File size: 1,141 Bytes
9122269
 
 
 
cf6965a
9122269
 
 
 
cf6965a
68ab1c3
9122269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
tags:
- gptq
- 4bit
- int4
- gptqmodel
- modelcloud
- llama-3.1
- 8b
- base
license: llama3.1
---
This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel).

- **bits**: 4
- **group_size**: 128
- **desc_act**: true
- **static_groups**: false
- **sym**: true
- **lm_head**: false
- **damp_percent**: 0.01
- **true_sequential**: true
- **model_name_or_path**: ""
- **model_file_base_name**: "model"
- **quant_method**: "gptq"
- **checkpoint_format**: "gptq"
- **meta**  - **quantizer**: "gptqmodel:0.9.9-dev0"

**Here is an example:**
```python
import torch
from transformers import AutoTokenizer
from gptqmodel import GPTQModel

device = torch.device("cuda:0")

model_name = "ModelCloud/Meta-Llama-3.1-8B-gptq-4bit"

prompt = "I am in Shanghai, preparing to visit the natural history museum. Can you tell me the best way to"

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = GPTQModel.from_quantized(model_name)

inputs = tokenizer(prompt, return_tensors="pt").to(device)
res = model.generate(**inputs, num_beams=1, min_new_tokens=1, max_new_tokens=512)
print(tokenizer.decode(res[0]))
```