File size: 60,624 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
from collections import defaultdict
from datetime import datetime
from functools import partial
import math
import operator
import re

import numpy as np
import pytest

from pandas.compat import IS64
from pandas.errors import InvalidIndexError
import pandas.util._test_decorators as td

from pandas.core.dtypes.common import (
    is_any_real_numeric_dtype,
    is_numeric_dtype,
    is_object_dtype,
)

import pandas as pd
from pandas import (
    CategoricalIndex,
    DataFrame,
    DatetimeIndex,
    IntervalIndex,
    PeriodIndex,
    RangeIndex,
    Series,
    TimedeltaIndex,
    date_range,
    period_range,
    timedelta_range,
)
import pandas._testing as tm
from pandas.core.indexes.api import (
    Index,
    MultiIndex,
    _get_combined_index,
    ensure_index,
    ensure_index_from_sequences,
)


class TestIndex:
    @pytest.fixture
    def simple_index(self) -> Index:
        return Index(list("abcde"))

    def test_can_hold_identifiers(self, simple_index):
        index = simple_index
        key = index[0]
        assert index._can_hold_identifiers_and_holds_name(key) is True

    @pytest.mark.parametrize("index", ["datetime"], indirect=True)
    def test_new_axis(self, index):
        # TODO: a bunch of scattered tests check this deprecation is enforced.
        #  de-duplicate/centralize them.
        with pytest.raises(ValueError, match="Multi-dimensional indexing"):
            # GH#30588 multi-dimensional indexing deprecated
            index[None, :]

    def test_constructor_regular(self, index):
        tm.assert_contains_all(index, index)

    @pytest.mark.parametrize("index", ["string"], indirect=True)
    def test_constructor_casting(self, index):
        # casting
        arr = np.array(index)
        new_index = Index(arr)
        tm.assert_contains_all(arr, new_index)
        tm.assert_index_equal(index, new_index)

    def test_constructor_copy(self, using_infer_string):
        index = Index(list("abc"), name="name")
        arr = np.array(index)
        new_index = Index(arr, copy=True, name="name")
        assert isinstance(new_index, Index)
        assert new_index.name == "name"
        if using_infer_string:
            tm.assert_extension_array_equal(
                new_index.values, pd.array(arr, dtype="string[pyarrow_numpy]")
            )
        else:
            tm.assert_numpy_array_equal(arr, new_index.values)
        arr[0] = "SOMEBIGLONGSTRING"
        assert new_index[0] != "SOMEBIGLONGSTRING"

    @pytest.mark.parametrize("cast_as_obj", [True, False])
    @pytest.mark.parametrize(
        "index",
        [
            date_range(
                "2015-01-01 10:00",
                freq="D",
                periods=3,
                tz="US/Eastern",
                name="Green Eggs & Ham",
            ),  # DTI with tz
            date_range("2015-01-01 10:00", freq="D", periods=3),  # DTI no tz
            timedelta_range("1 days", freq="D", periods=3),  # td
            period_range("2015-01-01", freq="D", periods=3),  # period
        ],
    )
    def test_constructor_from_index_dtlike(self, cast_as_obj, index):
        if cast_as_obj:
            with tm.assert_produces_warning(FutureWarning, match="Dtype inference"):
                result = Index(index.astype(object))
        else:
            result = Index(index)

        tm.assert_index_equal(result, index)

        if isinstance(index, DatetimeIndex):
            assert result.tz == index.tz
            if cast_as_obj:
                # GH#23524 check that Index(dti, dtype=object) does not
                #  incorrectly raise ValueError, and that nanoseconds are not
                #  dropped
                index += pd.Timedelta(nanoseconds=50)
                result = Index(index, dtype=object)
                assert result.dtype == np.object_
                assert list(result) == list(index)

    @pytest.mark.parametrize(
        "index,has_tz",
        [
            (
                date_range("2015-01-01 10:00", freq="D", periods=3, tz="US/Eastern"),
                True,
            ),  # datetimetz
            (timedelta_range("1 days", freq="D", periods=3), False),  # td
            (period_range("2015-01-01", freq="D", periods=3), False),  # period
        ],
    )
    def test_constructor_from_series_dtlike(self, index, has_tz):
        result = Index(Series(index))
        tm.assert_index_equal(result, index)

        if has_tz:
            assert result.tz == index.tz

    def test_constructor_from_series_freq(self):
        # GH 6273
        # create from a series, passing a freq
        dts = ["1-1-1990", "2-1-1990", "3-1-1990", "4-1-1990", "5-1-1990"]
        expected = DatetimeIndex(dts, freq="MS")

        s = Series(pd.to_datetime(dts))
        result = DatetimeIndex(s, freq="MS")

        tm.assert_index_equal(result, expected)

    def test_constructor_from_frame_series_freq(self, using_infer_string):
        # GH 6273
        # create from a series, passing a freq
        dts = ["1-1-1990", "2-1-1990", "3-1-1990", "4-1-1990", "5-1-1990"]
        expected = DatetimeIndex(dts, freq="MS")

        df = DataFrame(np.random.default_rng(2).random((5, 3)))
        df["date"] = dts
        result = DatetimeIndex(df["date"], freq="MS")
        dtype = object if not using_infer_string else "string"
        assert df["date"].dtype == dtype
        expected.name = "date"
        tm.assert_index_equal(result, expected)

        expected = Series(dts, name="date")
        tm.assert_series_equal(df["date"], expected)

        # GH 6274
        # infer freq of same
        if not using_infer_string:
            # Doesn't work with arrow strings
            freq = pd.infer_freq(df["date"])
            assert freq == "MS"

    def test_constructor_int_dtype_nan(self):
        # see gh-15187
        data = [np.nan]
        expected = Index(data, dtype=np.float64)
        result = Index(data, dtype="float")
        tm.assert_index_equal(result, expected)

    @pytest.mark.parametrize(
        "klass,dtype,na_val",
        [
            (Index, np.float64, np.nan),
            (DatetimeIndex, "datetime64[ns]", pd.NaT),
        ],
    )
    def test_index_ctor_infer_nan_nat(self, klass, dtype, na_val):
        # GH 13467
        na_list = [na_val, na_val]
        expected = klass(na_list)
        assert expected.dtype == dtype

        result = Index(na_list)
        tm.assert_index_equal(result, expected)

        result = Index(np.array(na_list))
        tm.assert_index_equal(result, expected)

    @pytest.mark.parametrize(
        "vals,dtype",
        [
            ([1, 2, 3, 4, 5], "int"),
            ([1.1, np.nan, 2.2, 3.0], "float"),
            (["A", "B", "C", np.nan], "obj"),
        ],
    )
    def test_constructor_simple_new(self, vals, dtype):
        index = Index(vals, name=dtype)
        result = index._simple_new(index.values, dtype)
        tm.assert_index_equal(result, index)

    @pytest.mark.parametrize("attr", ["values", "asi8"])
    @pytest.mark.parametrize("klass", [Index, DatetimeIndex])
    def test_constructor_dtypes_datetime(self, tz_naive_fixture, attr, klass):
        # Test constructing with a datetimetz dtype
        # .values produces numpy datetimes, so these are considered naive
        # .asi8 produces integers, so these are considered epoch timestamps
        # ^the above will be true in a later version. Right now we `.view`
        # the i8 values as NS_DTYPE, effectively treating them as wall times.
        index = date_range("2011-01-01", periods=5)
        arg = getattr(index, attr)
        index = index.tz_localize(tz_naive_fixture)
        dtype = index.dtype

        # As of 2.0 astype raises on dt64.astype(dt64tz)
        err = tz_naive_fixture is not None
        msg = "Cannot use .astype to convert from timezone-naive dtype to"

        if attr == "asi8":
            result = DatetimeIndex(arg).tz_localize(tz_naive_fixture)
            tm.assert_index_equal(result, index)
        elif klass is Index:
            with pytest.raises(TypeError, match="unexpected keyword"):
                klass(arg, tz=tz_naive_fixture)
        else:
            result = klass(arg, tz=tz_naive_fixture)
            tm.assert_index_equal(result, index)

        if attr == "asi8":
            if err:
                with pytest.raises(TypeError, match=msg):
                    DatetimeIndex(arg).astype(dtype)
            else:
                result = DatetimeIndex(arg).astype(dtype)
                tm.assert_index_equal(result, index)
        else:
            result = klass(arg, dtype=dtype)
            tm.assert_index_equal(result, index)

        if attr == "asi8":
            result = DatetimeIndex(list(arg)).tz_localize(tz_naive_fixture)
            tm.assert_index_equal(result, index)
        elif klass is Index:
            with pytest.raises(TypeError, match="unexpected keyword"):
                klass(arg, tz=tz_naive_fixture)
        else:
            result = klass(list(arg), tz=tz_naive_fixture)
            tm.assert_index_equal(result, index)

        if attr == "asi8":
            if err:
                with pytest.raises(TypeError, match=msg):
                    DatetimeIndex(list(arg)).astype(dtype)
            else:
                result = DatetimeIndex(list(arg)).astype(dtype)
                tm.assert_index_equal(result, index)
        else:
            result = klass(list(arg), dtype=dtype)
            tm.assert_index_equal(result, index)

    @pytest.mark.parametrize("attr", ["values", "asi8"])
    @pytest.mark.parametrize("klass", [Index, TimedeltaIndex])
    def test_constructor_dtypes_timedelta(self, attr, klass):
        index = timedelta_range("1 days", periods=5)
        index = index._with_freq(None)  # won't be preserved by constructors
        dtype = index.dtype

        values = getattr(index, attr)

        result = klass(values, dtype=dtype)
        tm.assert_index_equal(result, index)

        result = klass(list(values), dtype=dtype)
        tm.assert_index_equal(result, index)

    @pytest.mark.parametrize("value", [[], iter([]), (_ for _ in [])])
    @pytest.mark.parametrize(
        "klass",
        [
            Index,
            CategoricalIndex,
            DatetimeIndex,
            TimedeltaIndex,
        ],
    )
    def test_constructor_empty(self, value, klass):
        empty = klass(value)
        assert isinstance(empty, klass)
        assert not len(empty)

    @pytest.mark.parametrize(
        "empty,klass",
        [
            (PeriodIndex([], freq="D"), PeriodIndex),
            (PeriodIndex(iter([]), freq="D"), PeriodIndex),
            (PeriodIndex((_ for _ in []), freq="D"), PeriodIndex),
            (RangeIndex(step=1), RangeIndex),
            (MultiIndex(levels=[[1, 2], ["blue", "red"]], codes=[[], []]), MultiIndex),
        ],
    )
    def test_constructor_empty_special(self, empty, klass):
        assert isinstance(empty, klass)
        assert not len(empty)

    @pytest.mark.parametrize(
        "index",
        [
            "datetime",
            "float64",
            "float32",
            "int64",
            "int32",
            "period",
            "range",
            "repeats",
            "timedelta",
            "tuples",
            "uint64",
            "uint32",
        ],
        indirect=True,
    )
    def test_view_with_args(self, index):
        index.view("i8")

    @pytest.mark.parametrize(
        "index",
        [
            "string",
            pytest.param("categorical", marks=pytest.mark.xfail(reason="gh-25464")),
            "bool-object",
            "bool-dtype",
            "empty",
        ],
        indirect=True,
    )
    def test_view_with_args_object_array_raises(self, index):
        if index.dtype == bool:
            msg = "When changing to a larger dtype"
            with pytest.raises(ValueError, match=msg):
                index.view("i8")
        elif index.dtype == "string":
            with pytest.raises(NotImplementedError, match="i8"):
                index.view("i8")
        else:
            msg = (
                "Cannot change data-type for array of references|"
                "Cannot change data-type for object array|"
            )
            with pytest.raises(TypeError, match=msg):
                index.view("i8")

    @pytest.mark.parametrize(
        "index",
        ["int64", "int32", "range"],
        indirect=True,
    )
    def test_astype(self, index):
        casted = index.astype("i8")

        # it works!
        casted.get_loc(5)

        # pass on name
        index.name = "foobar"
        casted = index.astype("i8")
        assert casted.name == "foobar"

    def test_equals_object(self):
        # same
        assert Index(["a", "b", "c"]).equals(Index(["a", "b", "c"]))

    @pytest.mark.parametrize(
        "comp", [Index(["a", "b"]), Index(["a", "b", "d"]), ["a", "b", "c"]]
    )
    def test_not_equals_object(self, comp):
        assert not Index(["a", "b", "c"]).equals(comp)

    def test_identical(self):
        # index
        i1 = Index(["a", "b", "c"])
        i2 = Index(["a", "b", "c"])

        assert i1.identical(i2)

        i1 = i1.rename("foo")
        assert i1.equals(i2)
        assert not i1.identical(i2)

        i2 = i2.rename("foo")
        assert i1.identical(i2)

        i3 = Index([("a", "a"), ("a", "b"), ("b", "a")])
        i4 = Index([("a", "a"), ("a", "b"), ("b", "a")], tupleize_cols=False)
        assert not i3.identical(i4)

    def test_is_(self):
        ind = Index(range(10))
        assert ind.is_(ind)
        assert ind.is_(ind.view().view().view().view())
        assert not ind.is_(Index(range(10)))
        assert not ind.is_(ind.copy())
        assert not ind.is_(ind.copy(deep=False))
        assert not ind.is_(ind[:])
        assert not ind.is_(np.array(range(10)))

        # quasi-implementation dependent
        assert ind.is_(ind.view())
        ind2 = ind.view()
        ind2.name = "bob"
        assert ind.is_(ind2)
        assert ind2.is_(ind)
        # doesn't matter if Indices are *actually* views of underlying data,
        assert not ind.is_(Index(ind.values))
        arr = np.array(range(1, 11))
        ind1 = Index(arr, copy=False)
        ind2 = Index(arr, copy=False)
        assert not ind1.is_(ind2)

    def test_asof_numeric_vs_bool_raises(self):
        left = Index([1, 2, 3])
        right = Index([True, False], dtype=object)

        msg = "Cannot compare dtypes int64 and bool"
        with pytest.raises(TypeError, match=msg):
            left.asof(right[0])
        # TODO: should right.asof(left[0]) also raise?

        with pytest.raises(InvalidIndexError, match=re.escape(str(right))):
            left.asof(right)

        with pytest.raises(InvalidIndexError, match=re.escape(str(left))):
            right.asof(left)

    @pytest.mark.parametrize("index", ["string"], indirect=True)
    def test_booleanindex(self, index):
        bool_index = np.ones(len(index), dtype=bool)
        bool_index[5:30:2] = False

        sub_index = index[bool_index]

        for i, val in enumerate(sub_index):
            assert sub_index.get_loc(val) == i

        sub_index = index[list(bool_index)]
        for i, val in enumerate(sub_index):
            assert sub_index.get_loc(val) == i

    def test_fancy(self, simple_index):
        index = simple_index
        sl = index[[1, 2, 3]]
        for i in sl:
            assert i == sl[sl.get_loc(i)]

    @pytest.mark.parametrize(
        "index",
        ["string", "int64", "int32", "uint64", "uint32", "float64", "float32"],
        indirect=True,
    )
    @pytest.mark.parametrize("dtype", [int, np.bool_])
    def test_empty_fancy(self, index, dtype, request, using_infer_string):
        if dtype is np.bool_ and using_infer_string and index.dtype == "string":
            request.applymarker(pytest.mark.xfail(reason="numpy behavior is buggy"))
        empty_arr = np.array([], dtype=dtype)
        empty_index = type(index)([], dtype=index.dtype)

        assert index[[]].identical(empty_index)
        if dtype == np.bool_:
            with tm.assert_produces_warning(FutureWarning, match="is deprecated"):
                assert index[empty_arr].identical(empty_index)
        else:
            assert index[empty_arr].identical(empty_index)

    @pytest.mark.parametrize(
        "index",
        ["string", "int64", "int32", "uint64", "uint32", "float64", "float32"],
        indirect=True,
    )
    def test_empty_fancy_raises(self, index):
        # DatetimeIndex is excluded, because it overrides getitem and should
        # be tested separately.
        empty_farr = np.array([], dtype=np.float64)
        empty_index = type(index)([], dtype=index.dtype)

        assert index[[]].identical(empty_index)
        # np.ndarray only accepts ndarray of int & bool dtypes, so should Index
        msg = r"arrays used as indices must be of integer"
        with pytest.raises(IndexError, match=msg):
            index[empty_farr]

    def test_union_dt_as_obj(self, simple_index):
        # TODO: Replace with fixturesult
        index = simple_index
        date_index = date_range("2019-01-01", periods=10)
        first_cat = index.union(date_index)
        second_cat = index.union(index)

        appended = Index(np.append(index, date_index.astype("O")))

        tm.assert_index_equal(first_cat, appended)
        tm.assert_index_equal(second_cat, index)
        tm.assert_contains_all(index, first_cat)
        tm.assert_contains_all(index, second_cat)
        tm.assert_contains_all(date_index, first_cat)

    def test_map_with_tuples(self):
        # GH 12766

        # Test that returning a single tuple from an Index
        #   returns an Index.
        index = Index(np.arange(3), dtype=np.int64)
        result = index.map(lambda x: (x,))
        expected = Index([(i,) for i in index])
        tm.assert_index_equal(result, expected)

        # Test that returning a tuple from a map of a single index
        #   returns a MultiIndex object.
        result = index.map(lambda x: (x, x == 1))
        expected = MultiIndex.from_tuples([(i, i == 1) for i in index])
        tm.assert_index_equal(result, expected)

    def test_map_with_tuples_mi(self):
        # Test that returning a single object from a MultiIndex
        #   returns an Index.
        first_level = ["foo", "bar", "baz"]
        multi_index = MultiIndex.from_tuples(zip(first_level, [1, 2, 3]))
        reduced_index = multi_index.map(lambda x: x[0])
        tm.assert_index_equal(reduced_index, Index(first_level))

    @pytest.mark.parametrize(
        "index",
        [
            date_range("2020-01-01", freq="D", periods=10),
            period_range("2020-01-01", freq="D", periods=10),
            timedelta_range("1 day", periods=10),
        ],
    )
    def test_map_tseries_indices_return_index(self, index):
        expected = Index([1] * 10)
        result = index.map(lambda x: 1)
        tm.assert_index_equal(expected, result)

    def test_map_tseries_indices_accsr_return_index(self):
        date_index = DatetimeIndex(
            date_range("2020-01-01", periods=24, freq="h"), name="hourly"
        )
        result = date_index.map(lambda x: x.hour)
        expected = Index(np.arange(24, dtype="int64"), name="hourly")
        tm.assert_index_equal(result, expected, exact=True)

    @pytest.mark.parametrize(
        "mapper",
        [
            lambda values, index: {i: e for e, i in zip(values, index)},
            lambda values, index: Series(values, index),
        ],
    )
    def test_map_dictlike_simple(self, mapper):
        # GH 12756
        expected = Index(["foo", "bar", "baz"])
        index = Index(np.arange(3), dtype=np.int64)
        result = index.map(mapper(expected.values, index))
        tm.assert_index_equal(result, expected)

    @pytest.mark.parametrize(
        "mapper",
        [
            lambda values, index: {i: e for e, i in zip(values, index)},
            lambda values, index: Series(values, index),
        ],
    )
    @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
    def test_map_dictlike(self, index, mapper, request):
        # GH 12756
        if isinstance(index, CategoricalIndex):
            pytest.skip("Tested in test_categorical")
        elif not index.is_unique:
            pytest.skip("Cannot map duplicated index")

        rng = np.arange(len(index), 0, -1, dtype=np.int64)

        if index.empty:
            # to match proper result coercion for uints
            expected = Index([])
        elif is_numeric_dtype(index.dtype):
            expected = index._constructor(rng, dtype=index.dtype)
        elif type(index) is Index and index.dtype != object:
            # i.e. EA-backed, for now just Nullable
            expected = Index(rng, dtype=index.dtype)
        else:
            expected = Index(rng)

        result = index.map(mapper(expected, index))
        tm.assert_index_equal(result, expected)

    @pytest.mark.parametrize(
        "mapper",
        [Series(["foo", 2.0, "baz"], index=[0, 2, -1]), {0: "foo", 2: 2.0, -1: "baz"}],
    )
    def test_map_with_non_function_missing_values(self, mapper):
        # GH 12756
        expected = Index([2.0, np.nan, "foo"])
        result = Index([2, 1, 0]).map(mapper)

        tm.assert_index_equal(expected, result)

    def test_map_na_exclusion(self):
        index = Index([1.5, np.nan, 3, np.nan, 5])

        result = index.map(lambda x: x * 2, na_action="ignore")
        expected = index * 2
        tm.assert_index_equal(result, expected)

    def test_map_defaultdict(self):
        index = Index([1, 2, 3])
        default_dict = defaultdict(lambda: "blank")
        default_dict[1] = "stuff"
        result = index.map(default_dict)
        expected = Index(["stuff", "blank", "blank"])
        tm.assert_index_equal(result, expected)

    @pytest.mark.parametrize("name,expected", [("foo", "foo"), ("bar", None)])
    def test_append_empty_preserve_name(self, name, expected):
        left = Index([], name="foo")
        right = Index([1, 2, 3], name=name)

        msg = "The behavior of array concatenation with empty entries is deprecated"
        with tm.assert_produces_warning(FutureWarning, match=msg):
            result = left.append(right)
        assert result.name == expected

    @pytest.mark.parametrize(
        "index, expected",
        [
            ("string", False),
            ("bool-object", False),
            ("bool-dtype", False),
            ("categorical", False),
            ("int64", True),
            ("int32", True),
            ("uint64", True),
            ("uint32", True),
            ("datetime", False),
            ("float64", True),
            ("float32", True),
        ],
        indirect=["index"],
    )
    def test_is_numeric(self, index, expected):
        assert is_any_real_numeric_dtype(index) is expected

    @pytest.mark.parametrize(
        "index, expected",
        [
            ("string", True),
            ("bool-object", True),
            ("bool-dtype", False),
            ("categorical", False),
            ("int64", False),
            ("int32", False),
            ("uint64", False),
            ("uint32", False),
            ("datetime", False),
            ("float64", False),
            ("float32", False),
        ],
        indirect=["index"],
    )
    def test_is_object(self, index, expected, using_infer_string):
        if using_infer_string and index.dtype == "string" and expected:
            expected = False
        assert is_object_dtype(index) is expected

    def test_summary(self, index):
        index._summary()

    def test_format_bug(self):
        # GH 14626
        # windows has different precision on datetime.datetime.now (it doesn't
        # include us since the default for Timestamp shows these but Index
        # formatting does not we are skipping)
        now = datetime.now()
        msg = r"Index\.format is deprecated"

        if not str(now).endswith("000"):
            index = Index([now])
            with tm.assert_produces_warning(FutureWarning, match=msg):
                formatted = index.format()
            expected = [str(index[0])]
            assert formatted == expected

        with tm.assert_produces_warning(FutureWarning, match=msg):
            Index([]).format()

    @pytest.mark.parametrize("vals", [[1, 2.0 + 3.0j, 4.0], ["a", "b", "c"]])
    def test_format_missing(self, vals, nulls_fixture):
        # 2845
        vals = list(vals)  # Copy for each iteration
        vals.append(nulls_fixture)
        index = Index(vals, dtype=object)
        # TODO: case with complex dtype?

        msg = r"Index\.format is deprecated"
        with tm.assert_produces_warning(FutureWarning, match=msg):
            formatted = index.format()
        null_repr = "NaN" if isinstance(nulls_fixture, float) else str(nulls_fixture)
        expected = [str(index[0]), str(index[1]), str(index[2]), null_repr]

        assert formatted == expected
        assert index[3] is nulls_fixture

    @pytest.mark.parametrize("op", ["any", "all"])
    def test_logical_compat(self, op, simple_index):
        index = simple_index
        left = getattr(index, op)()
        assert left == getattr(index.values, op)()
        right = getattr(index.to_series(), op)()
        # left might not match right exactly in e.g. string cases where the
        # because we use np.any/all instead of .any/all
        assert bool(left) == bool(right)

    @pytest.mark.parametrize(
        "index", ["string", "int64", "int32", "float64", "float32"], indirect=True
    )
    def test_drop_by_str_label(self, index):
        n = len(index)
        drop = index[list(range(5, 10))]
        dropped = index.drop(drop)

        expected = index[list(range(5)) + list(range(10, n))]
        tm.assert_index_equal(dropped, expected)

        dropped = index.drop(index[0])
        expected = index[1:]
        tm.assert_index_equal(dropped, expected)

    @pytest.mark.parametrize(
        "index", ["string", "int64", "int32", "float64", "float32"], indirect=True
    )
    @pytest.mark.parametrize("keys", [["foo", "bar"], ["1", "bar"]])
    def test_drop_by_str_label_raises_missing_keys(self, index, keys):
        with pytest.raises(KeyError, match=""):
            index.drop(keys)

    @pytest.mark.parametrize(
        "index", ["string", "int64", "int32", "float64", "float32"], indirect=True
    )
    def test_drop_by_str_label_errors_ignore(self, index):
        n = len(index)
        drop = index[list(range(5, 10))]
        mixed = drop.tolist() + ["foo"]
        dropped = index.drop(mixed, errors="ignore")

        expected = index[list(range(5)) + list(range(10, n))]
        tm.assert_index_equal(dropped, expected)

        dropped = index.drop(["foo", "bar"], errors="ignore")
        expected = index[list(range(n))]
        tm.assert_index_equal(dropped, expected)

    def test_drop_by_numeric_label_loc(self):
        # TODO: Parametrize numeric and str tests after self.strIndex fixture
        index = Index([1, 2, 3])
        dropped = index.drop(1)
        expected = Index([2, 3])

        tm.assert_index_equal(dropped, expected)

    def test_drop_by_numeric_label_raises_missing_keys(self):
        index = Index([1, 2, 3])
        with pytest.raises(KeyError, match=""):
            index.drop([3, 4])

    @pytest.mark.parametrize(
        "key,expected", [(4, Index([1, 2, 3])), ([3, 4, 5], Index([1, 2]))]
    )
    def test_drop_by_numeric_label_errors_ignore(self, key, expected):
        index = Index([1, 2, 3])
        dropped = index.drop(key, errors="ignore")

        tm.assert_index_equal(dropped, expected)

    @pytest.mark.parametrize(
        "values",
        [["a", "b", ("c", "d")], ["a", ("c", "d"), "b"], [("c", "d"), "a", "b"]],
    )
    @pytest.mark.parametrize("to_drop", [[("c", "d"), "a"], ["a", ("c", "d")]])
    def test_drop_tuple(self, values, to_drop):
        # GH 18304
        index = Index(values)
        expected = Index(["b"], dtype=object)

        result = index.drop(to_drop)
        tm.assert_index_equal(result, expected)

        removed = index.drop(to_drop[0])
        for drop_me in to_drop[1], [to_drop[1]]:
            result = removed.drop(drop_me)
            tm.assert_index_equal(result, expected)

        removed = index.drop(to_drop[1])
        msg = rf"\"\[{re.escape(to_drop[1].__repr__())}\] not found in axis\""
        for drop_me in to_drop[1], [to_drop[1]]:
            with pytest.raises(KeyError, match=msg):
                removed.drop(drop_me)

    @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
    def test_drop_with_duplicates_in_index(self, index):
        # GH38051
        if len(index) == 0 or isinstance(index, MultiIndex):
            pytest.skip("Test doesn't make sense for empty MultiIndex")
        if isinstance(index, IntervalIndex) and not IS64:
            pytest.skip("Cannot test IntervalIndex with int64 dtype on 32 bit platform")
        index = index.unique().repeat(2)
        expected = index[2:]
        result = index.drop(index[0])
        tm.assert_index_equal(result, expected)

    @pytest.mark.parametrize(
        "attr",
        [
            "is_monotonic_increasing",
            "is_monotonic_decreasing",
            "_is_strictly_monotonic_increasing",
            "_is_strictly_monotonic_decreasing",
        ],
    )
    def test_is_monotonic_incomparable(self, attr):
        index = Index([5, datetime.now(), 7])
        assert not getattr(index, attr)

    @pytest.mark.parametrize("values", [["foo", "bar", "quux"], {"foo", "bar", "quux"}])
    @pytest.mark.parametrize(
        "index,expected",
        [
            (Index(["qux", "baz", "foo", "bar"]), np.array([False, False, True, True])),
            (Index([]), np.array([], dtype=bool)),  # empty
        ],
    )
    def test_isin(self, values, index, expected):
        result = index.isin(values)
        tm.assert_numpy_array_equal(result, expected)

    def test_isin_nan_common_object(
        self, nulls_fixture, nulls_fixture2, using_infer_string
    ):
        # Test cartesian product of null fixtures and ensure that we don't
        # mangle the various types (save a corner case with PyPy)
        idx = Index(["a", nulls_fixture])

        # all nans are the same
        if (
            isinstance(nulls_fixture, float)
            and isinstance(nulls_fixture2, float)
            and math.isnan(nulls_fixture)
            and math.isnan(nulls_fixture2)
        ):
            tm.assert_numpy_array_equal(
                idx.isin([nulls_fixture2]),
                np.array([False, True]),
            )

        elif nulls_fixture is nulls_fixture2:  # should preserve NA type
            tm.assert_numpy_array_equal(
                idx.isin([nulls_fixture2]),
                np.array([False, True]),
            )

        elif using_infer_string and idx.dtype == "string":
            tm.assert_numpy_array_equal(
                idx.isin([nulls_fixture2]),
                np.array([False, True]),
            )

        else:
            tm.assert_numpy_array_equal(
                idx.isin([nulls_fixture2]),
                np.array([False, False]),
            )

    def test_isin_nan_common_float64(self, nulls_fixture, float_numpy_dtype):
        dtype = float_numpy_dtype

        if nulls_fixture is pd.NaT or nulls_fixture is pd.NA:
            # Check 1) that we cannot construct a float64 Index with this value
            #  and 2) that with an NaN we do not have .isin(nulls_fixture)
            msg = (
                r"float\(\) argument must be a string or a (real )?number, "
                f"not {repr(type(nulls_fixture).__name__)}"
            )
            with pytest.raises(TypeError, match=msg):
                Index([1.0, nulls_fixture], dtype=dtype)

            idx = Index([1.0, np.nan], dtype=dtype)
            assert not idx.isin([nulls_fixture]).any()
            return

        idx = Index([1.0, nulls_fixture], dtype=dtype)
        res = idx.isin([np.nan])
        tm.assert_numpy_array_equal(res, np.array([False, True]))

        # we cannot compare NaT with NaN
        res = idx.isin([pd.NaT])
        tm.assert_numpy_array_equal(res, np.array([False, False]))

    @pytest.mark.parametrize("level", [0, -1])
    @pytest.mark.parametrize(
        "index",
        [
            Index(["qux", "baz", "foo", "bar"]),
            Index([1.0, 2.0, 3.0, 4.0], dtype=np.float64),
        ],
    )
    def test_isin_level_kwarg(self, level, index):
        values = index.tolist()[-2:] + ["nonexisting"]

        expected = np.array([False, False, True, True])
        tm.assert_numpy_array_equal(expected, index.isin(values, level=level))

        index.name = "foobar"
        tm.assert_numpy_array_equal(expected, index.isin(values, level="foobar"))

    def test_isin_level_kwarg_bad_level_raises(self, index):
        for level in [10, index.nlevels, -(index.nlevels + 1)]:
            with pytest.raises(IndexError, match="Too many levels"):
                index.isin([], level=level)

    @pytest.mark.parametrize("label", [1.0, "foobar", "xyzzy", np.nan])
    def test_isin_level_kwarg_bad_label_raises(self, label, index):
        if isinstance(index, MultiIndex):
            index = index.rename(["foo", "bar"] + index.names[2:])
            msg = f"'Level {label} not found'"
        else:
            index = index.rename("foo")
            msg = rf"Requested level \({label}\) does not match index name \(foo\)"
        with pytest.raises(KeyError, match=msg):
            index.isin([], level=label)

    @pytest.mark.parametrize("empty", [[], Series(dtype=object), np.array([])])
    def test_isin_empty(self, empty):
        # see gh-16991
        index = Index(["a", "b"])
        expected = np.array([False, False])

        result = index.isin(empty)
        tm.assert_numpy_array_equal(expected, result)

    @td.skip_if_no("pyarrow")
    def test_isin_arrow_string_null(self):
        # GH#55821
        index = Index(["a", "b"], dtype="string[pyarrow_numpy]")
        result = index.isin([None])
        expected = np.array([False, False])
        tm.assert_numpy_array_equal(result, expected)

    @pytest.mark.parametrize(
        "values",
        [
            [1, 2, 3, 4],
            [1.0, 2.0, 3.0, 4.0],
            [True, True, True, True],
            ["foo", "bar", "baz", "qux"],
            date_range("2018-01-01", freq="D", periods=4),
        ],
    )
    def test_boolean_cmp(self, values):
        index = Index(values)
        result = index == values
        expected = np.array([True, True, True, True], dtype=bool)

        tm.assert_numpy_array_equal(result, expected)

    @pytest.mark.parametrize("index", ["string"], indirect=True)
    @pytest.mark.parametrize("name,level", [(None, 0), ("a", "a")])
    def test_get_level_values(self, index, name, level):
        expected = index.copy()
        if name:
            expected.name = name

        result = expected.get_level_values(level)
        tm.assert_index_equal(result, expected)

    def test_slice_keep_name(self):
        index = Index(["a", "b"], name="asdf")
        assert index.name == index[1:].name

    @pytest.mark.parametrize(
        "index",
        [
            "string",
            "datetime",
            "int64",
            "int32",
            "uint64",
            "uint32",
            "float64",
            "float32",
        ],
        indirect=True,
    )
    def test_join_self(self, index, join_type):
        result = index.join(index, how=join_type)
        expected = index
        if join_type == "outer":
            expected = expected.sort_values()
        tm.assert_index_equal(result, expected)

    @pytest.mark.parametrize("method", ["strip", "rstrip", "lstrip"])
    def test_str_attribute(self, method):
        # GH9068
        index = Index([" jack", "jill ", " jesse ", "frank"])
        expected = Index([getattr(str, method)(x) for x in index.values])

        result = getattr(index.str, method)()
        tm.assert_index_equal(result, expected)

    @pytest.mark.parametrize(
        "index",
        [
            Index(range(5)),
            date_range("2020-01-01", periods=10),
            MultiIndex.from_tuples([("foo", "1"), ("bar", "3")]),
            period_range(start="2000", end="2010", freq="Y"),
        ],
    )
    def test_str_attribute_raises(self, index):
        with pytest.raises(AttributeError, match="only use .str accessor"):
            index.str.repeat(2)

    @pytest.mark.parametrize(
        "expand,expected",
        [
            (None, Index([["a", "b", "c"], ["d", "e"], ["f"]])),
            (False, Index([["a", "b", "c"], ["d", "e"], ["f"]])),
            (
                True,
                MultiIndex.from_tuples(
                    [("a", "b", "c"), ("d", "e", np.nan), ("f", np.nan, np.nan)]
                ),
            ),
        ],
    )
    def test_str_split(self, expand, expected):
        index = Index(["a b c", "d e", "f"])
        if expand is not None:
            result = index.str.split(expand=expand)
        else:
            result = index.str.split()

        tm.assert_index_equal(result, expected)

    def test_str_bool_return(self):
        # test boolean case, should return np.array instead of boolean Index
        index = Index(["a1", "a2", "b1", "b2"])
        result = index.str.startswith("a")
        expected = np.array([True, True, False, False])

        tm.assert_numpy_array_equal(result, expected)
        assert isinstance(result, np.ndarray)

    def test_str_bool_series_indexing(self):
        index = Index(["a1", "a2", "b1", "b2"])
        s = Series(range(4), index=index)

        result = s[s.index.str.startswith("a")]
        expected = Series(range(2), index=["a1", "a2"])
        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize(
        "index,expected", [(Index(list("abcd")), True), (Index(range(4)), False)]
    )
    def test_tab_completion(self, index, expected):
        # GH 9910
        result = "str" in dir(index)
        assert result == expected

    def test_indexing_doesnt_change_class(self):
        index = Index([1, 2, 3, "a", "b", "c"])

        assert index[1:3].identical(Index([2, 3], dtype=np.object_))
        assert index[[0, 1]].identical(Index([1, 2], dtype=np.object_))

    def test_outer_join_sort(self):
        left_index = Index(np.random.default_rng(2).permutation(15))
        right_index = date_range("2020-01-01", periods=10)

        with tm.assert_produces_warning(RuntimeWarning):
            result = left_index.join(right_index, how="outer")

        with tm.assert_produces_warning(RuntimeWarning):
            expected = left_index.astype(object).union(right_index.astype(object))

        tm.assert_index_equal(result, expected)

    def test_take_fill_value(self):
        # GH 12631
        index = Index(list("ABC"), name="xxx")
        result = index.take(np.array([1, 0, -1]))
        expected = Index(list("BAC"), name="xxx")
        tm.assert_index_equal(result, expected)

        # fill_value
        result = index.take(np.array([1, 0, -1]), fill_value=True)
        expected = Index(["B", "A", np.nan], name="xxx")
        tm.assert_index_equal(result, expected)

        # allow_fill=False
        result = index.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
        expected = Index(["B", "A", "C"], name="xxx")
        tm.assert_index_equal(result, expected)

    def test_take_fill_value_none_raises(self):
        index = Index(list("ABC"), name="xxx")
        msg = (
            "When allow_fill=True and fill_value is not None, "
            "all indices must be >= -1"
        )

        with pytest.raises(ValueError, match=msg):
            index.take(np.array([1, 0, -2]), fill_value=True)
        with pytest.raises(ValueError, match=msg):
            index.take(np.array([1, 0, -5]), fill_value=True)

    def test_take_bad_bounds_raises(self):
        index = Index(list("ABC"), name="xxx")
        with pytest.raises(IndexError, match="out of bounds"):
            index.take(np.array([1, -5]))

    @pytest.mark.parametrize("name", [None, "foobar"])
    @pytest.mark.parametrize(
        "labels",
        [
            [],
            np.array([]),
            ["A", "B", "C"],
            ["C", "B", "A"],
            np.array(["A", "B", "C"]),
            np.array(["C", "B", "A"]),
            # Must preserve name even if dtype changes
            date_range("20130101", periods=3).values,
            date_range("20130101", periods=3).tolist(),
        ],
    )
    def test_reindex_preserves_name_if_target_is_list_or_ndarray(self, name, labels):
        # GH6552
        index = Index([0, 1, 2])
        index.name = name
        assert index.reindex(labels)[0].name == name

    @pytest.mark.parametrize("labels", [[], np.array([]), np.array([], dtype=np.int64)])
    def test_reindex_preserves_type_if_target_is_empty_list_or_array(self, labels):
        # GH7774
        index = Index(list("abc"))
        assert index.reindex(labels)[0].dtype.type == index.dtype.type

    @pytest.mark.parametrize(
        "labels,dtype",
        [
            (DatetimeIndex([]), np.datetime64),
        ],
    )
    def test_reindex_doesnt_preserve_type_if_target_is_empty_index(self, labels, dtype):
        # GH7774
        index = Index(list("abc"))
        assert index.reindex(labels)[0].dtype.type == dtype

    def test_reindex_doesnt_preserve_type_if_target_is_empty_index_numeric(
        self, any_real_numpy_dtype
    ):
        # GH7774
        dtype = any_real_numpy_dtype
        index = Index(list("abc"))
        labels = Index([], dtype=dtype)
        assert index.reindex(labels)[0].dtype == dtype

    def test_reindex_no_type_preserve_target_empty_mi(self):
        index = Index(list("abc"))
        result = index.reindex(
            MultiIndex([Index([], np.int64), Index([], np.float64)], [[], []])
        )[0]
        assert result.levels[0].dtype.type == np.int64
        assert result.levels[1].dtype.type == np.float64

    def test_reindex_ignoring_level(self):
        # GH#35132
        idx = Index([1, 2, 3], name="x")
        idx2 = Index([1, 2, 3, 4], name="x")
        expected = Index([1, 2, 3, 4], name="x")
        result, _ = idx.reindex(idx2, level="x")
        tm.assert_index_equal(result, expected)

    def test_groupby(self):
        index = Index(range(5))
        result = index.groupby(np.array([1, 1, 2, 2, 2]))
        expected = {1: Index([0, 1]), 2: Index([2, 3, 4])}

        tm.assert_dict_equal(result, expected)

    @pytest.mark.parametrize(
        "mi,expected",
        [
            (MultiIndex.from_tuples([(1, 2), (4, 5)]), np.array([True, True])),
            (MultiIndex.from_tuples([(1, 2), (4, 6)]), np.array([True, False])),
        ],
    )
    def test_equals_op_multiindex(self, mi, expected):
        # GH9785
        # test comparisons of multiindex
        df = DataFrame(
            [3, 6],
            columns=["c"],
            index=MultiIndex.from_arrays([[1, 4], [2, 5]], names=["a", "b"]),
        )

        result = df.index == mi
        tm.assert_numpy_array_equal(result, expected)

    def test_equals_op_multiindex_identify(self):
        df = DataFrame(
            [3, 6],
            columns=["c"],
            index=MultiIndex.from_arrays([[1, 4], [2, 5]], names=["a", "b"]),
        )

        result = df.index == df.index
        expected = np.array([True, True])
        tm.assert_numpy_array_equal(result, expected)

    @pytest.mark.parametrize(
        "index",
        [
            MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)]),
            Index(["foo", "bar", "baz"]),
        ],
    )
    def test_equals_op_mismatched_multiindex_raises(self, index):
        df = DataFrame(
            [3, 6],
            columns=["c"],
            index=MultiIndex.from_arrays([[1, 4], [2, 5]], names=["a", "b"]),
        )

        with pytest.raises(ValueError, match="Lengths must match"):
            df.index == index

    def test_equals_op_index_vs_mi_same_length(self, using_infer_string):
        mi = MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)])
        index = Index(["foo", "bar", "baz"])

        result = mi == index
        expected = np.array([False, False, False])
        tm.assert_numpy_array_equal(result, expected)

    @pytest.mark.parametrize(
        "dt_conv, arg",
        [
            (pd.to_datetime, ["2000-01-01", "2000-01-02"]),
            (pd.to_timedelta, ["01:02:03", "01:02:04"]),
        ],
    )
    def test_dt_conversion_preserves_name(self, dt_conv, arg):
        # GH 10875
        index = Index(arg, name="label")
        assert index.name == dt_conv(index).name

    def test_cached_properties_not_settable(self):
        index = Index([1, 2, 3])
        with pytest.raises(AttributeError, match="Can't set attribute"):
            index.is_unique = False

    def test_tab_complete_warning(self, ip):
        # https://github.com/pandas-dev/pandas/issues/16409
        pytest.importorskip("IPython", minversion="6.0.0")
        from IPython.core.completer import provisionalcompleter

        code = "import pandas as pd; idx = pd.Index([1, 2])"
        ip.run_cell(code)

        # GH 31324 newer jedi version raises Deprecation warning;
        #  appears resolved 2021-02-02
        with tm.assert_produces_warning(None, raise_on_extra_warnings=False):
            with provisionalcompleter("ignore"):
                list(ip.Completer.completions("idx.", 4))

    def test_contains_method_removed(self, index):
        # GH#30103 method removed for all types except IntervalIndex
        if isinstance(index, IntervalIndex):
            index.contains(1)
        else:
            msg = f"'{type(index).__name__}' object has no attribute 'contains'"
            with pytest.raises(AttributeError, match=msg):
                index.contains(1)

    def test_sortlevel(self):
        index = Index([5, 4, 3, 2, 1])
        with pytest.raises(Exception, match="ascending must be a single bool value or"):
            index.sortlevel(ascending="True")

        with pytest.raises(
            Exception, match="ascending must be a list of bool values of length 1"
        ):
            index.sortlevel(ascending=[True, True])

        with pytest.raises(Exception, match="ascending must be a bool value"):
            index.sortlevel(ascending=["True"])

        expected = Index([1, 2, 3, 4, 5])
        result = index.sortlevel(ascending=[True])
        tm.assert_index_equal(result[0], expected)

        expected = Index([1, 2, 3, 4, 5])
        result = index.sortlevel(ascending=True)
        tm.assert_index_equal(result[0], expected)

        expected = Index([5, 4, 3, 2, 1])
        result = index.sortlevel(ascending=False)
        tm.assert_index_equal(result[0], expected)

    def test_sortlevel_na_position(self):
        # GH#51612
        idx = Index([1, np.nan])
        result = idx.sortlevel(na_position="first")[0]
        expected = Index([np.nan, 1])
        tm.assert_index_equal(result, expected)

    @pytest.mark.parametrize(
        "periods, expected_results",
        [
            (1, [np.nan, 10, 10, 10, 10]),
            (2, [np.nan, np.nan, 20, 20, 20]),
            (3, [np.nan, np.nan, np.nan, 30, 30]),
        ],
    )
    def test_index_diff(self, periods, expected_results):
        # GH#19708
        idx = Index([10, 20, 30, 40, 50])
        result = idx.diff(periods)
        expected = Index(expected_results)

        tm.assert_index_equal(result, expected)

    @pytest.mark.parametrize(
        "decimals, expected_results",
        [
            (0, [1.0, 2.0, 3.0]),
            (1, [1.2, 2.3, 3.5]),
            (2, [1.23, 2.35, 3.46]),
        ],
    )
    def test_index_round(self, decimals, expected_results):
        # GH#19708
        idx = Index([1.234, 2.345, 3.456])
        result = idx.round(decimals)
        expected = Index(expected_results)

        tm.assert_index_equal(result, expected)


class TestMixedIntIndex:
    # Mostly the tests from common.py for which the results differ
    # in py2 and py3 because ints and strings are uncomparable in py3
    # (GH 13514)
    @pytest.fixture
    def simple_index(self) -> Index:
        return Index([0, "a", 1, "b", 2, "c"])

    def test_argsort(self, simple_index):
        index = simple_index
        with pytest.raises(TypeError, match="'>|<' not supported"):
            index.argsort()

    def test_numpy_argsort(self, simple_index):
        index = simple_index
        with pytest.raises(TypeError, match="'>|<' not supported"):
            np.argsort(index)

    def test_copy_name(self, simple_index):
        # Check that "name" argument passed at initialization is honoured
        # GH12309
        index = simple_index

        first = type(index)(index, copy=True, name="mario")
        second = type(first)(first, copy=False)

        # Even though "copy=False", we want a new object.
        assert first is not second
        tm.assert_index_equal(first, second)

        assert first.name == "mario"
        assert second.name == "mario"

        s1 = Series(2, index=first)
        s2 = Series(3, index=second[:-1])

        s3 = s1 * s2

        assert s3.index.name == "mario"

    def test_copy_name2(self):
        # Check that adding a "name" parameter to the copy is honored
        # GH14302
        index = Index([1, 2], name="MyName")
        index1 = index.copy()

        tm.assert_index_equal(index, index1)

        index2 = index.copy(name="NewName")
        tm.assert_index_equal(index, index2, check_names=False)
        assert index.name == "MyName"
        assert index2.name == "NewName"

    def test_unique_na(self):
        idx = Index([2, np.nan, 2, 1], name="my_index")
        expected = Index([2, np.nan, 1], name="my_index")
        result = idx.unique()
        tm.assert_index_equal(result, expected)

    def test_logical_compat(self, simple_index):
        index = simple_index
        assert index.all() == index.values.all()
        assert index.any() == index.values.any()

    @pytest.mark.parametrize("how", ["any", "all"])
    @pytest.mark.parametrize("dtype", [None, object, "category"])
    @pytest.mark.parametrize(
        "vals,expected",
        [
            ([1, 2, 3], [1, 2, 3]),
            ([1.0, 2.0, 3.0], [1.0, 2.0, 3.0]),
            ([1.0, 2.0, np.nan, 3.0], [1.0, 2.0, 3.0]),
            (["A", "B", "C"], ["A", "B", "C"]),
            (["A", np.nan, "B", "C"], ["A", "B", "C"]),
        ],
    )
    def test_dropna(self, how, dtype, vals, expected):
        # GH 6194
        index = Index(vals, dtype=dtype)
        result = index.dropna(how=how)
        expected = Index(expected, dtype=dtype)
        tm.assert_index_equal(result, expected)

    @pytest.mark.parametrize("how", ["any", "all"])
    @pytest.mark.parametrize(
        "index,expected",
        [
            (
                DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]),
                DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]),
            ),
            (
                DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03", pd.NaT]),
                DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]),
            ),
            (
                TimedeltaIndex(["1 days", "2 days", "3 days"]),
                TimedeltaIndex(["1 days", "2 days", "3 days"]),
            ),
            (
                TimedeltaIndex([pd.NaT, "1 days", "2 days", "3 days", pd.NaT]),
                TimedeltaIndex(["1 days", "2 days", "3 days"]),
            ),
            (
                PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"),
                PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"),
            ),
            (
                PeriodIndex(["2012-02", "2012-04", "NaT", "2012-05"], freq="M"),
                PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"),
            ),
        ],
    )
    def test_dropna_dt_like(self, how, index, expected):
        result = index.dropna(how=how)
        tm.assert_index_equal(result, expected)

    def test_dropna_invalid_how_raises(self):
        msg = "invalid how option: xxx"
        with pytest.raises(ValueError, match=msg):
            Index([1, 2, 3]).dropna(how="xxx")

    @pytest.mark.parametrize(
        "index",
        [
            Index([np.nan]),
            Index([np.nan, 1]),
            Index([1, 2, np.nan]),
            Index(["a", "b", np.nan]),
            pd.to_datetime(["NaT"]),
            pd.to_datetime(["NaT", "2000-01-01"]),
            pd.to_datetime(["2000-01-01", "NaT", "2000-01-02"]),
            pd.to_timedelta(["1 day", "NaT"]),
        ],
    )
    def test_is_monotonic_na(self, index):
        assert index.is_monotonic_increasing is False
        assert index.is_monotonic_decreasing is False
        assert index._is_strictly_monotonic_increasing is False
        assert index._is_strictly_monotonic_decreasing is False

    @pytest.mark.parametrize("dtype", ["f8", "m8[ns]", "M8[us]"])
    @pytest.mark.parametrize("unique_first", [True, False])
    def test_is_monotonic_unique_na(self, dtype, unique_first):
        # GH 55755
        index = Index([None, 1, 1], dtype=dtype)
        if unique_first:
            assert index.is_unique is False
            assert index.is_monotonic_increasing is False
            assert index.is_monotonic_decreasing is False
        else:
            assert index.is_monotonic_increasing is False
            assert index.is_monotonic_decreasing is False
            assert index.is_unique is False

    def test_int_name_format(self, frame_or_series):
        index = Index(["a", "b", "c"], name=0)
        result = frame_or_series(list(range(3)), index=index)
        assert "0" in repr(result)

    def test_str_to_bytes_raises(self):
        # GH 26447
        index = Index([str(x) for x in range(10)])
        msg = "^'str' object cannot be interpreted as an integer$"
        with pytest.raises(TypeError, match=msg):
            bytes(index)

    @pytest.mark.filterwarnings("ignore:elementwise comparison failed:FutureWarning")
    def test_index_with_tuple_bool(self):
        # GH34123
        # TODO: also this op right now produces FutureWarning from numpy
        #  https://github.com/numpy/numpy/issues/11521
        idx = Index([("a", "b"), ("b", "c"), ("c", "a")])
        result = idx == ("c", "a")
        expected = np.array([False, False, True])
        tm.assert_numpy_array_equal(result, expected)


class TestIndexUtils:
    @pytest.mark.parametrize(
        "data, names, expected",
        [
            ([[1, 2, 3]], None, Index([1, 2, 3])),
            ([[1, 2, 3]], ["name"], Index([1, 2, 3], name="name")),
            (
                [["a", "a"], ["c", "d"]],
                None,
                MultiIndex([["a"], ["c", "d"]], [[0, 0], [0, 1]]),
            ),
            (
                [["a", "a"], ["c", "d"]],
                ["L1", "L2"],
                MultiIndex([["a"], ["c", "d"]], [[0, 0], [0, 1]], names=["L1", "L2"]),
            ),
        ],
    )
    def test_ensure_index_from_sequences(self, data, names, expected):
        result = ensure_index_from_sequences(data, names)
        tm.assert_index_equal(result, expected)

    def test_ensure_index_mixed_closed_intervals(self):
        # GH27172
        intervals = [
            pd.Interval(0, 1, closed="left"),
            pd.Interval(1, 2, closed="right"),
            pd.Interval(2, 3, closed="neither"),
            pd.Interval(3, 4, closed="both"),
        ]
        result = ensure_index(intervals)
        expected = Index(intervals, dtype=object)
        tm.assert_index_equal(result, expected)

    def test_ensure_index_uint64(self):
        # with both 0 and a large-uint64, np.array will infer to float64
        #  https://github.com/numpy/numpy/issues/19146
        #  but a more accurate choice would be uint64
        values = [0, np.iinfo(np.uint64).max]

        result = ensure_index(values)
        assert list(result) == values

        expected = Index(values, dtype="uint64")
        tm.assert_index_equal(result, expected)

    def test_get_combined_index(self):
        result = _get_combined_index([])
        expected = Index([])
        tm.assert_index_equal(result, expected)


@pytest.mark.parametrize(
    "opname",
    [
        "eq",
        "ne",
        "le",
        "lt",
        "ge",
        "gt",
        "add",
        "radd",
        "sub",
        "rsub",
        "mul",
        "rmul",
        "truediv",
        "rtruediv",
        "floordiv",
        "rfloordiv",
        "pow",
        "rpow",
        "mod",
        "divmod",
    ],
)
def test_generated_op_names(opname, index):
    opname = f"__{opname}__"
    method = getattr(index, opname)
    assert method.__name__ == opname


@pytest.mark.parametrize(
    "klass",
    [
        partial(CategoricalIndex, data=[1]),
        partial(DatetimeIndex, data=["2020-01-01"]),
        partial(PeriodIndex, data=["2020-01-01"]),
        partial(TimedeltaIndex, data=["1 day"]),
        partial(RangeIndex, data=range(1)),
        partial(IntervalIndex, data=[pd.Interval(0, 1)]),
        partial(Index, data=["a"], dtype=object),
        partial(MultiIndex, levels=[1], codes=[0]),
    ],
)
def test_index_subclass_constructor_wrong_kwargs(klass):
    # GH #19348
    with pytest.raises(TypeError, match="unexpected keyword argument"):
        klass(foo="bar")


def test_deprecated_fastpath():
    msg = "[Uu]nexpected keyword argument"
    with pytest.raises(TypeError, match=msg):
        Index(np.array(["a", "b"], dtype=object), name="test", fastpath=True)

    with pytest.raises(TypeError, match=msg):
        Index(np.array([1, 2, 3], dtype="int64"), name="test", fastpath=True)

    with pytest.raises(TypeError, match=msg):
        RangeIndex(0, 5, 2, name="test", fastpath=True)

    with pytest.raises(TypeError, match=msg):
        CategoricalIndex(["a", "b", "c"], name="test", fastpath=True)


def test_shape_of_invalid_index():
    # Pre-2.0, it was possible to create "invalid" index objects backed by
    # a multi-dimensional array (see https://github.com/pandas-dev/pandas/issues/27125
    # about this). However, as long as this is not solved in general,this test ensures
    # that the returned shape is consistent with this underlying array for
    # compat with matplotlib (see https://github.com/pandas-dev/pandas/issues/27775)
    idx = Index([0, 1, 2, 3])
    with pytest.raises(ValueError, match="Multi-dimensional indexing"):
        # GH#30588 multi-dimensional indexing deprecated
        idx[:, None]


@pytest.mark.parametrize("dtype", [None, np.int64, np.uint64, np.float64])
def test_validate_1d_input(dtype):
    # GH#27125 check that we do not have >1-dimensional input
    msg = "Index data must be 1-dimensional"

    arr = np.arange(8).reshape(2, 2, 2)
    with pytest.raises(ValueError, match=msg):
        Index(arr, dtype=dtype)

    df = DataFrame(arr.reshape(4, 2))
    with pytest.raises(ValueError, match=msg):
        Index(df, dtype=dtype)

    # GH#13601 trying to assign a multi-dimensional array to an index is not allowed
    ser = Series(0, range(4))
    with pytest.raises(ValueError, match=msg):
        ser.index = np.array([[2, 3]] * 4, dtype=dtype)


@pytest.mark.parametrize(
    "klass, extra_kwargs",
    [
        [Index, {}],
        *[[lambda x: Index(x, dtype=dtyp), {}] for dtyp in tm.ALL_REAL_NUMPY_DTYPES],
        [DatetimeIndex, {}],
        [TimedeltaIndex, {}],
        [PeriodIndex, {"freq": "Y"}],
    ],
)
def test_construct_from_memoryview(klass, extra_kwargs):
    # GH 13120
    result = klass(memoryview(np.arange(2000, 2005)), **extra_kwargs)
    expected = klass(list(range(2000, 2005)), **extra_kwargs)
    tm.assert_index_equal(result, expected, exact=True)


@pytest.mark.parametrize("op", [operator.lt, operator.gt])
def test_nan_comparison_same_object(op):
    # GH#47105
    idx = Index([np.nan])
    expected = np.array([False])

    result = op(idx, idx)
    tm.assert_numpy_array_equal(result, expected)

    result = op(idx, idx.copy())
    tm.assert_numpy_array_equal(result, expected)


@td.skip_if_no("pyarrow")
def test_is_monotonic_pyarrow_list_type():
    # GH 57333
    import pyarrow as pa

    idx = Index([[1], [2, 3]], dtype=pd.ArrowDtype(pa.list_(pa.int64())))
    assert not idx.is_monotonic_increasing
    assert not idx.is_monotonic_decreasing