File size: 28,791 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
"""Utilities for fast persistence of big data, with optional compression."""

# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
# Copyright (c) 2009 Gael Varoquaux
# License: BSD Style, 3 clauses.

import io
import os
import pickle
import warnings
from pathlib import Path

from .backports import make_memmap
from .compressor import (
    _COMPRESSORS,
    LZ4_NOT_INSTALLED_ERROR,
    BinaryZlibFile,
    BZ2CompressorWrapper,
    GzipCompressorWrapper,
    LZ4CompressorWrapper,
    LZMACompressorWrapper,
    XZCompressorWrapper,
    ZlibCompressorWrapper,
    lz4,
    register_compressor,
)

# For compatibility with old versions of joblib, we need ZNDArrayWrapper
# to be visible in the current namespace.
from .numpy_pickle_compat import (
    NDArrayWrapper,
    ZNDArrayWrapper,  # noqa: F401
    load_compatibility,
)
from .numpy_pickle_utils import (
    BUFFER_SIZE,
    Pickler,
    Unpickler,
    _ensure_native_byte_order,
    _read_bytes,
    _reconstruct,
    _validate_fileobject_and_memmap,
    _write_fileobject,
)

# Register supported compressors
register_compressor("zlib", ZlibCompressorWrapper())
register_compressor("gzip", GzipCompressorWrapper())
register_compressor("bz2", BZ2CompressorWrapper())
register_compressor("lzma", LZMACompressorWrapper())
register_compressor("xz", XZCompressorWrapper())
register_compressor("lz4", LZ4CompressorWrapper())


###############################################################################
# Utility objects for persistence.

# For convenience, 16 bytes are used to be sure to cover all the possible
# dtypes' alignments. For reference, see:
# https://numpy.org/devdocs/dev/alignment.html
NUMPY_ARRAY_ALIGNMENT_BYTES = 16


class NumpyArrayWrapper(object):
    """An object to be persisted instead of numpy arrays.

    This object is used to hack into the pickle machinery and read numpy
    array data from our custom persistence format.
    More precisely, this object is used for:
    * carrying the information of the persisted array: subclass, shape, order,
    dtype. Those ndarray metadata are used to correctly reconstruct the array
    with low level numpy functions.
    * determining if memmap is allowed on the array.
    * reading the array bytes from a file.
    * reading the array using memorymap from a file.
    * writing the array bytes to a file.

    Attributes
    ----------
    subclass: numpy.ndarray subclass
        Determine the subclass of the wrapped array.
    shape: numpy.ndarray shape
        Determine the shape of the wrapped array.
    order: {'C', 'F'}
        Determine the order of wrapped array data. 'C' is for C order, 'F' is
        for fortran order.
    dtype: numpy.ndarray dtype
        Determine the data type of the wrapped array.
    allow_mmap: bool
        Determine if memory mapping is allowed on the wrapped array.
        Default: False.
    """

    def __init__(
        self,
        subclass,
        shape,
        order,
        dtype,
        allow_mmap=False,
        numpy_array_alignment_bytes=NUMPY_ARRAY_ALIGNMENT_BYTES,
    ):
        """Constructor. Store the useful information for later."""
        self.subclass = subclass
        self.shape = shape
        self.order = order
        self.dtype = dtype
        self.allow_mmap = allow_mmap
        # We make numpy_array_alignment_bytes an instance attribute to allow us
        # to change our mind about the default alignment and still load the old
        # pickles (with the previous alignment) correctly
        self.numpy_array_alignment_bytes = numpy_array_alignment_bytes

    def safe_get_numpy_array_alignment_bytes(self):
        # NumpyArrayWrapper instances loaded from joblib <= 1.1 pickles don't
        # have an numpy_array_alignment_bytes attribute
        return getattr(self, "numpy_array_alignment_bytes", None)

    def write_array(self, array, pickler):
        """Write array bytes to pickler file handle.

        This function is an adaptation of the numpy write_array function
        available in version 1.10.1 in numpy/lib/format.py.
        """
        # Set buffer size to 16 MiB to hide the Python loop overhead.
        buffersize = max(16 * 1024**2 // array.itemsize, 1)
        if array.dtype.hasobject:
            # We contain Python objects so we cannot write out the data
            # directly. Instead, we will pickle it out with version 5 of the
            # pickle protocol.
            pickle.dump(array, pickler.file_handle, protocol=5)
        else:
            numpy_array_alignment_bytes = self.safe_get_numpy_array_alignment_bytes()
            if numpy_array_alignment_bytes is not None:
                current_pos = pickler.file_handle.tell()
                pos_after_padding_byte = current_pos + 1
                padding_length = numpy_array_alignment_bytes - (
                    pos_after_padding_byte % numpy_array_alignment_bytes
                )
                # A single byte is written that contains the padding length in
                # bytes
                padding_length_byte = int.to_bytes(
                    padding_length, length=1, byteorder="little"
                )
                pickler.file_handle.write(padding_length_byte)

                if padding_length != 0:
                    padding = b"\xff" * padding_length
                    pickler.file_handle.write(padding)

            for chunk in pickler.np.nditer(
                array,
                flags=["external_loop", "buffered", "zerosize_ok"],
                buffersize=buffersize,
                order=self.order,
            ):
                pickler.file_handle.write(chunk.tobytes("C"))

    def read_array(self, unpickler, ensure_native_byte_order):
        """Read array from unpickler file handle.

        This function is an adaptation of the numpy read_array function
        available in version 1.10.1 in numpy/lib/format.py.
        """
        if len(self.shape) == 0:
            count = 1
        else:
            # joblib issue #859: we cast the elements of self.shape to int64 to
            # prevent a potential overflow when computing their product.
            shape_int64 = [unpickler.np.int64(x) for x in self.shape]
            count = unpickler.np.multiply.reduce(shape_int64)
        # Now read the actual data.
        if self.dtype.hasobject:
            # The array contained Python objects. We need to unpickle the data.
            array = pickle.load(unpickler.file_handle)
        else:
            numpy_array_alignment_bytes = self.safe_get_numpy_array_alignment_bytes()
            if numpy_array_alignment_bytes is not None:
                padding_byte = unpickler.file_handle.read(1)
                padding_length = int.from_bytes(padding_byte, byteorder="little")
                if padding_length != 0:
                    unpickler.file_handle.read(padding_length)

            # This is not a real file. We have to read it the
            # memory-intensive way.
            # crc32 module fails on reads greater than 2 ** 32 bytes,
            # breaking large reads from gzip streams. Chunk reads to
            # BUFFER_SIZE bytes to avoid issue and reduce memory overhead
            # of the read. In non-chunked case count < max_read_count, so
            # only one read is performed.
            max_read_count = BUFFER_SIZE // min(BUFFER_SIZE, self.dtype.itemsize)

            array = unpickler.np.empty(count, dtype=self.dtype)
            for i in range(0, count, max_read_count):
                read_count = min(max_read_count, count - i)
                read_size = int(read_count * self.dtype.itemsize)
                data = _read_bytes(unpickler.file_handle, read_size, "array data")
                array[i : i + read_count] = unpickler.np.frombuffer(
                    data, dtype=self.dtype, count=read_count
                )
                del data

            if self.order == "F":
                array.shape = self.shape[::-1]
                array = array.transpose()
            else:
                array.shape = self.shape

        if ensure_native_byte_order:
            # Detect byte order mismatch and swap as needed.
            array = _ensure_native_byte_order(array)

        return array

    def read_mmap(self, unpickler):
        """Read an array using numpy memmap."""
        current_pos = unpickler.file_handle.tell()
        offset = current_pos
        numpy_array_alignment_bytes = self.safe_get_numpy_array_alignment_bytes()

        if numpy_array_alignment_bytes is not None:
            padding_byte = unpickler.file_handle.read(1)
            padding_length = int.from_bytes(padding_byte, byteorder="little")
            # + 1 is for the padding byte
            offset += padding_length + 1

        if unpickler.mmap_mode == "w+":
            unpickler.mmap_mode = "r+"

        marray = make_memmap(
            unpickler.filename,
            dtype=self.dtype,
            shape=self.shape,
            order=self.order,
            mode=unpickler.mmap_mode,
            offset=offset,
        )
        # update the offset so that it corresponds to the end of the read array
        unpickler.file_handle.seek(offset + marray.nbytes)

        if (
            numpy_array_alignment_bytes is None
            and current_pos % NUMPY_ARRAY_ALIGNMENT_BYTES != 0
        ):
            message = (
                f"The memmapped array {marray} loaded from the file "
                f"{unpickler.file_handle.name} is not byte aligned. "
                "This may cause segmentation faults if this memmapped array "
                "is used in some libraries like BLAS or PyTorch. "
                "To get rid of this warning, regenerate your pickle file "
                "with joblib >= 1.2.0. "
                "See https://github.com/joblib/joblib/issues/563 "
                "for more details"
            )
            warnings.warn(message)

        return marray

    def read(self, unpickler, ensure_native_byte_order):
        """Read the array corresponding to this wrapper.

        Use the unpickler to get all information to correctly read the array.

        Parameters
        ----------
        unpickler: NumpyUnpickler
        ensure_native_byte_order: bool
            If true, coerce the array to use the native endianness of the
            host system.

        Returns
        -------
        array: numpy.ndarray

        """
        # When requested, only use memmap mode if allowed.
        if unpickler.mmap_mode is not None and self.allow_mmap:
            assert not ensure_native_byte_order, (
                "Memmaps cannot be coerced to a given byte order, "
                "this code path is impossible."
            )
            array = self.read_mmap(unpickler)
        else:
            array = self.read_array(unpickler, ensure_native_byte_order)

        # Manage array subclass case
        if hasattr(array, "__array_prepare__") and self.subclass not in (
            unpickler.np.ndarray,
            unpickler.np.memmap,
        ):
            # We need to reconstruct another subclass
            new_array = _reconstruct(self.subclass, (0,), "b")
            return new_array.__array_prepare__(array)
        else:
            return array


###############################################################################
# Pickler classes


class NumpyPickler(Pickler):
    """A pickler to persist big data efficiently.

    The main features of this object are:
    * persistence of numpy arrays in a single file.
    * optional compression with a special care on avoiding memory copies.

    Attributes
    ----------
    fp: file
        File object handle used for serializing the input object.
    protocol: int, optional
        Pickle protocol used. Default is pickle.DEFAULT_PROTOCOL.
    """

    dispatch = Pickler.dispatch.copy()

    def __init__(self, fp, protocol=None):
        self.file_handle = fp
        self.buffered = isinstance(self.file_handle, BinaryZlibFile)

        # By default we want a pickle protocol that only changes with
        # the major python version and not the minor one
        if protocol is None:
            protocol = pickle.DEFAULT_PROTOCOL

        Pickler.__init__(self, self.file_handle, protocol=protocol)
        # delayed import of numpy, to avoid tight coupling
        try:
            import numpy as np
        except ImportError:
            np = None
        self.np = np

    def _create_array_wrapper(self, array):
        """Create and returns a numpy array wrapper from a numpy array."""
        order = (
            "F" if (array.flags.f_contiguous and not array.flags.c_contiguous) else "C"
        )
        allow_mmap = not self.buffered and not array.dtype.hasobject

        kwargs = {}
        try:
            self.file_handle.tell()
        except io.UnsupportedOperation:
            kwargs = {"numpy_array_alignment_bytes": None}

        wrapper = NumpyArrayWrapper(
            type(array),
            array.shape,
            order,
            array.dtype,
            allow_mmap=allow_mmap,
            **kwargs,
        )

        return wrapper

    def save(self, obj):
        """Subclass the Pickler `save` method.

        This is a total abuse of the Pickler class in order to use the numpy
        persistence function `save` instead of the default pickle
        implementation. The numpy array is replaced by a custom wrapper in the
        pickle persistence stack and the serialized array is written right
        after in the file. Warning: the file produced does not follow the
        pickle format. As such it can not be read with `pickle.load`.
        """
        if self.np is not None and type(obj) in (
            self.np.ndarray,
            self.np.matrix,
            self.np.memmap,
        ):
            if type(obj) is self.np.memmap:
                # Pickling doesn't work with memmapped arrays
                obj = self.np.asanyarray(obj)

            # The array wrapper is pickled instead of the real array.
            wrapper = self._create_array_wrapper(obj)
            Pickler.save(self, wrapper)

            # A framer was introduced with pickle protocol 4 and we want to
            # ensure the wrapper object is written before the numpy array
            # buffer in the pickle file.
            # See https://www.python.org/dev/peps/pep-3154/#framing to get
            # more information on the framer behavior.
            if self.proto >= 4:
                self.framer.commit_frame(force=True)

            # And then array bytes are written right after the wrapper.
            wrapper.write_array(obj, self)
            return

        return Pickler.save(self, obj)


class NumpyUnpickler(Unpickler):
    """A subclass of the Unpickler to unpickle our numpy pickles.

    Attributes
    ----------
    mmap_mode: str
        The memorymap mode to use for reading numpy arrays.
    file_handle: file_like
        File object to unpickle from.
    ensure_native_byte_order: bool
        If True, coerce the array to use the native endianness of the
        host system.
    filename: str
        Name of the file to unpickle from. It should correspond to file_handle.
        This parameter is required when using mmap_mode.
    np: module
        Reference to numpy module if numpy is installed else None.

    """

    dispatch = Unpickler.dispatch.copy()

    def __init__(self, filename, file_handle, ensure_native_byte_order, mmap_mode=None):
        # The next line is for backward compatibility with pickle generated
        # with joblib versions less than 0.10.
        self._dirname = os.path.dirname(filename)

        self.mmap_mode = mmap_mode
        self.file_handle = file_handle
        # filename is required for numpy mmap mode.
        self.filename = filename
        self.compat_mode = False
        self.ensure_native_byte_order = ensure_native_byte_order
        Unpickler.__init__(self, self.file_handle)
        try:
            import numpy as np
        except ImportError:
            np = None
        self.np = np

    def load_build(self):
        """Called to set the state of a newly created object.

        We capture it to replace our place-holder objects, NDArrayWrapper or
        NumpyArrayWrapper, by the array we are interested in. We
        replace them directly in the stack of pickler.
        NDArrayWrapper is used for backward compatibility with joblib <= 0.9.
        """
        Unpickler.load_build(self)

        # For backward compatibility, we support NDArrayWrapper objects.
        if isinstance(self.stack[-1], (NDArrayWrapper, NumpyArrayWrapper)):
            if self.np is None:
                raise ImportError(
                    "Trying to unpickle an ndarray, but numpy didn't import correctly"
                )
            array_wrapper = self.stack.pop()
            # If any NDArrayWrapper is found, we switch to compatibility mode,
            # this will be used to raise a DeprecationWarning to the user at
            # the end of the unpickling.
            if isinstance(array_wrapper, NDArrayWrapper):
                self.compat_mode = True
                _array_payload = array_wrapper.read(self)
            else:
                _array_payload = array_wrapper.read(self, self.ensure_native_byte_order)

            self.stack.append(_array_payload)

    # Be careful to register our new method.
    dispatch[pickle.BUILD[0]] = load_build


###############################################################################
# Utility functions


def dump(value, filename, compress=0, protocol=None):
    """Persist an arbitrary Python object into one file.

    Read more in the :ref:`User Guide <persistence>`.

    Parameters
    ----------
    value: any Python object
        The object to store to disk.
    filename: str, pathlib.Path, or file object.
        The file object or path of the file in which it is to be stored.
        The compression method corresponding to one of the supported filename
        extensions ('.z', '.gz', '.bz2', '.xz' or '.lzma') will be used
        automatically.
    compress: int from 0 to 9 or bool or 2-tuple, optional
        Optional compression level for the data. 0 or False is no compression.
        Higher value means more compression, but also slower read and
        write times. Using a value of 3 is often a good compromise.
        See the notes for more details.
        If compress is True, the compression level used is 3.
        If compress is a 2-tuple, the first element must correspond to a string
        between supported compressors (e.g 'zlib', 'gzip', 'bz2', 'lzma'
        'xz'), the second element must be an integer from 0 to 9, corresponding
        to the compression level.
    protocol: int, optional
        Pickle protocol, see pickle.dump documentation for more details.

    Returns
    -------
    filenames: list of strings
        The list of file names in which the data is stored. If
        compress is false, each array is stored in a different file.

    See Also
    --------
    joblib.load : corresponding loader

    Notes
    -----
    Memmapping on load cannot be used for compressed files. Thus
    using compression can significantly slow down loading. In
    addition, compressed files take up extra memory during
    dump and load.

    """

    if Path is not None and isinstance(filename, Path):
        filename = str(filename)

    is_filename = isinstance(filename, str)
    is_fileobj = hasattr(filename, "write")

    compress_method = "zlib"  # zlib is the default compression method.
    if compress is True:
        # By default, if compress is enabled, we want the default compress
        # level of the compressor.
        compress_level = None
    elif isinstance(compress, tuple):
        # a 2-tuple was set in compress
        if len(compress) != 2:
            raise ValueError(
                "Compress argument tuple should contain exactly 2 elements: "
                "(compress method, compress level), you passed {}".format(compress)
            )
        compress_method, compress_level = compress
    elif isinstance(compress, str):
        compress_method = compress
        compress_level = None  # Use default compress level
        compress = (compress_method, compress_level)
    else:
        compress_level = compress

    if compress_method == "lz4" and lz4 is None:
        raise ValueError(LZ4_NOT_INSTALLED_ERROR)

    if (
        compress_level is not None
        and compress_level is not False
        and compress_level not in range(10)
    ):
        # Raising an error if a non valid compress level is given.
        raise ValueError(
            'Non valid compress level given: "{}". Possible values are {}.'.format(
                compress_level, list(range(10))
            )
        )

    if compress_method not in _COMPRESSORS:
        # Raising an error if an unsupported compression method is given.
        raise ValueError(
            'Non valid compression method given: "{}". Possible values are {}.'.format(
                compress_method, _COMPRESSORS
            )
        )

    if not is_filename and not is_fileobj:
        # People keep inverting arguments, and the resulting error is
        # incomprehensible
        raise ValueError(
            "Second argument should be a filename or a file-like object, "
            "%s (type %s) was given." % (filename, type(filename))
        )

    if is_filename and not isinstance(compress, tuple):
        # In case no explicit compression was requested using both compression
        # method and level in a tuple and the filename has an explicit
        # extension, we select the corresponding compressor.

        # unset the variable to be sure no compression level is set afterwards.
        compress_method = None
        for name, compressor in _COMPRESSORS.items():
            if filename.endswith(compressor.extension):
                compress_method = name

        if compress_method in _COMPRESSORS and compress_level == 0:
            # we choose the default compress_level in case it was not given
            # as an argument (using compress).
            compress_level = None

    if compress_level != 0:
        with _write_fileobject(
            filename, compress=(compress_method, compress_level)
        ) as f:
            NumpyPickler(f, protocol=protocol).dump(value)
    elif is_filename:
        with open(filename, "wb") as f:
            NumpyPickler(f, protocol=protocol).dump(value)
    else:
        NumpyPickler(filename, protocol=protocol).dump(value)

    # If the target container is a file object, nothing is returned.
    if is_fileobj:
        return

    # For compatibility, the list of created filenames (e.g with one element
    # after 0.10.0) is returned by default.
    return [filename]


def _unpickle(fobj, ensure_native_byte_order, filename="", mmap_mode=None):
    """Internal unpickling function."""
    # We are careful to open the file handle early and keep it open to
    # avoid race-conditions on renames.
    # That said, if data is stored in companion files, which can be
    # the case with the old persistence format, moving the directory
    # will create a race when joblib tries to access the companion
    # files.
    unpickler = NumpyUnpickler(
        filename, fobj, ensure_native_byte_order, mmap_mode=mmap_mode
    )
    obj = None
    try:
        obj = unpickler.load()
        if unpickler.compat_mode:
            warnings.warn(
                "The file '%s' has been generated with a "
                "joblib version less than 0.10. "
                "Please regenerate this pickle file." % filename,
                DeprecationWarning,
                stacklevel=3,
            )
    except UnicodeDecodeError as exc:
        # More user-friendly error message
        new_exc = ValueError(
            "You may be trying to read with "
            "python 3 a joblib pickle generated with python 2. "
            "This feature is not supported by joblib."
        )
        new_exc.__cause__ = exc
        raise new_exc
    return obj


def load_temporary_memmap(filename, mmap_mode, unlink_on_gc_collect):
    from ._memmapping_reducer import JOBLIB_MMAPS, add_maybe_unlink_finalizer

    with open(filename, "rb") as f:
        with _validate_fileobject_and_memmap(f, filename, mmap_mode) as (
            fobj,
            validated_mmap_mode,
        ):
            # Memmap are used for interprocess communication, which should
            # keep the objects untouched. We pass `ensure_native_byte_order=False`
            # to remain consistent with the loading behavior of non-memmaped arrays
            # in workers, where the byte order is preserved.
            # Note that we do not implement endianness change for memmaps, as this
            # would result in inconsistent behavior.
            obj = _unpickle(
                fobj,
                ensure_native_byte_order=False,
                filename=filename,
                mmap_mode=validated_mmap_mode,
            )

    JOBLIB_MMAPS.add(obj.filename)
    if unlink_on_gc_collect:
        add_maybe_unlink_finalizer(obj)
    return obj


def load(filename, mmap_mode=None, ensure_native_byte_order="auto"):
    """Reconstruct a Python object from a file persisted with joblib.dump.

    Read more in the :ref:`User Guide <persistence>`.

    WARNING: joblib.load relies on the pickle module and can therefore
    execute arbitrary Python code. It should therefore never be used
    to load files from untrusted sources.

    Parameters
    ----------
    filename: str, pathlib.Path, or file object.
        The file object or path of the file from which to load the object
    mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional
        If not None, the arrays are memory-mapped from the disk. This
        mode has no effect for compressed files. Note that in this
        case the reconstructed object might no longer match exactly
        the originally pickled object.
    ensure_native_byte_order: bool, or 'auto', default=='auto'
        If True, ensures that the byte order of the loaded arrays matches the
        native byte ordering (or _endianness_) of the host system. This is not
        compatible with memory-mapped arrays and using non-null `mmap_mode`
        parameter at the same time will raise an error. The default 'auto'
        parameter is equivalent to True if `mmap_mode` is None, else False.

    Returns
    -------
    result: any Python object
        The object stored in the file.

    See Also
    --------
    joblib.dump : function to save an object

    Notes
    -----

    This function can load numpy array files saved separately during the
    dump. If the mmap_mode argument is given, it is passed to np.load and
    arrays are loaded as memmaps. As a consequence, the reconstructed
    object might not match the original pickled object. Note that if the
    file was saved with compression, the arrays cannot be memmapped.
    """
    if ensure_native_byte_order == "auto":
        ensure_native_byte_order = mmap_mode is None

    if ensure_native_byte_order and mmap_mode is not None:
        raise ValueError(
            "Native byte ordering can only be enforced if 'mmap_mode' parameter "
            f"is set to None, but got 'mmap_mode={mmap_mode}' instead."
        )

    if Path is not None and isinstance(filename, Path):
        filename = str(filename)

    if hasattr(filename, "read"):
        fobj = filename
        filename = getattr(fobj, "name", "")
        with _validate_fileobject_and_memmap(fobj, filename, mmap_mode) as (fobj, _):
            obj = _unpickle(fobj, ensure_native_byte_order=ensure_native_byte_order)
    else:
        with open(filename, "rb") as f:
            with _validate_fileobject_and_memmap(f, filename, mmap_mode) as (
                fobj,
                validated_mmap_mode,
            ):
                if isinstance(fobj, str):
                    # if the returned file object is a string, this means we
                    # try to load a pickle file generated with an version of
                    # Joblib so we load it with joblib compatibility function.
                    return load_compatibility(fobj)

                # A memory-mapped array has to be mapped with the endianness
                # it has been written with. Other arrays are coerced to the
                # native endianness of the host system.
                obj = _unpickle(
                    fobj,
                    ensure_native_byte_order=ensure_native_byte_order,
                    filename=filename,
                    mmap_mode=validated_mmap_mode,
                )

    return obj