from copy import deepcopy from time import time from config import VAD_MODEL_PATH from silero_vad import load_silero_vad import numpy as np import onnxruntime import logging from datetime import timedelta import gc from pydub import AudioSegment from collections import deque class AdaptiveSilenceController: def __init__(self, base_silence_ms=120, min_ms=50, max_ms=600): self.base = base_silence_ms self.min = min_ms self.max = max_ms self.recent_silences = deque(maxlen=20) self.recent_speeches = deque(maxlen=20) def update_silence(self, duration_ms): self.recent_silences.append(duration_ms) def update_speech(self, duration_ms): self.recent_speeches.append(duration_ms) def get_adaptive_silence_ms(self): # 1. 快速说话特征:平均语音段长度短(如 < 250ms) avg_speech = np.mean(self.recent_speeches) if self.recent_speeches else self.base avg_silence = np.mean(self.recent_silences) if self.recent_silences else self.base # 2. 快速语音则缩短 silence 阈值 speed_factor = 1.0 if avg_speech < 300: speed_factor = 0.5 elif avg_speech < 600: speed_factor = 0.8 logging.warning(f"Avg speech :{avg_speech}, Avg silence: {avg_silence}") # 3. silence 的变化趋势也考虑进去 adaptive = self.base * speed_factor + 0.3 * avg_silence return int(max(self.min, min(self.max, adaptive))) class OnnxWrapper(): def __init__(self, path, force_onnx_cpu=False): opts = onnxruntime.SessionOptions() opts.inter_op_num_threads = 1 opts.intra_op_num_threads = 1 if force_onnx_cpu and 'CPUExecutionProvider' in onnxruntime.get_available_providers(): self.session = onnxruntime.InferenceSession(path, providers=['CPUExecutionProvider'], sess_options=opts) else: self.session = onnxruntime.InferenceSession(path, sess_options=opts) self.reset_states() self.sample_rates = [16000] def _validate_input(self, x: np.ndarray, sr: int): if x.ndim == 1: x = x[None] if x.ndim > 2: raise ValueError(f"Too many dimensions for input audio chunk {x.ndim}") if sr != 16000 and (sr % 16000 == 0): step = sr // 16000 x = x[:, ::step] sr = 16000 if sr not in self.sample_rates: raise ValueError(f"Supported sampling rates: {self.sample_rates} (or multiply of 16000)") if sr / x.shape[1] > 31.25: raise ValueError("Input audio chunk is too short") return x, sr def reset_states(self, batch_size=1): self._state = np.zeros((2, batch_size, 128)).astype(np.float32) self._context = np.zeros(0) self._last_sr = 0 self._last_batch_size = 0 def __call__(self, x, sr: int): x, sr = self._validate_input(x, sr) num_samples = 512 if sr == 16000 else 256 if x.shape[-1] != num_samples: raise ValueError( f"Provided number of samples is {x.shape[-1]} (Supported values: 256 for 8000 sample rate, 512 for 16000)") batch_size = x.shape[0] context_size = 64 if sr == 16000 else 32 if not self._last_batch_size: self.reset_states(batch_size) if (self._last_sr) and (self._last_sr != sr): self.reset_states(batch_size) if (self._last_batch_size) and (self._last_batch_size != batch_size): self.reset_states(batch_size) if not len(self._context): self._context = np.zeros((batch_size, context_size)).astype(np.float32) x = np.concatenate([self._context, x], axis=1) if sr in [8000, 16000]: ort_inputs = {'input': x, 'state': self._state, 'sr': np.array(sr, dtype='int64')} ort_outs = self.session.run(None, ort_inputs) out, state = ort_outs self._state = state else: raise ValueError() self._context = x[..., -context_size:] self._last_sr = sr self._last_batch_size = batch_size # out = torch.from_numpy(out) return out def audio_forward(self, audio: np.ndarray, sr: int): outs = [] x, sr = self._validate_input(audio, sr) self.reset_states() num_samples = 512 if sr == 16000 else 256 if x.shape[1] % num_samples: pad_num = num_samples - (x.shape[1] % num_samples) x = np.pad(x, ((0, 0), (0, pad_num)), 'constant', constant_values=(0.0, 0.0)) for i in range(0, x.shape[1], num_samples): wavs_batch = x[:, i:i + num_samples] out_chunk = self.__call__(wavs_batch, sr) outs.append(out_chunk) stacked = np.concatenate(outs, axis=1) return stacked class VADIteratorOnnx: def __init__(self, threshold: float = 0.5, sampling_rate: int = 16000, min_silence_duration_ms: int = 100, max_speech_duration_s: float = float('inf'), speech_pad_ms: int = 30 ): self.model = OnnxWrapper(VAD_MODEL_PATH, True) self.threshold = threshold self.sampling_rate = sampling_rate if sampling_rate not in [8000, 16000]: raise ValueError('VADIterator does not support sampling rates other than [8000, 16000]') self.min_silence_samples = sampling_rate * min_silence_duration_ms / 1000 # self.max_speech_samples = int(sampling_rate * max_speech_duration_s) self.speech_pad_samples = sampling_rate * speech_pad_ms / 1000 self.reset_states() def reset_states(self): self.model.reset_states() self.triggered = False self.temp_end = 0 self.current_sample = 0 self.start = 0 def __call__(self, x: np.ndarray, return_seconds=False): """ x: np.ndarray audio chunk (see examples in repo) return_seconds: bool (default - False) whether return timestamps in seconds (default - samples) """ window_size_samples = 512 if self.sampling_rate == 16000 else 256 x = x[:window_size_samples] if len(x) < window_size_samples: x = np.pad(x, ((0, 0), (0, window_size_samples - len(x))), 'constant', constant_values=0.0) self.current_sample += window_size_samples speech_prob = self.model(x, self.sampling_rate)[0,0] if (speech_prob >= self.threshold) and self.temp_end: self.temp_end = 0 if (speech_prob >= self.threshold) and not self.triggered: self.triggered = True # speech_start = max(0, self.current_sample - window_size_samples) speech_start = max(0, self.current_sample - self.speech_pad_samples - window_size_samples) self.start = speech_start return {'start': int(speech_start) if not return_seconds else round(speech_start / self.sampling_rate, 1)} # if (speech_prob >= self.threshold) and self.current_sample - self.start >= self.max_speech_samples: # if self.temp_end: # self.temp_end = 0 # self.start = self.current_sample # return {'end': int(self.current_sample) if not return_seconds else round(self.current_sample / self.sampling_rate, 1)} if (speech_prob < self.threshold - 0.15) and self.triggered: if not self.temp_end: self.temp_end = self.current_sample if self.current_sample - self.temp_end < self.min_silence_samples: return None else: # speech_end = self.temp_end - window_size_samples speech_end = self.temp_end + self.speech_pad_samples - window_size_samples self.temp_end = 0 self.triggered = False return {'end': int(speech_end) if not return_seconds else round(speech_end / self.sampling_rate, 1)} return None class FixedVADIterator(VADIteratorOnnx): '''It fixes VADIterator by allowing to process any audio length, not only exactly 512 frames at once. If audio to be processed at once is long and multiple voiced segments detected, then __call__ returns the start of the first segment, and end (or middle, which means no end) of the last segment. ''' def reset_states(self): super().reset_states() self.buffer = np.array([],dtype=np.float32) def __call__(self, x, return_seconds=False): self.buffer = np.append(self.buffer, x) ret = None while len(self.buffer) >= 512: r = super().__call__(self.buffer[:512], return_seconds=return_seconds) self.buffer = self.buffer[512:] if ret is None: ret = r elif r is not None: if 'end' in r: ret['end'] = r['end'] # the latter end if 'start' in r and 'end' in ret: # there is an earlier start. # Remove end, merging this segment with the previous one. del ret['end'] return ret if ret != {} else None class VadV2: def __init__(self, threshold: float = 0.5, sampling_rate: int = 16000, min_silence_duration_ms: int = 100, speech_pad_ms: int = 30, max_speech_duration_s: float = float('inf')): # self.vad_iterator = VADIterator(threshold, sampling_rate, min_silence_duration_ms) self.vad_iterator = VADIteratorOnnx(threshold, sampling_rate, min_silence_duration_ms, max_speech_duration_s) self.speech_pad_samples = int(sampling_rate * speech_pad_ms / 1000) self.sampling_rate = sampling_rate self.audio_buffer = np.array([], dtype=np.float32) self.start = 0 self.end = 0 self.offset = 0 assert speech_pad_ms <= min_silence_duration_ms, "speech_pad_ms should be less than min_silence_duration_ms" self.max_speech_samples = int(sampling_rate * max_speech_duration_s) self.silence_chunk_size = 0 self.silence_chunk_threshold = 60 / (512 / self.sampling_rate) def reset(self): self.audio_buffer = np.array([], dtype=np.float32) self.start = 0 self.end = 0 self.offset = 0 self.vad_iterator.reset_states() def __call__(self, x: np.ndarray = None): if x is None: if self.start: start = max(self.offset, self.start - self.speech_pad_samples) end = self.offset + len(self.audio_buffer) start_ts = round(start / self.sampling_rate, 1) end_ts = round(end / self.sampling_rate, 1) audio_data = self.audio_buffer[start - self.offset: end - self.offset] result = { "start": start_ts, "end": end_ts, "audio": audio_data, } else: result = None self.reset() return result self.audio_buffer = np.append(self.audio_buffer, deepcopy(x)) result = self.vad_iterator(x) if result is not None: # self.start = result.get('start', self.start) # self.end = result.get('end', self.end) self.silence_chunk_size = 0 if 'start' in result: self.start = result['start'] if 'end' in result: self.end = result['end'] else: self.silence_chunk_size += 1 if self.start == 0 and len(self.audio_buffer) > self.speech_pad_samples: self.offset += len(self.audio_buffer) - self.speech_pad_samples self.audio_buffer = self.audio_buffer[-self.speech_pad_samples:] if self.silence_chunk_size >= self.silence_chunk_threshold: self.offset += len(self.audio_buffer) - self.speech_pad_samples self.audio_buffer = self.audio_buffer[-self.speech_pad_samples:] self.silence_chunk_size = 0 if self.end > self.start: start = max(self.offset, self.start - self.speech_pad_samples) end = self.end + self.speech_pad_samples start_ts = round(start / self.sampling_rate, 1) end_ts = round(end / self.sampling_rate, 1) audio_data = self.audio_buffer[start - self.offset: end - self.offset] self.audio_buffer = self.audio_buffer[self.end - self.offset:] self.offset = self.end self.start = self.end # self.start = 0 self.end = 0 result = { "start": start_ts, "end": end_ts, "audio": audio_data, } return result return None class SileroVADProcessor: """ A class for processing audio files using Silero VAD to detect voice activity and extract voice segments from audio files. """ def __init__(self, activate_threshold=0.5, fusion_threshold=0.3, min_speech_duration=0.25, max_speech_duration=20, min_silence_duration=250, sample_rate=16000, ort_providers=None): """ Initialize the SileroVADProcessor. Args: activate_threshold (float): Threshold for voice activity detection fusion_threshold (float): Threshold for merging close speech segments (seconds) min_speech_duration (float): Minimum duration of speech to be considered valid (seconds) max_speech_duration (float): Maximum duration of speech (seconds) min_silence_duration (int): Minimum silence duration (ms) sample_rate (int): Sample rate of the audio (8000 or 16000 Hz) ort_providers (list): ONNX Runtime providers for acceleration """ # VAD parameters self.activate_threshold = activate_threshold self.fusion_threshold = fusion_threshold self.min_speech_duration = min_speech_duration self.max_speech_duration = max_speech_duration self.min_silence_duration = min_silence_duration self.sample_rate = sample_rate self.ort_providers = ort_providers if ort_providers else [] # Initialize logger self.logger = logging.getLogger(__name__) # Load Silero VAD model self._init_onnx_session() self.silero_vad = load_silero_vad(onnx=True) def _init_onnx_session(self): """Initialize ONNX Runtime session with appropriate settings.""" session_opts = onnxruntime.SessionOptions() session_opts.log_severity_level = 3 session_opts.inter_op_num_threads = 0 session_opts.intra_op_num_threads = 0 session_opts.enable_cpu_mem_arena = True session_opts.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL session_opts.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL session_opts.add_session_config_entry("session.intra_op.allow_spinning", "1") session_opts.add_session_config_entry("session.inter_op.allow_spinning", "1") session_opts.add_session_config_entry("session.set_denormal_as_zero", "1") # Set the session_opts to be used by silero_vad # onnxruntime.capi._pybind_state.get_default_session_options(session_opts) def load_audio(self, audio_path): """ Load audio file and prepare it for VAD processing. Args: audio_path (str): Path to the audio file Returns: numpy.ndarray: Audio data as numpy array """ self.logger.info(f"Loading audio from {audio_path}") audio_segment = AudioSegment.from_file(audio_path) audio_segment = audio_segment.set_channels(1).set_frame_rate(self.sample_rate) # Convert to numpy array and normalize dtype = np.float16 if self.use_gpu_fp16 else np.float32 audio_array = np.array(audio_segment.get_array_of_samples(), dtype=dtype) * 0.000030517578 # 1/32768 self.audio_segment = audio_segment # Store for later use return audio_array @property def model(self): return self.silero_vad def process_timestamps(self, timestamps): """ Process VAD timestamps: filter short segments and merge close segments. Args: timestamps (list): List of (start, end) tuples Returns: list: Processed list of (start, end) tuples """ # Filter out short durations filtered_timestamps = [(start, end) for start, end in timestamps if (end - start) >= self.min_speech_duration] # Fuse timestamps in two passes for better merging fused_timestamps_1st = [] for start, end in filtered_timestamps: if fused_timestamps_1st and (start - fused_timestamps_1st[-1][1] <= self.fusion_threshold): fused_timestamps_1st[-1] = (fused_timestamps_1st[-1][0], end) else: fused_timestamps_1st.append((start, end)) fused_timestamps_2nd = [] for start, end in fused_timestamps_1st: if fused_timestamps_2nd and (start - fused_timestamps_2nd[-1][1] <= self.fusion_threshold): fused_timestamps_2nd[-1] = (fused_timestamps_2nd[-1][0], end) else: fused_timestamps_2nd.append((start, end)) return fused_timestamps_2nd def format_time(self, seconds): """ Convert seconds to VTT time format 'hh:mm:ss.mmm'. Args: seconds (float): Time in seconds Returns: str: Formatted time string """ td = timedelta(seconds=seconds) td_sec = td.total_seconds() total_seconds = int(td_sec) milliseconds = int((td_sec - total_seconds) * 1000) hours = total_seconds // 3600 minutes = (total_seconds % 3600) // 60 seconds = total_seconds % 60 return f"{hours:02}:{minutes:02}:{seconds:02}.{milliseconds:03}" def detect_speech(self, audio:np.array): """ Run VAD on the audio file to detect speech segments. Args: audio_path (str): Path to the audio file Returns: list: List of processed timestamps as (start, end) tuples """ self.logger.info("Starting VAD process") start_time = time.time() # Get speech timestamps raw_timestamps = get_speech_timestamps( audio, model=self.silero_vad, threshold=self.activate_threshold, max_speech_duration_s=self.max_speech_duration, min_speech_duration_ms=int(self.min_speech_duration * 1000), min_silence_duration_ms=self.min_silence_duration, return_seconds=True ) # Convert to simple format and process timestamps = [(item['start'], item['end']) for item in raw_timestamps] processed_timestamps = self.process_timestamps(timestamps) # Clean up del audio gc.collect() self.logger.info(f"VAD completed in {time.time() - start_time:.3f} seconds") return processed_timestamps """ Save timestamps in both second and sample indices formats. Args: timestamps (list): List of (start, end) tuples output_prefix (str): Prefix for output files """ # Save timestamps in seconds (VTT format) seconds_path = f"{output_prefix}_timestamps_second.txt" with open(seconds_path, "w", encoding='UTF-8') as file: self.logger.info("Saving timestamps in seconds format") for start, end in timestamps: s_time = self.format_time(start) e_time = self.format_time(end) line = f"{s_time} --> {e_time}\n" file.write(line) # Save timestamps in sample indices indices_path = f"{output_prefix}_timestamps_indices.txt" with open(indices_path, "w", encoding='UTF-8') as file: self.logger.info("Saving timestamps in indices format") for start, end in timestamps: line = f"{int(start * self.sample_rate)} --> {int(end * self.sample_rate)}\n" file.write(line) self.logger.info(f"Timestamps saved to {seconds_path} and {indices_path}") def extract_speech_segments(self, audio_segment, timestamps): """ Extract speech segments from the audio and combine them into a single audio file. Args: timestamps (list): List of (start, end) tuples indicating speech segments Returns: AudioSegment: The combined speech segments """ audio_segment = audio_segment.numpy() combined_speech = np.array([], dtype=np.float32) # Extract and combine each speech segment for i, (start, end) in enumerate(timestamps): # Convert seconds to milliseconds for pydub start_ms = int(start * 1000) end_ms = int(end * 1000) # Ensure the end time does not exceed the length of the audio segment if end_ms > len(audio_segment): end_ms = len(audio_segment) # Extract the segment segment = audio_segment[start_ms:end_ms] # Add to combined audio combined_speech = np.append(combined_speech, segment) return combined_speech def process_audio(self, audio_array:np.array): """ Complete processing pipeline: detect speech, save timestamps, and optionally extract speech. Returns: tuple: (timestamps, output_speech_path if extract_speech else None) """ # Run VAD to detect speech timestamps = self.detect_speech(audio_array) combined_speech = self.extract_speech_segments(audio_array, timestamps) return timestamps, combined_speech class VadProcessor: def __init__( self, prob_threshold=0.5, silence_s=0.2, cache_s=0.15, sr=16000 ): self.prob_threshold = prob_threshold self.cache_s = cache_s self.sr = sr self.silence_s = silence_s self.vad = VadV2(self.prob_threshold, self.sr, self.silence_s * 1000, self.cache_s * 1000, max_speech_duration_s=15) def process_audio(self, audio_buffer: np.ndarray): audio = np.array([], np.float32) for i in range(0, len(audio_buffer), 512): chunk = audio_buffer[i:i+512] ret = self.vad(chunk) if ret: audio = np.append(audio, ret['audio']) return audio