david commited on
Commit
27321a0
·
1 Parent(s): 0c38083

update strategy

Browse files
Files changed (3) hide show
  1. main.py +1 -1
  2. transcribe/strategy.py +76 -51
  3. transcribe/whisper_llm_serve.py +67 -37
main.py CHANGED
@@ -65,7 +65,7 @@ async def translate(websocket: WebSocket):
65
  )
66
 
67
  if from_lang and to_lang:
68
- client.set_lang(from_lang, to_lang)
69
  logger.info(f"Source lange: {from_lang} -> Dst lange: {to_lang}")
70
  await websocket.accept()
71
  try:
 
65
  )
66
 
67
  if from_lang and to_lang:
68
+ client.set_language(from_lang, to_lang)
69
  logger.info(f"Source lange: {from_lang} -> Dst lange: {to_lang}")
70
  await websocket.accept()
71
  try:
transcribe/strategy.py CHANGED
@@ -18,6 +18,9 @@ class TranscriptSegment:
18
  t0: float # 开始时间(百分之一秒)
19
  t1: float # 结束时间(百分之一秒)
20
 
 
 
 
21
 
22
  class TextStabilityBuffer:
23
  """
@@ -77,12 +80,26 @@ class TranscriptionManager:
77
  self._committed_segments: List[str] = [] # 确认的完整段落
78
  self._committed_sentences: List[str] = [] # 确认的短句
79
  self._temp_string: str = "" # 临时字符串缓冲
 
 
 
 
 
 
 
 
 
 
80
 
81
  @property
82
  def current_sentence(self) -> str:
83
  """当前已确认的短句组合"""
84
  return "".join(self._committed_sentences)
85
 
 
 
 
 
86
  @property
87
  def latest_segment(self) -> str:
88
  """最新确认的完整段落"""
@@ -153,8 +170,8 @@ class TranscriptionSplitter:
153
  @staticmethod
154
  def split_by_punctuation(
155
  segments: List[TranscriptSegment],
156
- audio_buffer: np.ndarray,
157
- sample_rate: int = 16000
158
  ) -> Tuple[int, List[TranscriptSegment], List[TranscriptSegment], bool]:
159
  """
160
  根据标点符号将片段分为左侧(已确认)和右侧(待确认)
@@ -167,24 +184,26 @@ class TranscriptionSplitter:
167
  split_index = 0
168
  is_sentence_end = False
169
 
170
- # 短音频使用所有标点符号作为分割依据
171
- buffer_duration = len(audio_buffer) / sample_rate
172
- markers = ALL_MARKERS if buffer_duration < 12 else SENTENCE_END_MARKERS
173
-
174
- for idx, seg in enumerate(segments):
 
 
 
175
  left_segments.append(seg)
176
  if seg.text and seg.text[-1] in markers:
177
  split_index = int(seg.t1 / 100 * sample_rate)
178
  is_sentence_end = bool(SENTENCE_END_PATTERN.search(seg.text))
179
- right_segments = segments[min(idx+1, len(segments)):]
180
  break
181
-
182
  return split_index, left_segments, right_segments, is_sentence_end
183
 
184
  @staticmethod
185
  def split_by_sequences(
186
  segments: List[TranscriptSegment],
187
- audio_buffer: np.ndarray,
188
  sample_rate: int = 16000
189
  ) -> Tuple[int, Iterator[TranscriptSegment], Iterator[TranscriptSegment], bool]:
190
  """
@@ -210,14 +229,32 @@ class TranscriptionSplitter:
210
  return 0, iter([]), iter(segments), False
211
 
212
 
213
- class TranscriptionStabilizer:
214
  """
215
  转录结果稳定器,负责确认和管理转录片段
216
  """
217
  def __init__(self, sample_rate: int = 16000):
218
- self.manager = TranscriptionManager()
219
- self.stability_buffer = TextStabilityBuffer(max_history=2)
220
  self.sample_rate = sample_rate
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221
 
222
  def process_segments(self, segments: List[TranscriptSegment]) -> Tuple[Optional[int], bool]:
223
  """
@@ -232,49 +269,37 @@ class TranscriptionStabilizer:
232
  # 查找第一个包含标点的片段作为分割点
233
  split_index = None
234
  stable_segments = []
 
 
 
 
 
235
 
236
- for idx, seg in enumerate(segments):
237
- stable_segments.append(seg)
238
- if REGEX_MARKERS.search(seg.text):
239
- split_index = int(seg.t1 / 100 * self.sample_rate)
240
- stable_idx = min(idx + 1, len(segments))
241
- break
242
 
243
- if split_index: # 找到标点,确认标点前的内容
244
- stable_text = self._join_segment_text(segments[:stable_idx])
245
- self.manager.update_temp(stable_text).commit_sentence()
246
 
247
  # 更新剩余文本
248
- remaining_text = self._join_segment_text(segments[stable_idx:])
249
- self.manager.update_temp(remaining_text)
250
  else:
251
- # 没有找到标点,全部作为临时文本
252
- self.manager.update_temp(self._join_segment_text(segments))
 
 
 
 
 
 
 
 
 
253
 
254
  # 检查是否达到换行标准
255
- should_linebreak = self.manager.sentence_length >= 20
256
-
257
- return split_index, should_linebreak
258
-
259
- def check_stability(self, text: str, index: int) -> Optional[int]:
260
- """
261
- 检查文本是否稳定
262
 
263
- Args:
264
- text: 当前文本
265
- index: 当前索引
266
-
267
- Returns:
268
- 如果文本稳定,返回稳定的索引;否则返回None
269
- """
270
- self.stability_buffer.add_entry(text, index)
271
- return self.stability_buffer.get_stable_index()
272
-
273
- def commit_segment(self, is_end_of_sentence: bool) -> None:
274
- """提交转录片段"""
275
- self.manager.commit_segment(is_end_of_sentence)
276
-
277
- @staticmethod
278
- def _join_segment_text(segments: List[TranscriptSegment], separator: str = "") -> str:
279
- """连接多个片段的文本"""
280
- return separator.join(seg.text for seg in segments)
 
18
  t0: float # 开始时间(百分之一秒)
19
  t1: float # 结束时间(百分之一秒)
20
 
21
+ def join_segment_text(segments: List[TranscriptSegment], separator: str = "") -> str:
22
+ """连接多个片段的文本"""
23
+ return separator.join(seg.text for seg in segments)
24
 
25
  class TextStabilityBuffer:
26
  """
 
80
  self._committed_segments: List[str] = [] # 确认的完整段落
81
  self._committed_sentences: List[str] = [] # 确认的短句
82
  self._temp_string: str = "" # 临时字符串缓冲
83
+
84
+ def check_line_break(self, min_length: int = 20) -> bool:
85
+ """检查当前短句长度是否达到换行标准"""
86
+ return self.sentence_length >= min_length
87
+
88
+ def force_line_break(self) -> None:
89
+ """强制换行,保留当前内容但创建新段落"""
90
+ if self.current_sentence:
91
+ self._committed_segments.append(self.current_sentence)
92
+ self._committed_sentences = []
93
 
94
  @property
95
  def current_sentence(self) -> str:
96
  """当前已确认的短句组合"""
97
  return "".join(self._committed_sentences)
98
 
99
+ @property
100
+ def remaining_text(self) -> str:
101
+ return self._temp_string
102
+
103
  @property
104
  def latest_segment(self) -> str:
105
  """最新确认的完整段落"""
 
170
  @staticmethod
171
  def split_by_punctuation(
172
  segments: List[TranscriptSegment],
173
+ sample_rate: int = 16000,
174
+ segment_skip_index= 0
175
  ) -> Tuple[int, List[TranscriptSegment], List[TranscriptSegment], bool]:
176
  """
177
  根据标点符号将片段分为左侧(已确认)和右侧(待确认)
 
184
  split_index = 0
185
  is_sentence_end = False
186
 
187
+ # # 短音频使用所有标点符号作为分割依据
188
+ # buffer_duration = len(audio_buffer) / sample_rate
189
+ # markers = ALL_MARKERS if buffer_duration < 12 else SENTENCE_END_MARKERS
190
+ skip_segments = segments[:segment_skip_index+1]
191
+ skipped_segments = segments[segment_skip_index:]
192
+
193
+ markers = ALL_MARKERS
194
+ for idx, seg in enumerate(skipped_segments):
195
  left_segments.append(seg)
196
  if seg.text and seg.text[-1] in markers:
197
  split_index = int(seg.t1 / 100 * sample_rate)
198
  is_sentence_end = bool(SENTENCE_END_PATTERN.search(seg.text))
199
+ right_segments = skipped_segments[min(idx+1, len(skipped_segments)):]
200
  break
201
+ left_segments = skip_segments+ left_segments
202
  return split_index, left_segments, right_segments, is_sentence_end
203
 
204
  @staticmethod
205
  def split_by_sequences(
206
  segments: List[TranscriptSegment],
 
207
  sample_rate: int = 16000
208
  ) -> Tuple[int, Iterator[TranscriptSegment], Iterator[TranscriptSegment], bool]:
209
  """
 
229
  return 0, iter([]), iter(segments), False
230
 
231
 
232
+ class TranscriptionStabilizer(TranscriptionSplitter):
233
  """
234
  转录结果稳定器,负责确认和管理转录片段
235
  """
236
  def __init__(self, sample_rate: int = 16000):
237
+ self.text_manager = TranscriptionManager()
 
238
  self.sample_rate = sample_rate
239
+
240
+ @property
241
+ def latest_segment(self):
242
+ return self.text_manager.latest_segment
243
+
244
+
245
+ @property
246
+ def segment_count(self):
247
+ return self.text_manager.segment_count
248
+
249
+
250
+ @property
251
+ def remaining_text(self):
252
+ return self.text_manager.remaining_text
253
+
254
+ @property
255
+ def stable_string(self):
256
+ return self.text_manager.current_sentence
257
+
258
 
259
  def process_segments(self, segments: List[TranscriptSegment]) -> Tuple[Optional[int], bool]:
260
  """
 
269
  # 查找第一个包含标点的片段作为分割点
270
  split_index = None
271
  stable_segments = []
272
+ force_split = False
273
+ if len(segments) < 20:
274
+ remaining_text = join_segment_text(segments)
275
+ self.text_manager.update_temp(remaining_text)
276
+ return split_index, False, join_segment_text(segments), self.text_manager.remaining_text
277
 
278
+ # 查找20个长度后的标点符号
279
+ split_index, left_segments, right_segments, is_sentence_end = self.split_by_punctuation(segments[20:],sample_rate=self.sample_rate)
 
 
 
 
280
 
281
+ if split_index is not None: # 找到标点,确认标点前的内容
282
+ stable_text = join_segment_text(left_segments)
283
+ self.text_manager.update_temp(stable_text).commit_sentence()
284
 
285
  # 更新剩余文本
286
+ remaining_text = join_segment_text(right_segments)
287
+ self.text_manager.update_temp(remaining_text)
288
  else:
289
+ # 如果没有标点 但是累计超过22个字符 直接从20个字符的位置切掉
290
+ if len(segments) > 22 and not REGEX_MARKERS.search(join_segment_text(segments)):
291
+ split_index = int(segments[20].t1 / 100 * self.sample_rate)
292
+ stable_idx = 21 # 直接使用22个字符的索引
293
+ force_split = True
294
+ stable_text = join_segment_text(segments[:stable_idx])
295
+ self.text_manager.update_temp(stable_text).commit_sentence()
296
+ self.text_manager.update_temp(join_segment_text(segments[stable_idx:]))
297
+ else:
298
+ # 没有找到标点,全部作为临时文本
299
+ self.text_manager.update_temp(join_segment_text(segments))
300
 
301
  # 检查是否达到换行标准
302
+ should_linebreak = self.text_manager.sentence_length >= 20 or force_split
 
 
 
 
 
 
303
 
304
+ return split_index, should_linebreak, join_segment_text(stable_segments), self.text_manager.remaining_text
305
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
transcribe/whisper_llm_serve.py CHANGED
@@ -12,7 +12,13 @@ from api_model import TransResult, Message
12
  from .server import ServeClientBase
13
  from .utils import log_block, save_to_wave
14
  from .translatepipes import TranslatePipes
15
- from .strategy import TextStabilityBuffer, TranscriptionManager, TranscriptionSplitter, TranscriptSegment
 
 
 
 
 
 
16
 
17
  logger = getLogger("TranscriptionService")
18
 
@@ -50,6 +56,8 @@ class WhisperTranscriptionService(ServeClientBase):
50
  self.translate_thread = self._start_thread(self._transcription_processing_loop)
51
  self.frame_processing_thread = self._start_thread(self._frame_processing_loop)
52
 
 
 
53
  def _start_thread(self, target_function) -> threading.Thread:
54
  """启动守护线程执行指定函数"""
55
  thread = threading.Thread(target=target_function)
@@ -154,11 +162,26 @@ class WhisperTranscriptionService(ServeClientBase):
154
  result = self._translate_pipe.translate(text, self.source_language, self.target_language)
155
  translated_text = result.translate_content
156
 
157
- log_block("Translation time", f"{(time.perf_counter() - start_time):.3f}", "s")
158
  log_block("Translation output", f"{translated_text}")
159
 
160
  return translated_text
161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
  def _analyze_segments(self, segments: List[TranscriptSegment], audio_buffer: np.ndarray) -> Tuple[Optional[int], str, str, bool]:
163
  """
164
  分析转录片段,确定稳定部分和需要继续观察的部分
@@ -171,24 +194,35 @@ class WhisperTranscriptionService(ServeClientBase):
171
  segments, audio_buffer, self.sample_rate
172
  )
173
 
174
- left_text = self.text_separator.join(seg.text for seg in left_segments)
175
- right_text = self.text_separator.join(seg.text for seg in right_segments)
176
 
177
  # 如果找到分割点,检查左侧文本稳定性
178
  if left_idx != 0:
179
  self._text_stability_buffer.add_entry(left_text, left_idx)
180
  stable_idx = self._text_stability_buffer.get_stable_index()
181
  if stable_idx:
182
- return stable_idx, left_text, right_text, is_end
183
-
 
 
 
 
 
 
 
 
 
 
 
184
  # 如果基于标点的方法未找到稳定点,尝试基于句子序列的方法
185
  left_idx, left_segments, right_segments, is_end = TranscriptionSplitter.split_by_sequences(
186
- segments, audio_buffer, self.sample_rate
187
  )
188
 
189
  if left_idx != 0:
190
- left_text = self.text_separator.join(seg.text for seg in left_segments)
191
- right_text = self.text_separator.join(seg.text for seg in right_segments)
192
  return left_idx, left_text, right_text, is_end
193
 
194
  # 如果都没有找到分割点
@@ -196,6 +230,7 @@ class WhisperTranscriptionService(ServeClientBase):
196
 
197
  def _transcription_processing_loop(self) -> None:
198
  """主转录处理循环"""
 
199
  while not self._translate_thread_stop.is_set():
200
  if self.exit:
201
  logger.info("Exiting transcription thread")
@@ -203,26 +238,28 @@ class WhisperTranscriptionService(ServeClientBase):
203
 
204
  # 等待音频数据
205
  if self.frames_np is None:
206
- time.sleep(0.02)
207
  logger.info("Waiting for audio data...")
208
  continue
209
 
210
  # 获取音频块进行处理
211
  audio_buffer = self._get_audio_for_processing()
212
  if audio_buffer is None:
213
- time.sleep(0.02)
214
  continue
215
-
216
- try:
217
- logger.info(f"Processing audio buffer: {len(audio_buffer)/self.sample_rate:.2f}s")
218
- segments = self._transcribe_audio(audio_buffer)
219
-
220
- # 处理转录结果并发送到客户端
221
- for result in self._process_transcription_results(segments, audio_buffer):
222
- self._send_result_to_client(result)
 
 
223
 
224
- except Exception as e:
225
- logger.error(f"Error processing audio: {e}")
226
 
227
  def _process_transcription_results(self, segments: List[TranscriptSegment], audio_buffer: np.ndarray) -> Iterator[TransResult]:
228
  """
@@ -236,12 +273,7 @@ class WhisperTranscriptionService(ServeClientBase):
236
  if not full_text:
237
  return
238
 
239
- # 更新转录管理器中的临时文本
240
- self._transcription_manager.update_temp(full_text)
241
-
242
- # 分析片段,确定稳定部分和需要继续观察的部分
243
- cut_index, stable_text, remaining_text, is_sentence_end = self._analyze_segments(segments, audio_buffer)
244
-
245
  # 如果找到稳定的分割点
246
  if cut_index:
247
  # 更新音频缓冲区,移除已处理部分
@@ -249,13 +281,11 @@ class WhisperTranscriptionService(ServeClientBase):
249
 
250
  # 提交稳定的文本
251
  log_block("Stable transcription", f"{stable_text}")
252
- self._transcription_manager.update_temp(stable_text).commit_segment(is_sentence_end)
253
- self._transcription_manager.update_temp(remaining_text)
254
-
255
  # 如果是句子结束,发送完整句子的翻译结果
256
  if is_sentence_end:
257
- segment_text = self._transcription_manager.latest_segment
258
- segment_id = self._transcription_manager.segment_count - 1
259
 
260
  # 生成已确认句子的翻译结果
261
  yield TransResult(
@@ -268,19 +298,19 @@ class WhisperTranscriptionService(ServeClientBase):
268
  )
269
 
270
  # 如果还有剩余部分,生成临时翻译结果
271
- if self._transcription_manager.current_sentence.strip():
272
  yield TransResult(
273
  seg_id=segment_id + 1,
274
- context=self._transcription_manager.current_sentence,
275
  from_=self.source_language,
276
  to=self.target_language,
277
- tran_content=self._translate_text(self._transcription_manager.current_sentence.strip()),
278
  partial=True
279
  )
280
  else:
281
  # 没有找到稳定点,发送当前所有内容的临时翻译结果
282
- segment_id = self._transcription_manager.segment_count
283
- current_text = self._transcription_manager.current_sentence + self._transcription_manager.update_temp(remaining_text)._temp_string
284
 
285
  yield TransResult(
286
  seg_id=segment_id,
 
12
  from .server import ServeClientBase
13
  from .utils import log_block, save_to_wave
14
  from .translatepipes import TranslatePipes
15
+ from .strategy import (
16
+ TextStabilityBuffer,
17
+ TranscriptionManager,
18
+ TranscriptionSplitter,
19
+ TranscriptSegment,
20
+ TranscriptionStabilizer,
21
+ join_segment_text)
22
 
23
  logger = getLogger("TranscriptionService")
24
 
 
56
  self.translate_thread = self._start_thread(self._transcription_processing_loop)
57
  self.frame_processing_thread = self._start_thread(self._frame_processing_loop)
58
 
59
+ self.text_stablizer = TranscriptionStabilizer()
60
+
61
  def _start_thread(self, target_function) -> threading.Thread:
62
  """启动守护线程执行指定函数"""
63
  thread = threading.Thread(target=target_function)
 
162
  result = self._translate_pipe.translate(text, self.source_language, self.target_language)
163
  translated_text = result.translate_content
164
 
165
+ log_block("Translation time ", f"{(time.perf_counter() - start_time):.3f}", "s")
166
  log_block("Translation output", f"{translated_text}")
167
 
168
  return translated_text
169
 
170
+ def _find_best_split_position(self, segments: list, target_length: int = 20) -> int:
171
+ """找到最适合分割的位置,尽量靠近目标长度且在词/字的边界"""
172
+ if len(segments) <= target_length:
173
+ return 0
174
+
175
+ # 从目标长度位置向前搜索适合的分割点
176
+ for i in range(target_length, min(target_length + 10, len(segments))):
177
+ # 对于中文,每个字符都可以作为分割点
178
+ # 对于英文,在空格处分割
179
+ if self.source_language == "zh" or segments[i] == " ":
180
+ return i
181
+
182
+ # 如果找不到理想分割点,就在目标长度处分割
183
+ return target_length
184
+
185
  def _analyze_segments(self, segments: List[TranscriptSegment], audio_buffer: np.ndarray) -> Tuple[Optional[int], str, str, bool]:
186
  """
187
  分析转录片段,确定稳定部分和需要继续观察的部分
 
194
  segments, audio_buffer, self.sample_rate
195
  )
196
 
197
+ left_text = join_segment_text(left_segments, self.text_separator)
198
+ right_text = join_segment_text(right_segments, self.text_separator)
199
 
200
  # 如果找到分割点,检查左侧文本稳定性
201
  if left_idx != 0:
202
  self._text_stability_buffer.add_entry(left_text, left_idx)
203
  stable_idx = self._text_stability_buffer.get_stable_index()
204
  if stable_idx:
205
+ should_break = True if (self._transcription_manager.sentence_length>= 20) else False
206
+ return stable_idx, left_text, right_text, should_break
207
+
208
+ # 如果基于标点的方法没有找到稳定点,尝试检查句子的长度
209
+ if len(segments) >= 20: # 设置更长的阈值,确保有足够内容进行分割
210
+ # 尝试在约20字符处找一个词的边界进行分割
211
+ split_pos = self._find_best_split_position(segments)
212
+ if split_pos > 0:
213
+ left_text = join_segment_text(segments[:split_pos], self.text_separator)
214
+ right_text = join_segment_text(segments[split_pos:], self.text_separator)
215
+ audio_pos = int(segments[split_pos].t1 / 100 * self.sample_rate)
216
+ return audio_pos, left_text, right_text, True
217
+
218
  # 如果基于标点的方法未找到稳定点,尝试基于句子序列的方法
219
  left_idx, left_segments, right_segments, is_end = TranscriptionSplitter.split_by_sequences(
220
+ segments, self.sample_rate
221
  )
222
 
223
  if left_idx != 0:
224
+ left_text = join_segment_text(left_segments, self.text_separator)
225
+ right_text = join_segment_text(right_segments, self.text_separator)
226
  return left_idx, left_text, right_text, is_end
227
 
228
  # 如果都没有找到分割点
 
230
 
231
  def _transcription_processing_loop(self) -> None:
232
  """主转录处理循环"""
233
+ c = 0
234
  while not self._translate_thread_stop.is_set():
235
  if self.exit:
236
  logger.info("Exiting transcription thread")
 
238
 
239
  # 等待音频数据
240
  if self.frames_np is None:
241
+ time.sleep(0.2)
242
  logger.info("Waiting for audio data...")
243
  continue
244
 
245
  # 获取音频块进行处理
246
  audio_buffer = self._get_audio_for_processing()
247
  if audio_buffer is None:
248
+ time.sleep(0.2)
249
  continue
250
+
251
+ c+= 1
252
+ save_to_wave(f"dev-{c}.wav", audio_buffer)
253
+
254
+ # try:
255
+ segments = self._transcribe_audio(audio_buffer)
256
+
257
+ # 处理转录结果并发送到客户端
258
+ for result in self._process_transcription_results(segments, audio_buffer):
259
+ self._send_result_to_client(result)
260
 
261
+ # except Exception as e:
262
+ # logger.error(f"Error processing audio: {e}")
263
 
264
  def _process_transcription_results(self, segments: List[TranscriptSegment], audio_buffer: np.ndarray) -> Iterator[TransResult]:
265
  """
 
273
  if not full_text:
274
  return
275
 
276
+ cut_index, is_sentence_end, stable_text, remaining_text = self.text_stablizer.process_segments(segments)
 
 
 
 
 
277
  # 如果找到稳定的分割点
278
  if cut_index:
279
  # 更新音频缓冲区,移除已处理部分
 
281
 
282
  # 提交稳定的文本
283
  log_block("Stable transcription", f"{stable_text}")
284
+
 
 
285
  # 如果是句子结束,发送完整句子的翻译结果
286
  if is_sentence_end:
287
+ segment_text = self.text_stablizer.latest_segment
288
+ segment_id = self.text_stablizer.segment_count - 1
289
 
290
  # 生成已确认句子的翻译结果
291
  yield TransResult(
 
298
  )
299
 
300
  # 如果还有剩余部分,生成临时翻译结果
301
+ if self.text_stablizer.remaining_text.strip():
302
  yield TransResult(
303
  seg_id=segment_id + 1,
304
+ context=self.text_stablizer.remaining_text,
305
  from_=self.source_language,
306
  to=self.target_language,
307
+ tran_content=self._translate_text(self.text_stablizer.remaining_text.strip()),
308
  partial=True
309
  )
310
  else:
311
  # 没有找到稳定点,发送当前所有内容的临时翻译结果
312
+ segment_id = self.text_stablizer.segment_count
313
+ current_text = self.text_stablizer.stable_string + self.text_stablizer.remaining_text
314
 
315
  yield TransResult(
316
  seg_id=segment_id,