start_timestamp is None:
self.frames_np_start_timestamp = time.time()
# 音频最长时间缓冲区限制,超过了就强制断句
if len(self.frames_np) >= self.sample_rate * config.MAX_SPEECH_DURATION_S:
audio_array=self.frames_np.copy()
with self.segment_lock:
self.full_segments_queue.appendleft(audio_array) # 根据时间是否满足三秒长度 来整合音频块
self.frames_np_start_timestamp = time.time()
with self.frame_lock:
self.frames_np = np.array([], dtype=np.float32)
# 音频结束信号的时候 整合当前缓冲区
# START -- END -- START -- END 通常
# START -- END -- END end块带有音频信息的通常是4096内断的一个短音
if speech_status == "END" and len(self.frames_np) > 0 and self.frames_np_start_timestamp:
time_diff = time.time() - self.frames_np_start_timestamp
if time_diff >= config.FRAME_SCOPE_TIME_THRESHOLD:
with self.frame_lock:
audio_array=self.frames_np.copy()
self.frames_np = np.array([], dtype=np.float32)
with self.segment_lock:
self.full_segments_queue.appendleft(audio_array) # 根据时间是否满足三秒长度 来整合音频块
logger.debug(f"🥳 增加整句到队列")
self.frames_np_start_timestamp = None
else:
logger.debug(f"🥳 当前时间与上一句的时间差: {time_diff:.2f}s,继续保留在缓冲区")
def _transcription_processing_loop(self) -> None:
"""主转录处理循环"""
frame_epoch = 1
while not self._stop.is_set():
time.sleep(0.1)
with self.segment_lock:
segment_length = len(self.full_segments_queue)
if segment_length > 0:
audio_buffer = self.full_segments_queue.pop()
partial = False
else:
with self.frame_lock:
if len(self.frames_np) ==0:
continue
audio_buffer = self.frames_np[:int(frame_epoch * 1.5 * self.sample_rate)].copy()# 获取 1.5s * epoch 个音频长度
partial = True
logger.debug(f"full_segments_queue size: {segment_length}")
logger.debug(f"audio buffer size: {len(self.frames_np) / self.sample_rate:.2f}s")
if len(audio_buffer) < int(self.sample_rate):
# Add a small buffer (e.g., 10ms worth of samples) to be safe
padding_samples = int(self.sample_rate * 0.01) # e.g., 160 samples for 10ms at 16kHz
target_length = self.sample_rate + padding_samples
silence_audio = np.zeros(target_length, dtype=np.float32)
# Ensure we don't try to copy more data than exists if audio_buffer is very short
copy_length = min(len(audio_buffer), target_length)
silence_audio[-copy_length:] = audio_buffer[-copy_length:] # Copy from the end of audio_buffer
audio_buffer = silence_audio
meta_item = self._transcribe_audio(audio_buffer)
segments = meta_item.segments
logger.debug(f"Segments: {segments}")
segments = filter_words(segments)
if len(segments):
seg_text = self.text_separator.join(seg.text for seg in segments)
if seg_text.strip() in ['', '.', '-']: # 过滤空字符
continue
# 整行
if not partial:
translated_content = self._translate_text_large(seg_text)
self.row_number += 1
frame_epoch = 1
else:
translated_content = self._translate_text(seg_text)
frame_epoch += 1
result = TransResult(
seg_id=self.row_number,
context=seg_text,
from_=self.source_language,
to=self.target_language,
tran_content=translated_content,
partial=partial
)
self._send_result_to_client(result)
def _transcribe_audio(self, audio_buffer: np.ndarray)->MetaItem:
"""转录音频并返回转录片段"""
log_block("Audio buffer length", f"{audio_buffer.shape[0]/self.sample_rate:.2f}", "s")
result = self.translate_pipe.transcribe(audio_buffer.tobytes(), self.source_language)
log_block("📝 transcribe output", f"{self.text_separator.join(seg.text for seg in result.segments)}", "")
return result
def _translate_text(self, text: str) -> str:
"""将文本翻译为目标语言"""
if not text.strip():
return ""
log_block("🐧 Translation input ", f"{text}")
result = self.translate_pipe.translate(text, self.source_language, self.target_language)
translated_text = result.translate_content
log_block("🐧 Translation out ", f"{translated_text}")
return translated_text
def _translate_text_large(self, text: str) -> str:
"""将文本翻译为目标语言"""
if not text.strip():
return ""
log_block("Translation input", f"{text}")
result = self.translate_pipe.translate_large(text, self.source_language, self.target_language)
translated_text = result.translate_content
log_block("Translation large model output", f"{translated_text}")
return translated_text
def _send_result_to_client(self, result: TransResult) -> None:
"""发送翻译结果到客户端"""
try:
message = Message(result=result, request_id=self.client_uid).model_dump_json(by_alias=True)
coro = self.websocket.send_text(message)
future = asyncio.run_coroutine_threadsafe(coro, self.loop)
future.add_done_callback(lambda fut: fut.exception() and self.stop())
except RuntimeError:
self.stop()
except Exception as e:
logger.error(f"Error sending result to client: {e}")
def stop(self) -> None:
"""停止所有处理线程并清理资源"""
self._stop.set()
logger.info(f"Stopping transcription service for client: {self.client_uid}")
|