lrl-modelcloud commited on
Commit
1a9b24b
·
verified ·
1 Parent(s): 3ed598f

1e4d1b50cf0d895789bfdba08a19e2e5efc269be070cb1f728f4827075a6aa19

Browse files
config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation": "sdpa",
3
+ "_name_or_path": "/model/GRIN-MoE",
4
+ "architectures": [
5
+ "GRIN-MoE"
6
+ ],
7
+ "attention_bias": true,
8
+ "attention_dropout": 0.0,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_grinmoe.GRINMoEConfig",
11
+ "AutoModelForCausalLM": "modeling_grinmoe.GRINMoEForCausalLM"
12
+ },
13
+ "bos_token_id": 1,
14
+ "eos_token_id": 32000,
15
+ "hidden_act": "silu",
16
+ "hidden_dropout": 0.0,
17
+ "hidden_size": 4096,
18
+ "initializer_range": 0.02,
19
+ "input_jitter_noise": 0.01,
20
+ "intermediate_size": 6400,
21
+ "lm_head_bias": true,
22
+ "max_position_embeddings": 4096,
23
+ "model_type": "grinmoe",
24
+ "num_attention_heads": 32,
25
+ "num_experts_per_tok": 2,
26
+ "num_hidden_layers": 32,
27
+ "num_key_value_heads": 8,
28
+ "num_local_experts": 16,
29
+ "output_router_logits": false,
30
+ "quantization_config": {
31
+ "bits": 4,
32
+ "checkpoint_format": "gptq",
33
+ "damp_auto_increment": 0.0015,
34
+ "damp_percent": 0.0025,
35
+ "desc_act": false,
36
+ "dynamic": null,
37
+ "group_size": 128,
38
+ "lm_head": false,
39
+ "meta": {
40
+ "quantizer": "gptqmodel:1.0.3-dev0"
41
+ },
42
+ "model_file_base_name": null,
43
+ "model_name_or_path": null,
44
+ "quant_method": "gptq",
45
+ "static_groups": false,
46
+ "sym": true,
47
+ "true_sequential": true
48
+ },
49
+ "rms_norm_eps": 1e-05,
50
+ "rope_theta": 10000.0,
51
+ "router_aux_loss_coef": 0.0,
52
+ "router_jitter_noise": 0.01,
53
+ "sliding_window": 2047,
54
+ "tie_word_embeddings": false,
55
+ "torch_dtype": "bfloat16",
56
+ "transformers_version": "4.44.2",
57
+ "use_cache": true,
58
+ "vocab_size": 32064
59
+ }
configuration_grinmoe.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch GRINMoE model"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ #from transformers.models.deprecated._archive_maps import PHIMOE_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
24
+ PHIMOE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
25
+ "microsoft/GRIN-MoE": "https://huggingface.co/microsoft/GRIN-MoE/resolve/main/config.json"
26
+ }
27
+
28
+ class GRINMoEConfig(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`GRINMoE`]. It is used to instantiate an
31
+ PhiMoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
32
+ with the defaults will yield a similar configuration to that of the
33
+ [microsoft/GRIN-MoE](https://huggingface.co/microsoft/GRIN-MoE).
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 32000):
41
+ Vocabulary size of the PhiMoE model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`GRINMoE`]
43
+ hidden_size (`int`, *optional*, defaults to 4096):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 14336):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer encoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer encoder.
51
+ num_key_value_heads (`int`, *optional*, defaults to 8):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
58
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
59
+ The non-linear activation function (function or string) in the decoder.
60
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
61
+ The maximum sequence length that this model might ever be used with. PhiMoE's sliding window attention
62
+ allows sequence of up to 4096*32 tokens.
63
+ initializer_range (`float`, *optional*, defaults to 0.02):
64
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
65
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
66
+ The epsilon used by the rms normalization layers.
67
+ use_cache (`bool`, *optional*, defaults to `True`):
68
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
69
+ relevant if `config.is_decoder=True`.
70
+ pad_token_id (`int`, *optional*):
71
+ The id of the padding token.
72
+ bos_token_id (`int`, *optional*, defaults to 1):
73
+ The id of the "beginning-of-sequence" token.
74
+ eos_token_id (`int`, *optional*, defaults to 2):
75
+ The id of the "end-of-sequence" token.
76
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
77
+ Whether the model's input and output word embeddings should be tied.
78
+ rope_theta (`float`, *optional*, defaults to 1000000.0):
79
+ The base period of the RoPE embeddings.
80
+ sliding_window (`int`, *optional*):
81
+ Sliding window attention window size. If not specified, will default to `4096`.
82
+ attention_dropout (`float`, *optional*, defaults to 0.0):
83
+ The dropout ratio for the attention probabilities.
84
+ num_experts_per_tok (`int`, *optional*, defaults to 2):
85
+ The number of experts to root per-token, can be also interpreted as the `top-p` routing
86
+ parameter
87
+ num_local_experts (`int`, *optional*, defaults to 8):
88
+ Number of experts per Sparse MLP layer.
89
+ output_router_logits (`bool`, *optional*, defaults to `False`):
90
+ Whether or not the router logits should be returned by the model. Enabeling this will also
91
+ allow the model to output the auxiliary loss. See [here]() for more details
92
+ router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
93
+ The aux loss factor for the total loss.
94
+ router_jitter_noise (`float`, *optional*, defaults to 0.0):
95
+ Amount of noise to add to the router.
96
+
97
+ ```python
98
+ >>> from transformers import GRINMoE, GRINMoEConfig
99
+
100
+ >>> # Initializing a GRIN-MoE style configuration
101
+ >>> configuration = GRINMoEConfig()
102
+
103
+ >>> # Initializing a model from the GRIN-MoE style configuration
104
+ >>> model = GRINMoE(configuration)
105
+
106
+ >>> # Accessing the model configuration
107
+ >>> configuration = model.config
108
+ ```"""
109
+
110
+ model_type = "grinmoe"
111
+ keys_to_ignore_at_inference = ["past_key_values"]
112
+
113
+ # _attn_implementation = 'eager'
114
+ _attn_implementation = 'sdpa'
115
+ # _attn_implementation = 'flash_attention_2'
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=32000,
120
+ hidden_size=4096,
121
+ intermediate_size=6400,
122
+ num_hidden_layers=32,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=8,
125
+ hidden_act="silu",
126
+ max_position_embeddings=4096 * 32,
127
+ initializer_range=0.02,
128
+ rms_norm_eps=1e-5,
129
+ use_cache=True,
130
+ pad_token_id=None,
131
+ bos_token_id=1,
132
+ eos_token_id=2,
133
+ tie_word_embeddings=False,
134
+ rope_theta=1e6,
135
+ sliding_window=None,
136
+ attention_dropout=0.0,
137
+ num_experts_per_tok=2,
138
+ num_local_experts=16,
139
+ output_router_logits=False,
140
+ router_aux_loss_coef=0.001,
141
+ router_jitter_noise=0.01,
142
+ input_jitter_noise=0.01,
143
+ attention_bias = False,
144
+ lm_head_bias = False,
145
+ **kwargs,
146
+ ):
147
+ self.vocab_size = vocab_size
148
+ self.max_position_embeddings = max_position_embeddings
149
+ self.hidden_size = hidden_size
150
+ self.intermediate_size = intermediate_size
151
+ self.num_hidden_layers = num_hidden_layers
152
+ self.num_attention_heads = num_attention_heads
153
+ self.sliding_window = sliding_window
154
+ self.attention_bias = attention_bias
155
+ self.lm_head_bias = lm_head_bias
156
+ # for backward compatibility
157
+ if num_key_value_heads is None:
158
+ num_key_value_heads = num_attention_heads
159
+
160
+ self.num_key_value_heads = num_key_value_heads
161
+ self.hidden_act = hidden_act
162
+ self.initializer_range = initializer_range
163
+ self.rms_norm_eps = rms_norm_eps
164
+ self.use_cache = use_cache
165
+ self.rope_theta = rope_theta
166
+ self.attention_dropout = attention_dropout
167
+
168
+ self.num_experts_per_tok = num_experts_per_tok
169
+ self.num_local_experts = num_local_experts
170
+ self.output_router_logits = output_router_logits
171
+ self.router_aux_loss_coef = router_aux_loss_coef
172
+ self.router_jitter_noise = router_jitter_noise
173
+ self.input_jitter_noise = input_jitter_noise
174
+
175
+ super().__init__(
176
+ pad_token_id=pad_token_id,
177
+ bos_token_id=bos_token_id,
178
+ eos_token_id=eos_token_id,
179
+ tie_word_embeddings=tie_word_embeddings,
180
+ **kwargs,
181
+ )
modeling_grinmoe.py ADDED
@@ -0,0 +1,1703 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ PyTorch GRINMoE model."""
17
+ import inspect
18
+ import math
19
+ import warnings
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
27
+
28
+ from transformers.activations import ACT2FN
29
+ from transformers.cache_utils import Cache, DynamicCache
30
+ from transformers.modeling_attn_mask_utils import (
31
+ _prepare_4d_causal_attention_mask,
32
+ _prepare_4d_causal_attention_mask_for_sdpa,
33
+ )
34
+ from transformers.modeling_outputs import (
35
+ MoeCausalLMOutputWithPast,
36
+ MoeModelOutputWithPast,
37
+ SequenceClassifierOutputWithPast,
38
+ )
39
+ from transformers.modeling_utils import PreTrainedModel
40
+ from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_13
41
+ from transformers.utils import (
42
+ add_start_docstrings,
43
+ add_start_docstrings_to_model_forward,
44
+ is_flash_attn_2_available,
45
+ is_flash_attn_greater_or_equal_2_10,
46
+ logging,
47
+ replace_return_docstrings,
48
+ )
49
+ from transformers.utils.import_utils import is_torch_fx_available
50
+ from .configuration_grinmoe import GRINMoEConfig
51
+
52
+ from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
53
+ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES.update({'grin': 'GRINMoEForCausalLM'})
54
+
55
+ if is_flash_attn_2_available():
56
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
57
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
58
+
59
+ from einops import rearrange
60
+ from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
61
+
62
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
63
+
64
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
65
+ # It means that the function will not be traced through and simply appear as a node in the graph.
66
+ if is_torch_fx_available():
67
+ if not is_torch_greater_or_equal_than_1_13:
68
+ import torch.fx
69
+
70
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
71
+
72
+
73
+ logger = logging.get_logger(__name__)
74
+
75
+ _CONFIG_FOR_DOC = "GRINMoEConfig"
76
+
77
+
78
+ def load_balancing_loss_func(
79
+ gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
80
+ ) -> float:
81
+ r"""
82
+ Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
83
+
84
+ See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
85
+ function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
86
+ experts is too unbalanced.
87
+
88
+ Args:
89
+ gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
90
+ Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
91
+ shape [batch_size X sequence_length, num_experts].
92
+ attention_mask (`torch.Tensor`, None):
93
+ The attention_mask used in forward function
94
+ shape [batch_size X sequence_length] if not None.
95
+ num_experts (`int`, *optional*):
96
+ Number of experts
97
+
98
+ Returns:
99
+ The auxiliary loss.
100
+ """
101
+ if gate_logits is None or not isinstance(gate_logits, tuple):
102
+ return 0
103
+
104
+ if isinstance(gate_logits, tuple):
105
+ compute_device = gate_logits[0].device
106
+ concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
107
+
108
+ routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
109
+
110
+ _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
111
+
112
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
113
+
114
+ if attention_mask is None:
115
+ # Compute the percentage of tokens routed to each experts
116
+ tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
117
+
118
+ # Compute the average probability of routing to these experts
119
+ router_prob_per_expert = torch.mean(routing_weights, dim=0)
120
+ else:
121
+ batch_size, sequence_length = attention_mask.shape
122
+ num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
123
+
124
+ # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
125
+ expert_attention_mask = (
126
+ attention_mask[None, :, :, None, None]
127
+ .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
128
+ .reshape(-1, top_k, num_experts)
129
+ .to(compute_device)
130
+ )
131
+
132
+ # Compute the percentage of tokens routed to each experts
133
+ tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
134
+ expert_attention_mask, dim=0
135
+ )
136
+
137
+ # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
138
+ router_per_expert_attention_mask = (
139
+ attention_mask[None, :, :, None]
140
+ .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
141
+ .reshape(-1, num_experts)
142
+ .to(compute_device)
143
+ )
144
+
145
+ # Compute the average probability of routing to these experts
146
+ router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
147
+ router_per_expert_attention_mask, dim=0
148
+ )
149
+
150
+ overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
151
+ return overall_loss * num_experts
152
+
153
+
154
+ # Copied from Phi-3.5-MoE
155
+ def _get_unpad_data(attention_mask):
156
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
157
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
158
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
159
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
160
+ return (
161
+ indices,
162
+ cu_seqlens,
163
+ max_seqlen_in_batch,
164
+ )
165
+
166
+
167
+ # Copied from Phi-3.5-MoE
168
+ class GRINMoERotaryEmbedding(nn.Module):
169
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
170
+ super().__init__()
171
+
172
+ self.dim = dim
173
+ self.max_position_embeddings = max_position_embeddings
174
+ self.base = base
175
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
176
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
177
+
178
+ # Build here to make `torch.jit.trace` work.
179
+ self._set_cos_sin_cache(
180
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
181
+ )
182
+
183
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
184
+ self.max_seq_len_cached = seq_len
185
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
186
+
187
+ freqs = torch.outer(t, self.inv_freq)
188
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
189
+ emb = torch.cat((freqs, freqs), dim=-1)
190
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
191
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
192
+
193
+ def forward(self, x, seq_len=None):
194
+ # x: [bs, num_attention_heads, seq_len, head_size]
195
+ if seq_len > self.max_seq_len_cached:
196
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
197
+
198
+ return (
199
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
200
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
201
+ )
202
+
203
+
204
+ # Copied from Phi-3.5-MoE
205
+ def rotate_half(x):
206
+ """Rotates half the hidden dims of the input."""
207
+ x1 = x[..., : x.shape[-1] // 2]
208
+ x2 = x[..., x.shape[-1] // 2 :]
209
+ return torch.cat((-x2, x1), dim=-1)
210
+
211
+ # Copied from Phi-3.5-MoE
212
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
213
+ """Applies Rotary Position Embedding to the query and key tensors.
214
+
215
+ Args:
216
+ q (`torch.Tensor`): The query tensor.
217
+ k (`torch.Tensor`): The key tensor.
218
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
219
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
220
+ position_ids (`torch.Tensor`):
221
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
222
+ used to pass offsetted position ids when working with a KV-cache.
223
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
224
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
225
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
226
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
227
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
228
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
229
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
230
+ Returns:
231
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
232
+ """
233
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
234
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
235
+ q_embed = (q * cos) + (rotate_half(q) * sin)
236
+ k_embed = (k * cos) + (rotate_half(k) * sin)
237
+ return q_embed, k_embed
238
+
239
+
240
+ # Copied from Phi-3.5-MoE
241
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
242
+ """
243
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
244
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
245
+ """
246
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
247
+ if n_rep == 1:
248
+ return hidden_states
249
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
250
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
251
+
252
+
253
+ # Copied from Phi-3.5-MoE
254
+ class GRINMoEAttention(nn.Module):
255
+ """
256
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
257
+ and "Generating Long Sequences with Sparse Transformers".
258
+ """
259
+
260
+ def __init__(self, config: GRINMoEConfig, layer_idx: Optional[int] = None):
261
+ super().__init__()
262
+ self.config = config
263
+ self.layer_idx = layer_idx
264
+ if layer_idx is None:
265
+ logger.warning_once(
266
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
267
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
268
+ "when creating this class."
269
+ )
270
+
271
+ self.hidden_size = config.hidden_size
272
+ self.num_heads = config.num_attention_heads
273
+ self.head_dim = self.hidden_size // self.num_heads
274
+ self.num_key_value_heads = config.num_key_value_heads
275
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
276
+ self.max_position_embeddings = config.max_position_embeddings
277
+ self.rope_theta = config.rope_theta
278
+ self.is_causal = True
279
+ self.attention_dropout = config.attention_dropout
280
+
281
+ if (self.head_dim * self.num_heads) != self.hidden_size:
282
+ raise ValueError(
283
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
284
+ f" and `num_heads`: {self.num_heads})."
285
+ )
286
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=self.config.attention_bias)
287
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.config.attention_bias)
288
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.config.attention_bias)
289
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=self.config.attention_bias)
290
+ self.rotary_emb = GRINMoERotaryEmbedding(
291
+ self.head_dim,
292
+ max_position_embeddings=self.max_position_embeddings,
293
+ base=self.rope_theta,
294
+ )
295
+
296
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
297
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
298
+
299
+ def forward(
300
+ self,
301
+ hidden_states: torch.Tensor,
302
+ attention_mask: Optional[torch.Tensor] = None,
303
+ position_ids: Optional[torch.LongTensor] = None,
304
+ past_key_value: Optional[Cache] = None,
305
+ output_attentions: bool = False,
306
+ use_cache: bool = False,
307
+ **kwargs,
308
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
309
+ if "padding_mask" in kwargs:
310
+ warnings.warn(
311
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
312
+ )
313
+ bsz, q_len, _ = hidden_states.size()
314
+
315
+ query_states = self.q_proj(hidden_states)
316
+ key_states = self.k_proj(hidden_states)
317
+ value_states = self.v_proj(hidden_states)
318
+
319
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
320
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
321
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
322
+
323
+ kv_seq_len = key_states.shape[-2]
324
+ if past_key_value is not None:
325
+ if self.layer_idx is None:
326
+ raise ValueError(
327
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
328
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
329
+ "with a layer index."
330
+ )
331
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
332
+
333
+ # print ("before apply rotary pos_emb", len(kv_seq_len),torch.norm(value_states).items(),\
334
+ # torch.norm(query_states).items(), torch.norm(key_states).items(), position_ids)
335
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
336
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
337
+
338
+ # print ('after pos emb', torch.norm(query_states).item(), torch.norm(key_states).items())
339
+ if past_key_value is not None:
340
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
341
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
342
+
343
+ # repeat k/v heads if n_kv_heads < n_heads
344
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
345
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
346
+
347
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
348
+
349
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
350
+ raise ValueError(
351
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
352
+ f" {attn_weights.size()}"
353
+ )
354
+
355
+ if attention_mask is not None:
356
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
357
+ raise ValueError(
358
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
359
+ )
360
+
361
+ attn_weights = attn_weights + attention_mask
362
+
363
+ # upcast attention to fp32
364
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
365
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
366
+ attn_output = torch.matmul(attn_weights, value_states)
367
+
368
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
369
+ raise ValueError(
370
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
371
+ f" {attn_output.size()}"
372
+ )
373
+
374
+ attn_output = attn_output.transpose(1, 2).contiguous()
375
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
376
+
377
+ attn_output = self.o_proj(attn_output)
378
+
379
+ if not output_attentions:
380
+ attn_weights = None
381
+
382
+ return attn_output, attn_weights, past_key_value
383
+
384
+ # Copied from Phi-3.5-MoE
385
+ class GRINFlashAttention2(GRINMoEAttention):
386
+ """
387
+ GRIN flash attention module. This module inherits from `GRINAttention` as the weights of the module stays
388
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
389
+ flash attention and deal with padding tokens in case the input contains any of them.
390
+ """
391
+
392
+ def __init__(self, *args, **kwargs):
393
+ super().__init__(*args, **kwargs)
394
+ self.rotary_emb = FlashRotaryEmbedding(
395
+ self.head_dim,
396
+ base=self.rope_theta,
397
+ scale_base=None,
398
+ device=torch.device("cuda"),
399
+ )
400
+
401
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
402
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
403
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
404
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
405
+
406
+ def forward(
407
+ self,
408
+ hidden_states: torch.Tensor,
409
+ attention_mask: Optional[torch.Tensor] = None,
410
+ position_ids: Optional[torch.LongTensor] = None,
411
+ past_key_value: Optional[Cache] = None,
412
+ output_attentions: bool = False,
413
+ use_cache: bool = False,
414
+ **kwargs,
415
+ ):
416
+ if "padding_mask" in kwargs:
417
+ warnings.warn(
418
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
419
+ )
420
+
421
+ # overwrite attention_mask with padding_mask
422
+ attention_mask = kwargs.pop("padding_mask")
423
+ bsz, q_len, _ = hidden_states.size()
424
+
425
+ query_states = self.q_proj(hidden_states)
426
+ key_states = self.k_proj(hidden_states)
427
+ value_states = self.v_proj(hidden_states)
428
+
429
+ q = rearrange(query_states, "... (h d) -> ... h d", d=self.head_dim)
430
+ kv = torch.cat([key_states, value_states], dim=2)
431
+ kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
432
+
433
+ kv_seq_len = key_states.shape[1]
434
+ seqlen_offset = max(past_key_value.get_usable_length(kv_seq_len, self.layer_idx) if past_key_value is not None else 0, 0)
435
+
436
+ query_states, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
437
+ key_states, value_states = kv.chunk(2, dim=2)
438
+
439
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
440
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
441
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
442
+
443
+ use_sliding_windows = (
444
+ _flash_supports_window_size
445
+ and getattr(self.config, "sliding_window", None) is not None
446
+ and kv_seq_len > self.config.sliding_window
447
+ )
448
+
449
+ if not _flash_supports_window_size:
450
+ logger.warning_once(
451
+ "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
452
+ " make sure to upgrade flash-attn library."
453
+ )
454
+
455
+ if past_key_value is not None:
456
+ cache_kwargs = {}
457
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
458
+
459
+ # repeat k/v heads if n_kv_heads < n_heads
460
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
461
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
462
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
463
+ # print(dropout_rate)
464
+
465
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
466
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
467
+ # cast them back in float16 just to be sure everything works as expected.
468
+ input_dtype = query_states.dtype
469
+ if input_dtype == torch.float32:
470
+ if torch.is_autocast_enabled():
471
+ target_dtype = torch.get_autocast_gpu_dtype()
472
+ # Handle the case where the model is quantized
473
+ elif hasattr(self.config, "_pre_quantization_dtype"):
474
+ target_dtype = self.config._pre_quantization_dtype
475
+ else:
476
+ target_dtype = self.q_proj.weight.dtype
477
+
478
+ logger.warning_once(
479
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
480
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
481
+ f" {target_dtype}."
482
+ )
483
+
484
+ query_states = query_states.to(target_dtype)
485
+ key_states = key_states.to(target_dtype)
486
+ value_states = value_states.to(target_dtype)
487
+
488
+ # Reashape to the expected shape for Flash Attention
489
+ query_states = query_states.transpose(1, 2)
490
+ key_states = key_states.transpose(1, 2)
491
+ value_states = value_states.transpose(1, 2)
492
+
493
+ attn_output = self._flash_attention_forward(
494
+ query_states,
495
+ key_states,
496
+ value_states,
497
+ attention_mask,
498
+ q_len,
499
+ dropout=dropout_rate,
500
+ use_sliding_windows=use_sliding_windows,
501
+ )
502
+
503
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
504
+ attn_output = self.o_proj(attn_output)
505
+
506
+ if not output_attentions:
507
+ attn_weights = None
508
+
509
+ return attn_output, attn_weights, past_key_value
510
+
511
+ def _flash_attention_forward(
512
+ self,
513
+ query_states,
514
+ key_states,
515
+ value_states,
516
+ attention_mask,
517
+ query_length,
518
+ dropout=0.0,
519
+ softmax_scale=None,
520
+ use_sliding_windows=False,
521
+ ):
522
+ """
523
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
524
+ first unpad the input, then computes the attention scores and pad the final attention scores.
525
+
526
+ Args:
527
+ query_states (`torch.Tensor`):
528
+ Input query states to be passed to Flash Attention API
529
+ key_states (`torch.Tensor`):
530
+ Input key states to be passed to Flash Attention API
531
+ value_states (`torch.Tensor`):
532
+ Input value states to be passed to Flash Attention API
533
+ attention_mask (`torch.Tensor`):
534
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
535
+ position of padding tokens and 1 for the position of non-padding tokens.
536
+ dropout (`float`):
537
+ Attention dropout
538
+ softmax_scale (`float`, *optional*):
539
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
540
+ use_sliding_windows (`bool`, *optional*):
541
+ Whether to activate sliding window attention.
542
+ """
543
+ if not self._flash_attn_uses_top_left_mask:
544
+ causal = self.is_causal
545
+ else:
546
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
547
+ causal = self.is_causal and query_length != 1
548
+
549
+ # Contains at least one padding token in the sequence
550
+ if attention_mask is not None:
551
+ batch_size = query_states.shape[0]
552
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
553
+ query_states, key_states, value_states, attention_mask, query_length
554
+ )
555
+
556
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
557
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
558
+
559
+ if not use_sliding_windows:
560
+ attn_output_unpad = flash_attn_varlen_func(
561
+ query_states,
562
+ key_states,
563
+ value_states,
564
+ cu_seqlens_q=cu_seqlens_q,
565
+ cu_seqlens_k=cu_seqlens_k,
566
+ max_seqlen_q=max_seqlen_in_batch_q,
567
+ max_seqlen_k=max_seqlen_in_batch_k,
568
+ dropout_p=dropout,
569
+ softmax_scale=softmax_scale,
570
+ causal=causal,
571
+ )
572
+ else:
573
+ attn_output_unpad = flash_attn_varlen_func(
574
+ query_states,
575
+ key_states,
576
+ value_states,
577
+ cu_seqlens_q=cu_seqlens_q,
578
+ cu_seqlens_k=cu_seqlens_k,
579
+ max_seqlen_q=max_seqlen_in_batch_q,
580
+ max_seqlen_k=max_seqlen_in_batch_k,
581
+ dropout_p=dropout,
582
+ softmax_scale=softmax_scale,
583
+ causal=causal,
584
+ window_size=(self.config.sliding_window, self.config.sliding_window),
585
+ )
586
+
587
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
588
+ else:
589
+ if not use_sliding_windows:
590
+ attn_output = flash_attn_func(
591
+ query_states,
592
+ key_states,
593
+ value_states,
594
+ dropout,
595
+ softmax_scale=softmax_scale,
596
+ causal=causal,
597
+ )
598
+ else:
599
+ attn_output = flash_attn_func(
600
+ query_states,
601
+ key_states,
602
+ value_states,
603
+ dropout,
604
+ softmax_scale=softmax_scale,
605
+ causal=causal,
606
+ window_size=(self.config.sliding_window, self.config.sliding_window),
607
+ )
608
+
609
+ return attn_output
610
+
611
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
612
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
613
+
614
+ # On the first iteration we need to properly re-create the padding mask
615
+ # by slicing it on the proper place
616
+ if kv_seq_len != attention_mask.shape[-1]:
617
+ attention_mask_num_tokens = attention_mask.shape[-1]
618
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
619
+
620
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
621
+
622
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
623
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
624
+
625
+ if query_length == kv_seq_len:
626
+ query_layer = index_first_axis(
627
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
628
+ )
629
+ cu_seqlens_q = cu_seqlens_k
630
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
631
+ indices_q = indices_k
632
+ elif query_length == 1:
633
+ max_seqlen_in_batch_q = 1
634
+ cu_seqlens_q = torch.arange(
635
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
636
+ ) # There is a memcpy here, that is very bad.
637
+ indices_q = cu_seqlens_q[:-1]
638
+ query_layer = query_layer.squeeze(1)
639
+ else:
640
+ # The -q_len: slice assumes left padding.
641
+ attention_mask = attention_mask[:, -query_length:]
642
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
643
+
644
+ return (
645
+ query_layer,
646
+ key_layer,
647
+ value_layer,
648
+ indices_q,
649
+ (cu_seqlens_q, cu_seqlens_k),
650
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
651
+ )
652
+
653
+ # Copied from Phi-3.5-MoE
654
+ class GRINMoESdpaAttention(GRINMoEAttention):
655
+ """
656
+ GRINMoE attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
657
+ `GRINMoEAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
658
+ SDPA API.
659
+ """
660
+
661
+ # Adapted from GRINMoEAttention.forward
662
+ def forward(
663
+ self,
664
+ hidden_states: torch.Tensor,
665
+ attention_mask: Optional[torch.Tensor] = None,
666
+ position_ids: Optional[torch.LongTensor] = None,
667
+ past_key_value: Optional[Cache] = None,
668
+ output_attentions: bool = False,
669
+ use_cache: bool = False,
670
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
671
+ if output_attentions:
672
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
673
+ logger.warning_once(
674
+ "GRINMoEModel is using GRINMoESdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
675
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
676
+ )
677
+ return super().forward(
678
+ hidden_states=hidden_states,
679
+ attention_mask=attention_mask,
680
+ position_ids=position_ids,
681
+ past_key_value=past_key_value,
682
+ output_attentions=output_attentions,
683
+ use_cache=use_cache,
684
+ )
685
+
686
+ bsz, q_len, _ = hidden_states.size()
687
+
688
+ query_states = self.q_proj(hidden_states)
689
+ key_states = self.k_proj(hidden_states)
690
+ value_states = self.v_proj(hidden_states)
691
+
692
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
693
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
694
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
695
+
696
+ kv_seq_len = key_states.shape[-2]
697
+ if past_key_value is not None:
698
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
699
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
700
+
701
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
702
+
703
+ if past_key_value is not None:
704
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
705
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
706
+
707
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
708
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
709
+
710
+ if attention_mask is not None:
711
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
712
+ raise ValueError(
713
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
714
+ )
715
+
716
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
717
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
718
+ if query_states.device.type == "cuda" and attention_mask is not None:
719
+ query_states = query_states.contiguous()
720
+ key_states = key_states.contiguous()
721
+ value_states = value_states.contiguous()
722
+
723
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
724
+ query_states,
725
+ key_states,
726
+ value_states,
727
+ attn_mask=attention_mask,
728
+ dropout_p=self.attention_dropout if self.training else 0.0,
729
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
730
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
731
+ )
732
+
733
+ attn_output = attn_output.transpose(1, 2).contiguous()
734
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
735
+
736
+ attn_output = self.o_proj(attn_output)
737
+
738
+ return attn_output, None, past_key_value
739
+
740
+
741
+ GRINMOE_ATTENTION_CLASSES = {
742
+ "eager": GRINMoEAttention,
743
+ "sdpa": GRINMoESdpaAttention,
744
+ "flash_attention_2": GRINFlashAttention2,
745
+ }
746
+
747
+
748
+ class GRINMoEBlockSparseTop2MLP(nn.Module):
749
+ def __init__(self, config: GRINMoEConfig):
750
+ super().__init__()
751
+ self.ffn_dim = config.intermediate_size
752
+ self.hidden_dim = config.hidden_size
753
+
754
+ self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
755
+ self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
756
+ self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
757
+
758
+ self.act_fn = ACT2FN[config.hidden_act]
759
+
760
+ def forward(self, hidden_states):
761
+ current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
762
+ current_hidden_states = self.w2(current_hidden_states)
763
+ return current_hidden_states
764
+
765
+
766
+ class mp(torch.autograd.Function):
767
+ @staticmethod
768
+ def forward(
769
+ ctx,
770
+ scores: torch.Tensor,
771
+ multiplier: torch.Tensor,
772
+ selected_experts: torch.Tensor,
773
+ masked_gates: torch.Tensor,
774
+ mask_for_one: torch.Tensor,
775
+ ):
776
+ ctx.save_for_backward(multiplier, selected_experts, masked_gates)
777
+ return multiplier * mask_for_one
778
+
779
+ @staticmethod
780
+ def backward(
781
+ ctx,
782
+ grad_at_output: torch.Tensor,
783
+ ):
784
+ multiplier, selected_experts, masked_gates = ctx.saved_tensors
785
+
786
+ grad_at_output = grad_at_output * multiplier
787
+
788
+ grad_at_scores_expaned = masked_gates * grad_at_output.mul(-1)
789
+ grad_at_scores_expaned.scatter_add_(
790
+ dim=-1,
791
+ index=selected_experts,
792
+ src=grad_at_output,
793
+ )
794
+
795
+ return (
796
+ grad_at_scores_expaned,
797
+ None,
798
+ None,
799
+ None,
800
+ None,
801
+ )
802
+
803
+ def sparsemixer(scores, top_k, jitter_eps, training):
804
+ assert top_k == 2
805
+
806
+ ################ first expert ################
807
+
808
+ with torch.no_grad():
809
+ # compute mask for sparsity
810
+ mask_logits_threshold, max_ind = scores.max(dim=-1, keepdim=True)
811
+ factor = scores.abs().clamp(min=mask_logits_threshold)
812
+ mask_logits_threshold = (
813
+ (mask_logits_threshold - scores) / factor
814
+ ) > (2 * jitter_eps)
815
+
816
+ # apply mask
817
+ masked_gates = scores.masked_fill(mask_logits_threshold, float('-inf'))
818
+ if training:
819
+ selected_experts = (
820
+ masked_gates - torch.empty_like(masked_gates, memory_format=torch.legacy_contiguous_format).exponential_().log()
821
+ ).max(dim=-1)[1].unsqueeze(-1) # gumbel sampling, more robust than than the multinomial method
822
+ else:
823
+ selected_experts = max_ind
824
+
825
+ # compute scores for gradients
826
+ masked_gates = torch.softmax(masked_gates, dim=-1)
827
+ multiplier_o = masked_gates.gather(dim=-1, index=selected_experts)
828
+
829
+ if training:
830
+ # compute midpoint mask
831
+ max_scores, max_ind = masked_gates.max(dim=-1, keepdim=True)
832
+ mask_for_one = torch.logical_or(
833
+ selected_experts == max_ind,
834
+ torch.rand_like(max_scores) > 0.75 # Heun's third-order method: f(x) - f(0) = .25 f'(x) + .75 f'(x/3.)
835
+ )
836
+ # 1 -> 1.0 & 0 -> 1./3: lambda x: (x + 0.5) / 1.5
837
+ mask_for_one = torch.add(0.3333, mask_for_one, alpha=0.6667).type_as(masked_gates)
838
+
839
+ multiplier = mp.apply(
840
+ scores,
841
+ multiplier_o,
842
+ selected_experts,
843
+ masked_gates,
844
+ mask_for_one,
845
+ )
846
+ else:
847
+ multiplier = multiplier_o
848
+
849
+ # masked out first expert
850
+ masked_scores = torch.scatter(
851
+ scores,
852
+ -1,
853
+ selected_experts,
854
+ float('-inf'),
855
+ )
856
+ with torch.no_grad():
857
+ # compute mask for sparsity
858
+ mask_logits_threshold, max_ind = masked_scores.max(dim=-1, keepdim=True)
859
+ factor = scores.abs().clamp(min=mask_logits_threshold)
860
+ mask_logits_threshold = (
861
+ (mask_logits_threshold - scores) / factor
862
+ ) > (2 * jitter_eps)
863
+
864
+ # apply mask
865
+ masked_gates_top2 = masked_scores.masked_fill(mask_logits_threshold, float('-inf'))
866
+ if training:
867
+ selected_experts_top2 = (
868
+ masked_gates_top2 - torch.empty_like(masked_gates_top2, memory_format=torch.legacy_contiguous_format).exponential_().log()
869
+ ).max(dim=-1)[1].unsqueeze(-1) # gumbel sampling, more robust than than the multinomial method
870
+ else:
871
+ selected_experts_top2 = max_ind
872
+ # compute scores for gradients
873
+ masked_gates_top2 = torch.softmax(masked_gates_top2, dim=-1)
874
+ multiplier_top2_o = masked_gates_top2.gather(dim=-1, index=selected_experts_top2)
875
+
876
+ if training:
877
+ # compute midpoint mask
878
+ max_scores, max_ind = masked_gates_top2.max(dim=-1, keepdim=True)
879
+ mask_for_one_top2 = torch.logical_or(
880
+ selected_experts_top2 == max_ind,
881
+ torch.rand_like(max_scores).uniform_() > 0.75 # Heun's third-order method: f(x) - f(0) = .25 f'(x) + .75 f'(x/3.)
882
+ )
883
+ # 1 -> 1.0 & 0 -> 1./3: lambda x: (x + 0.5) / 1.5
884
+ mask_for_one_top2 = torch.add(0.3333, mask_for_one_top2, alpha=0.6667).type_as(masked_gates_top2)
885
+
886
+ multiplier_top2 = mp.apply(
887
+ scores,
888
+ multiplier_top2_o,
889
+ selected_experts_top2,
890
+ masked_gates_top2,
891
+ mask_for_one_top2,
892
+ )
893
+ else:
894
+ multiplier_top2 = multiplier_top2_o
895
+
896
+ multiplier = torch.concat((multiplier, multiplier_top2), dim=-1)
897
+ selected_experts = torch.concat((selected_experts, selected_experts_top2), dim=-1)
898
+
899
+ return (
900
+ multiplier,
901
+ selected_experts,
902
+ )
903
+
904
+ iterations = 0
905
+ class GRINMoESparseMoeBlock(nn.Module):
906
+ """
907
+ This implementation is
908
+ strictly equivalent to standard MoE with full capacity (no
909
+ dropped tokens). It's faster since it formulates MoE operations
910
+ in terms of block-sparse operations to accomodate imbalanced
911
+ assignments of tokens to experts, whereas standard MoE either
912
+ (1) drop tokens at the cost of reduced performance or (2) set
913
+ capacity factor to number of experts and thus waste computation
914
+ and memory on padding.
915
+ """
916
+
917
+ def __init__(self, config):
918
+ super().__init__()
919
+ self.hidden_dim = config.hidden_size
920
+ self.ffn_dim = config.intermediate_size
921
+ self.num_experts = config.num_local_experts
922
+ self.top_k = config.num_experts_per_tok
923
+ global iterations
924
+ iterations +=1
925
+ self.iter = iterations
926
+ # gating
927
+ self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
928
+
929
+ self.experts = nn.ModuleList([GRINMoEBlockSparseTop2MLP(config) for _ in range(self.num_experts)])
930
+
931
+ # Jitter parameters
932
+ self.router_jitter_noise = config.router_jitter_noise
933
+ self.input_jitter_noise = config.input_jitter_noise
934
+
935
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
936
+ """ """
937
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
938
+ if self.training and self.input_jitter_noise > 0:
939
+ hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.input_jitter_noise, 1.0 + self.input_jitter_noise)
940
+ hidden_states = hidden_states.view(-1, hidden_dim)
941
+ # router_logits: (batch * sequence_length, n_experts)
942
+ # print ( 'moe', self.iter, torch.norm(hidden_states).item())
943
+ router_logits = self.gate(hidden_states)
944
+
945
+ routing_weights, selected_experts = sparsemixer(
946
+ router_logits,
947
+ top_k=self.top_k,
948
+ jitter_eps=self.router_jitter_noise,
949
+ training=self.training,
950
+ )
951
+
952
+ final_hidden_states = torch.zeros(
953
+ (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
954
+ )
955
+
956
+ # One hot encode the selected experts to create an expert mask
957
+ # this will be used to easily index which expert is going to be sollicitated
958
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
959
+
960
+ # Loop over all available experts in the model and perform the computation on each expert
961
+ for expert_idx in range(self.num_experts):
962
+ expert_layer = self.experts[expert_idx]
963
+ idx, top_x = torch.where(expert_mask[expert_idx])
964
+
965
+ if top_x.shape[0] == 0:
966
+ continue
967
+
968
+ # in torch it is faster to index using lists than torch tensors
969
+ top_x_list = top_x.tolist()
970
+ idx_list = idx.tolist()
971
+
972
+ # Index the correct hidden states and compute the expert hidden state for
973
+ # the current expert. We need to make sure to multiply the output hidden
974
+ # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
975
+ current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
976
+ current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
977
+
978
+ # However `index_add_` only support torch tensors for indexing so we'll use
979
+ # the `top_x` tensor here.
980
+ final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
981
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
982
+ # print ( 'moe', self.iter, torch.norm(final_hidden_states).item())
983
+ return final_hidden_states, router_logits
984
+
985
+
986
+ class GRINMoEDecoderLayer(nn.Module):
987
+ def __init__(self, config: GRINMoEConfig, layer_idx: int):
988
+ super().__init__()
989
+ self.hidden_size = config.hidden_size
990
+
991
+ self.self_attn = GRINMOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
992
+
993
+ self.block_sparse_moe = GRINMoESparseMoeBlock(config)
994
+ self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps, elementwise_affine=True)
995
+ self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps, elementwise_affine=True)
996
+
997
+ def forward(
998
+ self,
999
+ hidden_states: torch.Tensor,
1000
+ attention_mask: Optional[torch.Tensor] = None,
1001
+ position_ids: Optional[torch.LongTensor] = None,
1002
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1003
+ output_attentions: Optional[bool] = False,
1004
+ output_router_logits: Optional[bool] = False,
1005
+ use_cache: Optional[bool] = False,
1006
+ **kwargs,
1007
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
1008
+ if "padding_mask" in kwargs:
1009
+ warnings.warn(
1010
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1011
+ )
1012
+ """
1013
+ Args:
1014
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1015
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
1016
+ `(batch, sequence_length)` where padding elements are indicated by 0.
1017
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1018
+ output_attentions (`bool`, *optional*):
1019
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1020
+ returned tensors for more detail.
1021
+ output_router_logits (`bool`, *optional*):
1022
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
1023
+ should not be returned during inference.
1024
+ use_cache (`bool`, *optional*):
1025
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1026
+ (see `past_key_values`).
1027
+ """
1028
+
1029
+ residual = hidden_states
1030
+
1031
+ hidden_states = self.input_layernorm(hidden_states)
1032
+
1033
+ # Self Attention
1034
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1035
+ hidden_states=hidden_states,
1036
+ attention_mask=attention_mask,
1037
+ position_ids=position_ids,
1038
+ past_key_value=past_key_value,
1039
+ output_attentions=output_attentions,
1040
+ use_cache=use_cache,
1041
+ )
1042
+ hidden_states = residual + hidden_states
1043
+
1044
+ # Fully Connected
1045
+ residual = hidden_states
1046
+ hidden_states = self.post_attention_layernorm(hidden_states)
1047
+ hidden_states, router_logits = self.block_sparse_moe(hidden_states)
1048
+ hidden_states = residual + hidden_states
1049
+
1050
+ outputs = (hidden_states,)
1051
+
1052
+ if output_attentions:
1053
+ outputs += (self_attn_weights,)
1054
+
1055
+ if use_cache:
1056
+ outputs += (present_key_value,)
1057
+
1058
+ if output_router_logits:
1059
+ outputs += (router_logits,)
1060
+
1061
+ return outputs
1062
+
1063
+
1064
+ GRINMOE_START_DOCSTRING = r"""
1065
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1066
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1067
+ etc.)
1068
+
1069
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1070
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1071
+ and behavior.
1072
+
1073
+ Parameters:
1074
+ config ([`GRINMoEConfig`]):
1075
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1076
+ load the weights associated with the model, only the configuration. Check out the
1077
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1078
+ """
1079
+
1080
+
1081
+ @add_start_docstrings(
1082
+ "The bare GRINMoE Model outputting raw hidden-states without any specific head on top.",
1083
+ GRINMOE_START_DOCSTRING,
1084
+ )
1085
+
1086
+ class GRINMoEPreTrainedModel(PreTrainedModel):
1087
+ config_class = GRINMoEConfig
1088
+ base_model_prefix = "model"
1089
+ supports_gradient_checkpointing = True
1090
+ _no_split_modules = ["GRINMoEDecoderLayer"]
1091
+ _skip_keys_device_placement = "past_key_values"
1092
+ _supports_flash_attn_2 = True
1093
+ _supports_sdpa = True
1094
+ _supports_cache_class = True
1095
+
1096
+ def _init_weights(self, module):
1097
+ pass
1098
+
1099
+ GRINMOE_INPUTS_DOCSTRING = r"""
1100
+ Args:
1101
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1102
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1103
+ it.
1104
+
1105
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1106
+ [`PreTrainedTokenizer.__call__`] for details.
1107
+
1108
+ [What are input IDs?](../glossary#input-ids)
1109
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1110
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1111
+
1112
+ - 1 for tokens that are **not masked**,
1113
+ - 0 for tokens that are **masked**.
1114
+
1115
+ [What are attention masks?](../glossary#attention-mask)
1116
+
1117
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1118
+ [`PreTrainedTokenizer.__call__`] for details.
1119
+
1120
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
1121
+ `past_key_values`).
1122
+
1123
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1124
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1125
+ information on the default strategy.
1126
+
1127
+ - 1 indicates the head is **not masked**,
1128
+ - 0 indicates the head is **masked**.
1129
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1130
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1131
+ config.n_positions - 1]`.
1132
+
1133
+ [What are position IDs?](../glossary#position-ids)
1134
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
1135
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
1136
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
1137
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
1138
+
1139
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1140
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
1141
+
1142
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1143
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1144
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1145
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1146
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1147
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1148
+ model's internal embedding lookup matrix.
1149
+ use_cache (`bool`, *optional*):
1150
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1151
+ `past_key_values`).
1152
+ output_attentions (`bool`, *optional*):
1153
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1154
+ tensors for more detail.
1155
+ output_hidden_states (`bool`, *optional*):
1156
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1157
+ more detail.
1158
+ output_router_logits (`bool`, *optional*):
1159
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
1160
+ should not be returned during inference.
1161
+ return_dict (`bool`, *optional*):
1162
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1163
+ """
1164
+
1165
+
1166
+ @add_start_docstrings(
1167
+ "The bare GRINMoE Model outputting raw hidden-states without any specific head on top.",
1168
+ GRINMOE_START_DOCSTRING,
1169
+ )
1170
+
1171
+ # Copied from Phi-3.5-MoE
1172
+ class GRINMoEModel(GRINMoEPreTrainedModel):
1173
+ """
1174
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GRINMoEDecoderLayer`]
1175
+
1176
+ Args:
1177
+ config: GRINMoEConfig
1178
+ """
1179
+
1180
+ def __init__(self, config: GRINMoEConfig):
1181
+ super().__init__(config)
1182
+ self.padding_idx = config.pad_token_id
1183
+ self.vocab_size = config.vocab_size
1184
+
1185
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1186
+ self.layers = nn.ModuleList(
1187
+ [GRINMoEDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1188
+ )
1189
+ self._attn_implementation = config._attn_implementation
1190
+ self.norm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps, elementwise_affine=True)
1191
+
1192
+ self.gradient_checkpointing = False
1193
+ # Initialize weights and apply final processing
1194
+ self.post_init()
1195
+
1196
+ def get_input_embeddings(self):
1197
+ return self.embed_tokens
1198
+
1199
+ def set_input_embeddings(self, value):
1200
+ self.embed_tokens = value
1201
+
1202
+ # Ignore copy
1203
+ @add_start_docstrings_to_model_forward(GRINMOE_INPUTS_DOCSTRING)
1204
+ def forward(
1205
+ self,
1206
+ input_ids: torch.LongTensor = None,
1207
+ attention_mask: Optional[torch.Tensor] = None,
1208
+ position_ids: Optional[torch.LongTensor] = None,
1209
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1210
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1211
+ use_cache: Optional[bool] = None,
1212
+ output_attentions: Optional[bool] = None,
1213
+ output_hidden_states: Optional[bool] = None,
1214
+ output_router_logits: Optional[bool] = None,
1215
+ return_dict: Optional[bool] = None,
1216
+ ) -> Union[Tuple, MoeModelOutputWithPast]:
1217
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1218
+ output_router_logits = (
1219
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1220
+ )
1221
+ output_hidden_states = (
1222
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1223
+ )
1224
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1225
+
1226
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1227
+
1228
+ # retrieve input_ids and inputs_embeds
1229
+ if input_ids is not None and inputs_embeds is not None:
1230
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
1231
+ elif input_ids is not None:
1232
+ batch_size, seq_length = input_ids.shape
1233
+ elif inputs_embeds is not None:
1234
+ batch_size, seq_length, _ = inputs_embeds.shape
1235
+ else:
1236
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
1237
+
1238
+ past_key_values_length = 0
1239
+
1240
+ if self.gradient_checkpointing and self.training:
1241
+ if use_cache:
1242
+ logger.warning_once(
1243
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
1244
+ )
1245
+ use_cache = False
1246
+
1247
+ if use_cache:
1248
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1249
+ if use_legacy_cache:
1250
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1251
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1252
+
1253
+ if position_ids is None:
1254
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1255
+ position_ids = torch.arange(
1256
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1257
+ )
1258
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1259
+ else:
1260
+ position_ids = position_ids.view(-1, seq_length).long()
1261
+
1262
+ if inputs_embeds is None:
1263
+ inputs_embeds = self.embed_tokens(input_ids)
1264
+
1265
+ if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1266
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1267
+ if is_padding_right:
1268
+ raise ValueError(
1269
+ "You are attempting to perform batched generation with padding_side='right'"
1270
+ " this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to "
1271
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1272
+ )
1273
+ if self._attn_implementation == "flash_attention_2":
1274
+ # 2d mask is passed through the layers
1275
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1276
+ elif self._attn_implementation == "sdpa" and not output_attentions:
1277
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1278
+ # the manual implementation that requires a 4D causal mask in all cases.
1279
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1280
+ attention_mask,
1281
+ (batch_size, seq_length),
1282
+ inputs_embeds,
1283
+ past_key_values_length,
1284
+ )
1285
+ else:
1286
+ # 4d mask is passed through the layers
1287
+ attention_mask = _prepare_4d_causal_attention_mask(
1288
+ attention_mask,
1289
+ (batch_size, seq_length),
1290
+ inputs_embeds,
1291
+ past_key_values_length,
1292
+ sliding_window=self.config.sliding_window,
1293
+ )
1294
+
1295
+ hidden_states = inputs_embeds
1296
+
1297
+ # decoder layers
1298
+ all_hidden_states = () if output_hidden_states else None
1299
+ all_self_attns = () if output_attentions else None
1300
+ all_router_logits = () if output_router_logits else None
1301
+ next_decoder_cache = None
1302
+
1303
+ for decoder_layer in self.layers:
1304
+ if output_hidden_states:
1305
+ all_hidden_states += (hidden_states,)
1306
+
1307
+ if self.gradient_checkpointing and self.training:
1308
+ layer_outputs = self._gradient_checkpointing_func(
1309
+ decoder_layer.__call__,
1310
+ hidden_states,
1311
+ attention_mask,
1312
+ position_ids,
1313
+ past_key_values,
1314
+ output_attentions,
1315
+ output_router_logits,
1316
+ use_cache,
1317
+ )
1318
+ else:
1319
+ layer_outputs = decoder_layer(
1320
+ hidden_states,
1321
+ attention_mask=attention_mask,
1322
+ position_ids=position_ids,
1323
+ past_key_value=past_key_values,
1324
+ output_attentions=output_attentions,
1325
+ output_router_logits=output_router_logits,
1326
+ use_cache=use_cache,
1327
+ )
1328
+
1329
+ hidden_states = layer_outputs[0]
1330
+
1331
+ if use_cache:
1332
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1333
+
1334
+ if output_attentions:
1335
+ all_self_attns += (layer_outputs[1],)
1336
+
1337
+ if output_router_logits:
1338
+ all_router_logits += (layer_outputs[-1],)
1339
+
1340
+ hidden_states = self.norm(hidden_states)
1341
+
1342
+ # add hidden states from the last decoder layer
1343
+ if output_hidden_states:
1344
+ all_hidden_states += (hidden_states,)
1345
+
1346
+ next_cache = None
1347
+ if use_cache:
1348
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1349
+
1350
+ if not return_dict:
1351
+ return tuple(
1352
+ v
1353
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
1354
+ if v is not None
1355
+ )
1356
+ return MoeModelOutputWithPast(
1357
+ last_hidden_state=hidden_states,
1358
+ past_key_values=next_cache,
1359
+ hidden_states=all_hidden_states,
1360
+ attentions=all_self_attns,
1361
+ router_logits=all_router_logits,
1362
+ )
1363
+
1364
+ class GRINMoEForCausalLM(GRINMoEPreTrainedModel):
1365
+ _tied_weights_keys = ["lm_head.weight"]
1366
+
1367
+ def __init__(self, config):
1368
+ super().__init__(config)
1369
+ self.model = GRINMoEModel(config)
1370
+ self.vocab_size = config.vocab_size
1371
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=self.config.lm_head_bias)
1372
+ self.router_aux_loss_coef = config.router_aux_loss_coef
1373
+ self.num_experts = config.num_local_experts
1374
+ self.num_experts_per_tok = config.num_experts_per_tok
1375
+ # Initialize weights and apply final processing
1376
+ self.post_init()
1377
+
1378
+ def get_input_embeddings(self):
1379
+ return self.model.embed_tokens
1380
+
1381
+ def set_input_embeddings(self, value):
1382
+ self.model.embed_tokens = value
1383
+
1384
+ def get_output_embeddings(self):
1385
+ return self.lm_head
1386
+
1387
+ def set_output_embeddings(self, new_embeddings):
1388
+ self.lm_head = new_embeddings
1389
+
1390
+ def set_decoder(self, decoder):
1391
+ self.model = decoder
1392
+
1393
+ def get_decoder(self):
1394
+ return self.model
1395
+
1396
+ @add_start_docstrings_to_model_forward(GRINMOE_INPUTS_DOCSTRING)
1397
+ @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1398
+ # Ignore copy
1399
+ def forward(
1400
+ self,
1401
+ input_ids: torch.LongTensor = None,
1402
+ attention_mask: Optional[torch.Tensor] = None,
1403
+ position_ids: Optional[torch.LongTensor] = None,
1404
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1405
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1406
+ labels: Optional[torch.LongTensor] = None,
1407
+ use_cache: Optional[bool] = None,
1408
+ output_attentions: Optional[bool] = None,
1409
+ output_hidden_states: Optional[bool] = None,
1410
+ output_router_logits: Optional[bool] = None,
1411
+ return_dict: Optional[bool] = None,
1412
+ ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
1413
+ r"""
1414
+ Args:
1415
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1416
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
1417
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1418
+ (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
1419
+
1420
+ Returns:
1421
+
1422
+ Example:
1423
+
1424
+ ```python
1425
+ >>> from transformers import AutoTokenizer, GRINMoEForCausalLM
1426
+
1427
+ >>> model = GRINMoEForCausalLM.from_pretrained("microsoft/GRIN-MoE")
1428
+ >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/GRIN-MoE")
1429
+
1430
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1431
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1432
+
1433
+ >>> # Generate
1434
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1435
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1436
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1437
+ ```"""
1438
+
1439
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1440
+ output_router_logits = (
1441
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1442
+ )
1443
+
1444
+ output_hidden_states = (
1445
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1446
+ )
1447
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1448
+
1449
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1450
+ outputs = self.model(
1451
+ input_ids=input_ids,
1452
+ attention_mask=attention_mask,
1453
+ position_ids=position_ids,
1454
+ past_key_values=past_key_values,
1455
+ inputs_embeds=inputs_embeds,
1456
+ use_cache=use_cache,
1457
+ output_attentions=output_attentions,
1458
+ output_hidden_states=output_hidden_states,
1459
+ output_router_logits=output_router_logits,
1460
+ return_dict=return_dict,
1461
+ )
1462
+
1463
+ hidden_states = outputs[0]
1464
+ logits = self.lm_head(hidden_states)
1465
+ logits = logits.float()
1466
+
1467
+ loss = None
1468
+ if labels is not None:
1469
+ # Shift so that tokens < n predict n
1470
+ shift_logits = logits[..., :-1, :].contiguous()
1471
+ shift_labels = labels[..., 1:].contiguous()
1472
+ # Flatten the tokens
1473
+ loss_fct = CrossEntropyLoss()
1474
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1475
+ shift_labels = shift_labels.view(-1)
1476
+ # Enable model parallelism
1477
+ shift_labels = shift_labels.to(shift_logits.device)
1478
+ loss = loss_fct(shift_logits, shift_labels)
1479
+
1480
+ aux_loss = None
1481
+ if output_router_logits:
1482
+ aux_loss = load_balancing_loss_func(
1483
+ outputs.router_logits if return_dict else outputs[-1],
1484
+ self.num_experts,
1485
+ self.num_experts_per_tok,
1486
+ attention_mask,
1487
+ )
1488
+ if labels is not None:
1489
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
1490
+
1491
+ if not return_dict:
1492
+ output = (logits,) + outputs[1:]
1493
+ if output_router_logits:
1494
+ output = (aux_loss,) + output
1495
+ return (loss,) + output if loss is not None else output
1496
+
1497
+ return MoeCausalLMOutputWithPast(
1498
+ loss=loss,
1499
+ aux_loss=aux_loss,
1500
+ logits=logits,
1501
+ past_key_values=outputs.past_key_values,
1502
+ hidden_states=outputs.hidden_states,
1503
+ attentions=outputs.attentions,
1504
+ router_logits=outputs.router_logits,
1505
+ )
1506
+
1507
+ def prepare_inputs_for_generation(
1508
+ self,
1509
+ input_ids,
1510
+ past_key_values=None,
1511
+ attention_mask=None,
1512
+ inputs_embeds=None,
1513
+ output_router_logits=False,
1514
+ **kwargs,
1515
+ ):
1516
+ # Omit tokens covered by past_key_values
1517
+ if past_key_values is not None:
1518
+ if isinstance(past_key_values, Cache):
1519
+ cache_length = past_key_values.get_seq_length()
1520
+ past_length = past_key_values.seen_tokens
1521
+ max_cache_length = past_key_values.get_max_length()
1522
+ else:
1523
+ cache_length = past_length = past_key_values[0][0].shape[2]
1524
+ max_cache_length = None
1525
+
1526
+ # Keep only the unprocessed tokens:
1527
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1528
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1529
+ # input)
1530
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1531
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1532
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1533
+ # input_ids based on the past_length.
1534
+ elif past_length < input_ids.shape[1]:
1535
+ input_ids = input_ids[:, past_length:]
1536
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1537
+
1538
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1539
+ if (
1540
+ max_cache_length is not None
1541
+ and attention_mask is not None
1542
+ and cache_length + input_ids.shape[1] > max_cache_length
1543
+ ):
1544
+ attention_mask = attention_mask[:, -max_cache_length:]
1545
+
1546
+ position_ids = kwargs.get("position_ids", None)
1547
+ if attention_mask is not None and position_ids is None:
1548
+ # create position_ids on the fly for batch generation
1549
+ position_ids = attention_mask.long().cumsum(-1) - 1
1550
+ position_ids.masked_fill_(attention_mask == 0, 1)
1551
+ if past_key_values:
1552
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1553
+
1554
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1555
+ if inputs_embeds is not None and past_key_values is None:
1556
+ model_inputs = {"inputs_embeds": inputs_embeds}
1557
+ else:
1558
+ model_inputs = {"input_ids": input_ids}
1559
+
1560
+ model_inputs.update(
1561
+ {
1562
+ "position_ids": position_ids,
1563
+ "past_key_values": past_key_values,
1564
+ "use_cache": kwargs.get("use_cache"),
1565
+ "attention_mask": attention_mask,
1566
+ "output_router_logits": output_router_logits,
1567
+ }
1568
+ )
1569
+ return model_inputs
1570
+
1571
+ @staticmethod
1572
+ def _reorder_cache(past_key_values, beam_idx):
1573
+ reordered_past = ()
1574
+ for layer_past in past_key_values:
1575
+ reordered_past += (
1576
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1577
+ )
1578
+ return reordered_past
1579
+
1580
+
1581
+ @add_start_docstrings(
1582
+ """
1583
+ The GRINMoE Model transformer with a sequence classification head on top (linear layer).
1584
+
1585
+ [`GRINMoEForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1586
+ (e.g. GPT-2) do.
1587
+
1588
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1589
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1590
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1591
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1592
+ each row of the batch).
1593
+ """,
1594
+ GRINMOE_START_DOCSTRING,
1595
+ )
1596
+
1597
+ # Copied from Phi-3.5-MoE
1598
+ class GRINMoEForSequenceClassification(GRINMoEPreTrainedModel):
1599
+ def __init__(self, config):
1600
+ super().__init__(config)
1601
+ self.num_labels = config.num_labels
1602
+ self.model = GRINMoEModel(config)
1603
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1604
+
1605
+ # Initialize weights and apply final processing
1606
+ self.post_init()
1607
+
1608
+ def get_input_embeddings(self):
1609
+ return self.model.embed_tokens
1610
+
1611
+ def set_input_embeddings(self, value):
1612
+ self.model.embed_tokens = value
1613
+
1614
+ @add_start_docstrings_to_model_forward(GRINMOE_INPUTS_DOCSTRING)
1615
+ def forward(
1616
+ self,
1617
+ input_ids: torch.LongTensor = None,
1618
+ attention_mask: Optional[torch.Tensor] = None,
1619
+ position_ids: Optional[torch.LongTensor] = None,
1620
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1621
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1622
+ labels: Optional[torch.LongTensor] = None,
1623
+ use_cache: Optional[bool] = None,
1624
+ output_attentions: Optional[bool] = None,
1625
+ output_hidden_states: Optional[bool] = None,
1626
+ return_dict: Optional[bool] = None,
1627
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1628
+ r"""
1629
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1630
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
1631
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1632
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1633
+ """
1634
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1635
+
1636
+ transformer_outputs = self.model(
1637
+ input_ids,
1638
+ attention_mask=attention_mask,
1639
+ position_ids=position_ids,
1640
+ past_key_values=past_key_values,
1641
+ inputs_embeds=inputs_embeds,
1642
+ use_cache=use_cache,
1643
+ output_attentions=output_attentions,
1644
+ output_hidden_states=output_hidden_states,
1645
+ return_dict=return_dict,
1646
+ )
1647
+ hidden_states = transformer_outputs[0]
1648
+ logits = self.score(hidden_states)
1649
+
1650
+ if input_ids is not None:
1651
+ batch_size = input_ids.shape[0]
1652
+ else:
1653
+ batch_size = inputs_embeds.shape[0]
1654
+
1655
+ if self.config.pad_token_id is None and batch_size != 1:
1656
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1657
+ if self.config.pad_token_id is None:
1658
+ sequence_lengths = -1
1659
+ else:
1660
+ if input_ids is not None:
1661
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1662
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1663
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1664
+ sequence_lengths = sequence_lengths.to(logits.device)
1665
+ else:
1666
+ sequence_lengths = -1
1667
+
1668
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1669
+
1670
+ loss = None
1671
+ if labels is not None:
1672
+ labels = labels.to(logits.device)
1673
+ if self.config.problem_type is None:
1674
+ if self.num_labels == 1:
1675
+ self.config.problem_type = "regression"
1676
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1677
+ self.config.problem_type = "single_label_classification"
1678
+ else:
1679
+ self.config.problem_type = "multi_label_classification"
1680
+
1681
+ if self.config.problem_type == "regression":
1682
+ loss_fct = MSELoss()
1683
+ if self.num_labels == 1:
1684
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1685
+ else:
1686
+ loss = loss_fct(pooled_logits, labels)
1687
+ elif self.config.problem_type == "single_label_classification":
1688
+ loss_fct = CrossEntropyLoss()
1689
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1690
+ elif self.config.problem_type == "multi_label_classification":
1691
+ loss_fct = BCEWithLogitsLoss()
1692
+ loss = loss_fct(pooled_logits, labels)
1693
+ if not return_dict:
1694
+ output = (pooled_logits,) + transformer_outputs[1:]
1695
+ return ((loss,) + output) if loss is not None else output
1696
+
1697
+ return SequenceClassifierOutputWithPast(
1698
+ loss=loss,
1699
+ logits=pooled_logits,
1700
+ past_key_values=transformer_outputs.past_key_values,
1701
+ hidden_states=transformer_outputs.hidden_states,
1702
+ attentions=transformer_outputs.attentions,
1703
+ )
quantize_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "dynamic": null,
4
+ "group_size": 128,
5
+ "desc_act": false,
6
+ "static_groups": false,
7
+ "sym": true,
8
+ "lm_head": false,
9
+ "damp_percent": 0.0025,
10
+ "damp_auto_increment": 0.0015,
11
+ "true_sequential": true,
12
+ "model_name_or_path": "",
13
+ "model_file_base_name": "model",
14
+ "quant_method": "gptq",
15
+ "checkpoint_format": "gptq",
16
+ "meta": {
17
+ "quantizer": "gptqmodel:1.0.3-dev0"
18
+ }
19
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": true,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'system' and message['content'] %}{{'<|system|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'user' %}{{'<|user|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>\n' + message['content'] + '<|end|>\n'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|endoftext|>",
123
+ "legacy": false,
124
+ "model_max_length": 4096,
125
+ "pad_token": "<|endoftext|>",
126
+ "padding_side": "left",
127
+ "sp_model_kwargs": {},
128
+ "tokenizer_class": "LlamaTokenizer",
129
+ "unk_token": "<unk>",
130
+ "use_default_system_prompt": false
131
+ }