File size: 9,694 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
from __future__ import annotations

import decimal
import numbers
import sys
from typing import TYPE_CHECKING

import numpy as np

from pandas.core.dtypes.base import ExtensionDtype
from pandas.core.dtypes.common import (
    is_dtype_equal,
    is_float,
    is_integer,
    pandas_dtype,
)

import pandas as pd
from pandas.api.extensions import (
    no_default,
    register_extension_dtype,
)
from pandas.api.types import (
    is_list_like,
    is_scalar,
)
from pandas.core import arraylike
from pandas.core.algorithms import value_counts_internal as value_counts
from pandas.core.arraylike import OpsMixin
from pandas.core.arrays import (
    ExtensionArray,
    ExtensionScalarOpsMixin,
)
from pandas.core.indexers import check_array_indexer

if TYPE_CHECKING:
    from pandas._typing import type_t


@register_extension_dtype
class DecimalDtype(ExtensionDtype):
    type = decimal.Decimal
    name = "decimal"
    na_value = decimal.Decimal("NaN")
    _metadata = ("context",)

    def __init__(self, context=None) -> None:
        self.context = context or decimal.getcontext()

    def __repr__(self) -> str:
        return f"DecimalDtype(context={self.context})"

    @classmethod
    def construct_array_type(cls) -> type_t[DecimalArray]:
        """
        Return the array type associated with this dtype.

        Returns
        -------
        type
        """
        return DecimalArray

    @property
    def _is_numeric(self) -> bool:
        return True


class DecimalArray(OpsMixin, ExtensionScalarOpsMixin, ExtensionArray):
    __array_priority__ = 1000

    def __init__(self, values, dtype=None, copy=False, context=None) -> None:
        for i, val in enumerate(values):
            if is_float(val) or is_integer(val):
                if np.isnan(val):
                    values[i] = DecimalDtype.na_value
                else:
                    # error: Argument 1 has incompatible type "float | int |
                    # integer[Any]"; expected "Decimal | float | str | tuple[int,
                    # Sequence[int], int]"
                    values[i] = DecimalDtype.type(val)  # type: ignore[arg-type]
            elif not isinstance(val, decimal.Decimal):
                raise TypeError("All values must be of type " + str(decimal.Decimal))
        values = np.asarray(values, dtype=object)

        self._data = values
        # Some aliases for common attribute names to ensure pandas supports
        # these
        self._items = self.data = self._data
        # those aliases are currently not working due to assumptions
        # in internal code (GH-20735)
        # self._values = self.values = self.data
        self._dtype = DecimalDtype(context)

    @property
    def dtype(self):
        return self._dtype

    @classmethod
    def _from_sequence(cls, scalars, *, dtype=None, copy=False):
        return cls(scalars)

    @classmethod
    def _from_sequence_of_strings(cls, strings, dtype=None, copy=False):
        return cls._from_sequence(
            [decimal.Decimal(x) for x in strings], dtype=dtype, copy=copy
        )

    @classmethod
    def _from_factorized(cls, values, original):
        return cls(values)

    _HANDLED_TYPES = (decimal.Decimal, numbers.Number, np.ndarray)

    def to_numpy(
        self,
        dtype=None,
        copy: bool = False,
        na_value: object = no_default,
        decimals=None,
    ) -> np.ndarray:
        result = np.asarray(self, dtype=dtype)
        if decimals is not None:
            result = np.asarray([round(x, decimals) for x in result])
        return result

    def __array_ufunc__(self, ufunc: np.ufunc, method: str, *inputs, **kwargs):
        #
        if not all(
            isinstance(t, self._HANDLED_TYPES + (DecimalArray,)) for t in inputs
        ):
            return NotImplemented

        result = arraylike.maybe_dispatch_ufunc_to_dunder_op(
            self, ufunc, method, *inputs, **kwargs
        )
        if result is not NotImplemented:
            # e.g. test_array_ufunc_series_scalar_other
            return result

        if "out" in kwargs:
            return arraylike.dispatch_ufunc_with_out(
                self, ufunc, method, *inputs, **kwargs
            )

        inputs = tuple(x._data if isinstance(x, DecimalArray) else x for x in inputs)
        result = getattr(ufunc, method)(*inputs, **kwargs)

        if method == "reduce":
            result = arraylike.dispatch_reduction_ufunc(
                self, ufunc, method, *inputs, **kwargs
            )
            if result is not NotImplemented:
                return result

        def reconstruct(x):
            if isinstance(x, (decimal.Decimal, numbers.Number)):
                return x
            else:
                return type(self)._from_sequence(x, dtype=self.dtype)

        if ufunc.nout > 1:
            return tuple(reconstruct(x) for x in result)
        else:
            return reconstruct(result)

    def __getitem__(self, item):
        if isinstance(item, numbers.Integral):
            return self._data[item]
        else:
            # array, slice.
            item = pd.api.indexers.check_array_indexer(self, item)
            return type(self)(self._data[item])

    def take(self, indexer, allow_fill=False, fill_value=None):
        from pandas.api.extensions import take

        data = self._data
        if allow_fill and fill_value is None:
            fill_value = self.dtype.na_value

        result = take(data, indexer, fill_value=fill_value, allow_fill=allow_fill)
        return self._from_sequence(result, dtype=self.dtype)

    def copy(self):
        return type(self)(self._data.copy(), dtype=self.dtype)

    def astype(self, dtype, copy=True):
        if is_dtype_equal(dtype, self._dtype):
            if not copy:
                return self
        dtype = pandas_dtype(dtype)
        if isinstance(dtype, type(self.dtype)):
            return type(self)(self._data, copy=copy, context=dtype.context)

        return super().astype(dtype, copy=copy)

    def __setitem__(self, key, value) -> None:
        if is_list_like(value):
            if is_scalar(key):
                raise ValueError("setting an array element with a sequence.")
            value = [decimal.Decimal(v) for v in value]
        else:
            value = decimal.Decimal(value)

        key = check_array_indexer(self, key)
        self._data[key] = value

    def __len__(self) -> int:
        return len(self._data)

    def __contains__(self, item) -> bool | np.bool_:
        if not isinstance(item, decimal.Decimal):
            return False
        elif item.is_nan():
            return self.isna().any()
        else:
            return super().__contains__(item)

    @property
    def nbytes(self) -> int:
        n = len(self)
        if n:
            return n * sys.getsizeof(self[0])
        return 0

    def isna(self):
        return np.array([x.is_nan() for x in self._data], dtype=bool)

    @property
    def _na_value(self):
        return decimal.Decimal("NaN")

    def _formatter(self, boxed=False):
        if boxed:
            return "Decimal: {}".format
        return repr

    @classmethod
    def _concat_same_type(cls, to_concat):
        return cls(np.concatenate([x._data for x in to_concat]))

    def _reduce(
        self, name: str, *, skipna: bool = True, keepdims: bool = False, **kwargs
    ):
        if skipna and self.isna().any():
            # If we don't have any NAs, we can ignore skipna
            other = self[~self.isna()]
            result = other._reduce(name, **kwargs)
        elif name == "sum" and len(self) == 0:
            # GH#29630 avoid returning int 0 or np.bool_(False) on old numpy
            result = decimal.Decimal(0)
        else:
            try:
                op = getattr(self.data, name)
            except AttributeError as err:
                raise NotImplementedError(
                    f"decimal does not support the {name} operation"
                ) from err
            result = op(axis=0)

        if keepdims:
            return type(self)([result])
        else:
            return result

    def _cmp_method(self, other, op):
        # For use with OpsMixin
        def convert_values(param):
            if isinstance(param, ExtensionArray) or is_list_like(param):
                ovalues = param
            else:
                # Assume it's an object
                ovalues = [param] * len(self)
            return ovalues

        lvalues = self
        rvalues = convert_values(other)

        # If the operator is not defined for the underlying objects,
        # a TypeError should be raised
        res = [op(a, b) for (a, b) in zip(lvalues, rvalues)]

        return np.asarray(res, dtype=bool)

    def value_counts(self, dropna: bool = True):
        return value_counts(self.to_numpy(), dropna=dropna)

    # We override fillna here to simulate a 3rd party EA that has done so. This
    #  lets us test the deprecation telling authors to implement _pad_or_backfill
    # Simulate a 3rd-party EA that has not yet updated to include a "copy"
    #  keyword in its fillna method.
    # error: Signature of "fillna" incompatible with supertype "ExtensionArray"
    def fillna(  # type: ignore[override]
        self,
        value=None,
        method=None,
        limit: int | None = None,
    ):
        return super().fillna(value=value, method=method, limit=limit, copy=True)


def to_decimal(values, context=None):
    return DecimalArray([decimal.Decimal(x) for x in values], context=context)


def make_data():
    return [decimal.Decimal(val) for val in np.random.default_rng(2).random(100)]


DecimalArray._add_arithmetic_ops()