File size: 6,606 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import numpy as np
import pytest

import pandas as pd
import pandas._testing as tm


class BaseMissingTests:
    def test_isna(self, data_missing):
        expected = np.array([True, False])

        result = pd.isna(data_missing)
        tm.assert_numpy_array_equal(result, expected)

        result = pd.Series(data_missing).isna()
        expected = pd.Series(expected)
        tm.assert_series_equal(result, expected)

        # GH 21189
        result = pd.Series(data_missing).drop([0, 1]).isna()
        expected = pd.Series([], dtype=bool)
        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize("na_func", ["isna", "notna"])
    def test_isna_returns_copy(self, data_missing, na_func):
        result = pd.Series(data_missing)
        expected = result.copy()
        mask = getattr(result, na_func)()
        if isinstance(mask.dtype, pd.SparseDtype):
            # TODO: GH 57739
            mask = np.array(mask)
            mask.flags.writeable = True

        mask[:] = True
        tm.assert_series_equal(result, expected)

    def test_dropna_array(self, data_missing):
        result = data_missing.dropna()
        expected = data_missing[[1]]
        tm.assert_extension_array_equal(result, expected)

    def test_dropna_series(self, data_missing):
        ser = pd.Series(data_missing)
        result = ser.dropna()
        expected = ser.iloc[[1]]
        tm.assert_series_equal(result, expected)

    def test_dropna_frame(self, data_missing):
        df = pd.DataFrame({"A": data_missing}, columns=pd.Index(["A"], dtype=object))

        # defaults
        result = df.dropna()
        expected = df.iloc[[1]]
        tm.assert_frame_equal(result, expected)

        # axis = 1
        result = df.dropna(axis="columns")
        expected = pd.DataFrame(index=pd.RangeIndex(2), columns=pd.Index([]))
        tm.assert_frame_equal(result, expected)

        # multiple
        df = pd.DataFrame({"A": data_missing, "B": [1, np.nan]})
        result = df.dropna()
        expected = df.iloc[:0]
        tm.assert_frame_equal(result, expected)

    def test_fillna_scalar(self, data_missing):
        valid = data_missing[1]
        result = data_missing.fillna(valid)
        expected = data_missing.fillna(valid)
        tm.assert_extension_array_equal(result, expected)

    @pytest.mark.filterwarnings(
        "ignore:Series.fillna with 'method' is deprecated:FutureWarning"
    )
    def test_fillna_limit_pad(self, data_missing):
        arr = data_missing.take([1, 0, 0, 0, 1])
        result = pd.Series(arr).ffill(limit=2)
        expected = pd.Series(data_missing.take([1, 1, 1, 0, 1]))
        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize(
        "limit_area, input_ilocs, expected_ilocs",
        [
            ("outside", [1, 0, 0, 0, 1], [1, 0, 0, 0, 1]),
            ("outside", [1, 0, 1, 0, 1], [1, 0, 1, 0, 1]),
            ("outside", [0, 1, 1, 1, 0], [0, 1, 1, 1, 1]),
            ("outside", [0, 1, 0, 1, 0], [0, 1, 0, 1, 1]),
            ("inside", [1, 0, 0, 0, 1], [1, 1, 1, 1, 1]),
            ("inside", [1, 0, 1, 0, 1], [1, 1, 1, 1, 1]),
            ("inside", [0, 1, 1, 1, 0], [0, 1, 1, 1, 0]),
            ("inside", [0, 1, 0, 1, 0], [0, 1, 1, 1, 0]),
        ],
    )
    def test_ffill_limit_area(
        self, data_missing, limit_area, input_ilocs, expected_ilocs
    ):
        # GH#56616
        arr = data_missing.take(input_ilocs)
        result = pd.Series(arr).ffill(limit_area=limit_area)
        expected = pd.Series(data_missing.take(expected_ilocs))
        tm.assert_series_equal(result, expected)

    @pytest.mark.filterwarnings(
        "ignore:Series.fillna with 'method' is deprecated:FutureWarning"
    )
    def test_fillna_limit_backfill(self, data_missing):
        arr = data_missing.take([1, 0, 0, 0, 1])
        result = pd.Series(arr).fillna(method="backfill", limit=2)
        expected = pd.Series(data_missing.take([1, 0, 1, 1, 1]))
        tm.assert_series_equal(result, expected)

    def test_fillna_no_op_returns_copy(self, data):
        data = data[~data.isna()]

        valid = data[0]
        result = data.fillna(valid)
        assert result is not data
        tm.assert_extension_array_equal(result, data)

        result = data._pad_or_backfill(method="backfill")
        assert result is not data
        tm.assert_extension_array_equal(result, data)

    def test_fillna_series(self, data_missing):
        fill_value = data_missing[1]
        ser = pd.Series(data_missing)

        result = ser.fillna(fill_value)
        expected = pd.Series(
            data_missing._from_sequence(
                [fill_value, fill_value], dtype=data_missing.dtype
            )
        )
        tm.assert_series_equal(result, expected)

        # Fill with a series
        result = ser.fillna(expected)
        tm.assert_series_equal(result, expected)

        # Fill with a series not affecting the missing values
        result = ser.fillna(ser)
        tm.assert_series_equal(result, ser)

    def test_fillna_series_method(self, data_missing, fillna_method):
        fill_value = data_missing[1]

        if fillna_method == "ffill":
            data_missing = data_missing[::-1]

        result = getattr(pd.Series(data_missing), fillna_method)()
        expected = pd.Series(
            data_missing._from_sequence(
                [fill_value, fill_value], dtype=data_missing.dtype
            )
        )

        tm.assert_series_equal(result, expected)

    def test_fillna_frame(self, data_missing):
        fill_value = data_missing[1]

        result = pd.DataFrame({"A": data_missing, "B": [1, 2]}).fillna(fill_value)

        expected = pd.DataFrame(
            {
                "A": data_missing._from_sequence(
                    [fill_value, fill_value], dtype=data_missing.dtype
                ),
                "B": [1, 2],
            }
        )

        tm.assert_frame_equal(result, expected)

    def test_fillna_fill_other(self, data):
        result = pd.DataFrame({"A": data, "B": [np.nan] * len(data)}).fillna({"B": 0.0})

        expected = pd.DataFrame({"A": data, "B": [0.0] * len(result)})

        tm.assert_frame_equal(result, expected)

    def test_use_inf_as_na_no_effect(self, data_missing):
        ser = pd.Series(data_missing)
        expected = ser.isna()
        msg = "use_inf_as_na option is deprecated"
        with tm.assert_produces_warning(FutureWarning, match=msg):
            with pd.option_context("mode.use_inf_as_na", True):
                result = ser.isna()
        tm.assert_series_equal(result, expected)