File size: 15,673 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
class BaseGetitemTests:
"""Tests for ExtensionArray.__getitem__."""
def test_iloc_series(self, data):
ser = pd.Series(data)
result = ser.iloc[:4]
expected = pd.Series(data[:4])
tm.assert_series_equal(result, expected)
result = ser.iloc[[0, 1, 2, 3]]
tm.assert_series_equal(result, expected)
def test_iloc_frame(self, data):
df = pd.DataFrame({"A": data, "B": np.arange(len(data), dtype="int64")})
expected = pd.DataFrame({"A": data[:4]})
# slice -> frame
result = df.iloc[:4, [0]]
tm.assert_frame_equal(result, expected)
# sequence -> frame
result = df.iloc[[0, 1, 2, 3], [0]]
tm.assert_frame_equal(result, expected)
expected = pd.Series(data[:4], name="A")
# slice -> series
result = df.iloc[:4, 0]
tm.assert_series_equal(result, expected)
# sequence -> series
result = df.iloc[:4, 0]
tm.assert_series_equal(result, expected)
# GH#32959 slice columns with step
result = df.iloc[:, ::2]
tm.assert_frame_equal(result, df[["A"]])
result = df[["B", "A"]].iloc[:, ::2]
tm.assert_frame_equal(result, df[["B"]])
def test_iloc_frame_single_block(self, data):
# GH#32959 null slice along index, slice along columns with single-block
df = pd.DataFrame({"A": data})
result = df.iloc[:, :]
tm.assert_frame_equal(result, df)
result = df.iloc[:, :1]
tm.assert_frame_equal(result, df)
result = df.iloc[:, :2]
tm.assert_frame_equal(result, df)
result = df.iloc[:, ::2]
tm.assert_frame_equal(result, df)
result = df.iloc[:, 1:2]
tm.assert_frame_equal(result, df.iloc[:, :0])
result = df.iloc[:, -1:]
tm.assert_frame_equal(result, df)
def test_loc_series(self, data):
ser = pd.Series(data)
result = ser.loc[:3]
expected = pd.Series(data[:4])
tm.assert_series_equal(result, expected)
result = ser.loc[[0, 1, 2, 3]]
tm.assert_series_equal(result, expected)
def test_loc_frame(self, data):
df = pd.DataFrame({"A": data, "B": np.arange(len(data), dtype="int64")})
expected = pd.DataFrame({"A": data[:4]})
# slice -> frame
result = df.loc[:3, ["A"]]
tm.assert_frame_equal(result, expected)
# sequence -> frame
result = df.loc[[0, 1, 2, 3], ["A"]]
tm.assert_frame_equal(result, expected)
expected = pd.Series(data[:4], name="A")
# slice -> series
result = df.loc[:3, "A"]
tm.assert_series_equal(result, expected)
# sequence -> series
result = df.loc[:3, "A"]
tm.assert_series_equal(result, expected)
def test_loc_iloc_frame_single_dtype(self, data):
# GH#27110 bug in ExtensionBlock.iget caused df.iloc[n] to incorrectly
# return a scalar
df = pd.DataFrame({"A": data})
expected = pd.Series([data[2]], index=["A"], name=2, dtype=data.dtype)
result = df.loc[2]
tm.assert_series_equal(result, expected)
expected = pd.Series(
[data[-1]], index=["A"], name=len(data) - 1, dtype=data.dtype
)
result = df.iloc[-1]
tm.assert_series_equal(result, expected)
def test_getitem_scalar(self, data):
result = data[0]
assert isinstance(result, data.dtype.type)
result = pd.Series(data)[0]
assert isinstance(result, data.dtype.type)
def test_getitem_invalid(self, data):
# TODO: box over scalar, [scalar], (scalar,)?
msg = (
r"only integers, slices \(`:`\), ellipsis \(`...`\), numpy.newaxis "
r"\(`None`\) and integer or boolean arrays are valid indices"
)
with pytest.raises(IndexError, match=msg):
data["foo"]
with pytest.raises(IndexError, match=msg):
data[2.5]
ub = len(data)
msg = "|".join(
[
"list index out of range", # json
"index out of bounds", # pyarrow
"Out of bounds access", # Sparse
f"loc must be an integer between -{ub} and {ub}", # Sparse
f"index {ub+1} is out of bounds for axis 0 with size {ub}",
f"index -{ub+1} is out of bounds for axis 0 with size {ub}",
]
)
with pytest.raises(IndexError, match=msg):
data[ub + 1]
with pytest.raises(IndexError, match=msg):
data[-ub - 1]
def test_getitem_scalar_na(self, data_missing, na_cmp, na_value):
result = data_missing[0]
assert na_cmp(result, na_value)
def test_getitem_empty(self, data):
# Indexing with empty list
result = data[[]]
assert len(result) == 0
assert isinstance(result, type(data))
expected = data[np.array([], dtype="int64")]
tm.assert_extension_array_equal(result, expected)
def test_getitem_mask(self, data):
# Empty mask, raw array
mask = np.zeros(len(data), dtype=bool)
result = data[mask]
assert len(result) == 0
assert isinstance(result, type(data))
# Empty mask, in series
mask = np.zeros(len(data), dtype=bool)
result = pd.Series(data)[mask]
assert len(result) == 0
assert result.dtype == data.dtype
# non-empty mask, raw array
mask[0] = True
result = data[mask]
assert len(result) == 1
assert isinstance(result, type(data))
# non-empty mask, in series
result = pd.Series(data)[mask]
assert len(result) == 1
assert result.dtype == data.dtype
def test_getitem_mask_raises(self, data):
mask = np.array([True, False])
msg = f"Boolean index has wrong length: 2 instead of {len(data)}"
with pytest.raises(IndexError, match=msg):
data[mask]
mask = pd.array(mask, dtype="boolean")
with pytest.raises(IndexError, match=msg):
data[mask]
def test_getitem_boolean_array_mask(self, data):
mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean")
result = data[mask]
assert len(result) == 0
assert isinstance(result, type(data))
result = pd.Series(data)[mask]
assert len(result) == 0
assert result.dtype == data.dtype
mask[:5] = True
expected = data.take([0, 1, 2, 3, 4])
result = data[mask]
tm.assert_extension_array_equal(result, expected)
expected = pd.Series(expected)
result = pd.Series(data)[mask]
tm.assert_series_equal(result, expected)
def test_getitem_boolean_na_treated_as_false(self, data):
# https://github.com/pandas-dev/pandas/issues/31503
mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean")
mask[:2] = pd.NA
mask[2:4] = True
result = data[mask]
expected = data[mask.fillna(False)]
tm.assert_extension_array_equal(result, expected)
s = pd.Series(data)
result = s[mask]
expected = s[mask.fillna(False)]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"idx",
[[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
ids=["list", "integer-array", "numpy-array"],
)
def test_getitem_integer_array(self, data, idx):
result = data[idx]
assert len(result) == 3
assert isinstance(result, type(data))
expected = data.take([0, 1, 2])
tm.assert_extension_array_equal(result, expected)
expected = pd.Series(expected)
result = pd.Series(data)[idx]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"idx",
[[0, 1, 2, pd.NA], pd.array([0, 1, 2, pd.NA], dtype="Int64")],
ids=["list", "integer-array"],
)
def test_getitem_integer_with_missing_raises(self, data, idx):
msg = "Cannot index with an integer indexer containing NA values"
with pytest.raises(ValueError, match=msg):
data[idx]
@pytest.mark.xfail(
reason="Tries label-based and raises KeyError; "
"in some cases raises when calling np.asarray"
)
@pytest.mark.parametrize(
"idx",
[[0, 1, 2, pd.NA], pd.array([0, 1, 2, pd.NA], dtype="Int64")],
ids=["list", "integer-array"],
)
def test_getitem_series_integer_with_missing_raises(self, data, idx):
msg = "Cannot index with an integer indexer containing NA values"
# TODO: this raises KeyError about labels not found (it tries label-based)
ser = pd.Series(data, index=[chr(100 + i) for i in range(len(data))])
with pytest.raises(ValueError, match=msg):
ser[idx]
def test_getitem_slice(self, data):
# getitem[slice] should return an array
result = data[slice(0)] # empty
assert isinstance(result, type(data))
result = data[slice(1)] # scalar
assert isinstance(result, type(data))
def test_getitem_ellipsis_and_slice(self, data):
# GH#40353 this is called from slice_block_rows
result = data[..., :]
tm.assert_extension_array_equal(result, data)
result = data[:, ...]
tm.assert_extension_array_equal(result, data)
result = data[..., :3]
tm.assert_extension_array_equal(result, data[:3])
result = data[:3, ...]
tm.assert_extension_array_equal(result, data[:3])
result = data[..., ::2]
tm.assert_extension_array_equal(result, data[::2])
result = data[::2, ...]
tm.assert_extension_array_equal(result, data[::2])
def test_get(self, data):
# GH 20882
s = pd.Series(data, index=[2 * i for i in range(len(data))])
assert s.get(4) == s.iloc[2]
result = s.get([4, 6])
expected = s.iloc[[2, 3]]
tm.assert_series_equal(result, expected)
result = s.get(slice(2))
expected = s.iloc[[0, 1]]
tm.assert_series_equal(result, expected)
assert s.get(-1) is None
assert s.get(s.index.max() + 1) is None
s = pd.Series(data[:6], index=list("abcdef"))
assert s.get("c") == s.iloc[2]
result = s.get(slice("b", "d"))
expected = s.iloc[[1, 2, 3]]
tm.assert_series_equal(result, expected)
result = s.get("Z")
assert result is None
msg = "Series.__getitem__ treating keys as positions is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
assert s.get(4) == s.iloc[4]
assert s.get(-1) == s.iloc[-1]
assert s.get(len(s)) is None
# GH 21257
s = pd.Series(data)
with tm.assert_produces_warning(None):
# GH#45324 make sure we aren't giving a spurious FutureWarning
s2 = s[::2]
assert s2.get(1) is None
def test_take_sequence(self, data):
result = pd.Series(data)[[0, 1, 3]]
assert result.iloc[0] == data[0]
assert result.iloc[1] == data[1]
assert result.iloc[2] == data[3]
def test_take(self, data, na_value, na_cmp):
result = data.take([0, -1])
assert result.dtype == data.dtype
assert result[0] == data[0]
assert result[1] == data[-1]
result = data.take([0, -1], allow_fill=True, fill_value=na_value)
assert result[0] == data[0]
assert na_cmp(result[1], na_value)
with pytest.raises(IndexError, match="out of bounds"):
data.take([len(data) + 1])
def test_take_empty(self, data, na_value, na_cmp):
empty = data[:0]
result = empty.take([-1], allow_fill=True)
assert na_cmp(result[0], na_value)
msg = "cannot do a non-empty take from an empty axes|out of bounds"
with pytest.raises(IndexError, match=msg):
empty.take([-1])
with pytest.raises(IndexError, match="cannot do a non-empty take"):
empty.take([0, 1])
def test_take_negative(self, data):
# https://github.com/pandas-dev/pandas/issues/20640
n = len(data)
result = data.take([0, -n, n - 1, -1])
expected = data.take([0, 0, n - 1, n - 1])
tm.assert_extension_array_equal(result, expected)
def test_take_non_na_fill_value(self, data_missing):
fill_value = data_missing[1] # valid
na = data_missing[0]
arr = data_missing._from_sequence(
[na, fill_value, na], dtype=data_missing.dtype
)
result = arr.take([-1, 1], fill_value=fill_value, allow_fill=True)
expected = arr.take([1, 1])
tm.assert_extension_array_equal(result, expected)
def test_take_pandas_style_negative_raises(self, data, na_value):
with pytest.raises(ValueError, match=""):
data.take([0, -2], fill_value=na_value, allow_fill=True)
@pytest.mark.parametrize("allow_fill", [True, False])
def test_take_out_of_bounds_raises(self, data, allow_fill):
arr = data[:3]
with pytest.raises(IndexError, match="out of bounds|out-of-bounds"):
arr.take(np.asarray([0, 3]), allow_fill=allow_fill)
def test_take_series(self, data):
s = pd.Series(data)
result = s.take([0, -1])
expected = pd.Series(
data._from_sequence([data[0], data[len(data) - 1]], dtype=s.dtype),
index=[0, len(data) - 1],
)
tm.assert_series_equal(result, expected)
def test_reindex(self, data, na_value):
s = pd.Series(data)
result = s.reindex([0, 1, 3])
expected = pd.Series(data.take([0, 1, 3]), index=[0, 1, 3])
tm.assert_series_equal(result, expected)
n = len(data)
result = s.reindex([-1, 0, n])
expected = pd.Series(
data._from_sequence([na_value, data[0], na_value], dtype=s.dtype),
index=[-1, 0, n],
)
tm.assert_series_equal(result, expected)
result = s.reindex([n, n + 1])
expected = pd.Series(
data._from_sequence([na_value, na_value], dtype=s.dtype), index=[n, n + 1]
)
tm.assert_series_equal(result, expected)
def test_reindex_non_na_fill_value(self, data_missing):
valid = data_missing[1]
na = data_missing[0]
arr = data_missing._from_sequence([na, valid], dtype=data_missing.dtype)
ser = pd.Series(arr)
result = ser.reindex([0, 1, 2], fill_value=valid)
expected = pd.Series(
data_missing._from_sequence([na, valid, valid], dtype=data_missing.dtype)
)
tm.assert_series_equal(result, expected)
def test_loc_len1(self, data):
# see GH-27785 take_nd with indexer of len 1 resulting in wrong ndim
df = pd.DataFrame({"A": data})
res = df.loc[[0], "A"]
assert res.ndim == 1
assert res._mgr.arrays[0].ndim == 1
if hasattr(res._mgr, "blocks"):
assert res._mgr._block.ndim == 1
def test_item(self, data):
# https://github.com/pandas-dev/pandas/pull/30175
s = pd.Series(data)
result = s[:1].item()
assert result == data[0]
msg = "can only convert an array of size 1 to a Python scalar"
with pytest.raises(ValueError, match=msg):
s[:0].item()
with pytest.raises(ValueError, match=msg):
s.item()
|