File size: 40,042 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
""" test fancy indexing & misc """

import array
from datetime import datetime
import re
import weakref

import numpy as np
import pytest

from pandas._config import using_pyarrow_string_dtype

from pandas.errors import IndexingError

from pandas.core.dtypes.common import (
    is_float_dtype,
    is_integer_dtype,
    is_object_dtype,
)

import pandas as pd
from pandas import (
    DataFrame,
    Index,
    NaT,
    Series,
    date_range,
    offsets,
    timedelta_range,
)
import pandas._testing as tm
from pandas.tests.indexing.common import _mklbl
from pandas.tests.indexing.test_floats import gen_obj

# ------------------------------------------------------------------------
# Indexing test cases


class TestFancy:
    """pure get/set item & fancy indexing"""

    def test_setitem_ndarray_1d(self):
        # GH5508

        # len of indexer vs length of the 1d ndarray
        df = DataFrame(index=Index(np.arange(1, 11), dtype=np.int64))
        df["foo"] = np.zeros(10, dtype=np.float64)
        df["bar"] = np.zeros(10, dtype=complex)

        # invalid
        msg = "Must have equal len keys and value when setting with an iterable"
        with pytest.raises(ValueError, match=msg):
            df.loc[df.index[2:5], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0])

        # valid
        df.loc[df.index[2:6], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0])

        result = df.loc[df.index[2:6], "bar"]
        expected = Series(
            [2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name="bar"
        )
        tm.assert_series_equal(result, expected)

    def test_setitem_ndarray_1d_2(self):
        # GH5508

        # dtype getting changed?
        df = DataFrame(index=Index(np.arange(1, 11)))
        df["foo"] = np.zeros(10, dtype=np.float64)
        df["bar"] = np.zeros(10, dtype=complex)

        msg = "Must have equal len keys and value when setting with an iterable"
        with pytest.raises(ValueError, match=msg):
            df[2:5] = np.arange(1, 4) * 1j

    @pytest.mark.filterwarnings(
        "ignore:Series.__getitem__ treating keys as positions is deprecated:"
        "FutureWarning"
    )
    def test_getitem_ndarray_3d(
        self, index, frame_or_series, indexer_sli, using_array_manager
    ):
        # GH 25567
        obj = gen_obj(frame_or_series, index)
        idxr = indexer_sli(obj)
        nd3 = np.random.default_rng(2).integers(5, size=(2, 2, 2))

        msgs = []
        if frame_or_series is Series and indexer_sli in [tm.setitem, tm.iloc]:
            msgs.append(r"Wrong number of dimensions. values.ndim > ndim \[3 > 1\]")
            if using_array_manager:
                msgs.append("Passed array should be 1-dimensional")
        if frame_or_series is Series or indexer_sli is tm.iloc:
            msgs.append(r"Buffer has wrong number of dimensions \(expected 1, got 3\)")
            if using_array_manager:
                msgs.append("indexer should be 1-dimensional")
        if indexer_sli is tm.loc or (
            frame_or_series is Series and indexer_sli is tm.setitem
        ):
            msgs.append("Cannot index with multidimensional key")
        if frame_or_series is DataFrame and indexer_sli is tm.setitem:
            msgs.append("Index data must be 1-dimensional")
        if isinstance(index, pd.IntervalIndex) and indexer_sli is tm.iloc:
            msgs.append("Index data must be 1-dimensional")
        if isinstance(index, (pd.TimedeltaIndex, pd.DatetimeIndex, pd.PeriodIndex)):
            msgs.append("Data must be 1-dimensional")
        if len(index) == 0 or isinstance(index, pd.MultiIndex):
            msgs.append("positional indexers are out-of-bounds")
        if type(index) is Index and not isinstance(index._values, np.ndarray):
            # e.g. Int64
            msgs.append("values must be a 1D array")

            # string[pyarrow]
            msgs.append("only handle 1-dimensional arrays")

        msg = "|".join(msgs)

        potential_errors = (IndexError, ValueError, NotImplementedError)
        with pytest.raises(potential_errors, match=msg):
            idxr[nd3]

    @pytest.mark.filterwarnings(
        "ignore:Series.__setitem__ treating keys as positions is deprecated:"
        "FutureWarning"
    )
    def test_setitem_ndarray_3d(self, index, frame_or_series, indexer_sli):
        # GH 25567
        obj = gen_obj(frame_or_series, index)
        idxr = indexer_sli(obj)
        nd3 = np.random.default_rng(2).integers(5, size=(2, 2, 2))

        if indexer_sli is tm.iloc:
            err = ValueError
            msg = f"Cannot set values with ndim > {obj.ndim}"
        else:
            err = ValueError
            msg = "|".join(
                [
                    r"Buffer has wrong number of dimensions \(expected 1, got 3\)",
                    "Cannot set values with ndim > 1",
                    "Index data must be 1-dimensional",
                    "Data must be 1-dimensional",
                    "Array conditional must be same shape as self",
                ]
            )

        with pytest.raises(err, match=msg):
            idxr[nd3] = 0

    def test_getitem_ndarray_0d(self):
        # GH#24924
        key = np.array(0)

        # dataframe __getitem__
        df = DataFrame([[1, 2], [3, 4]])
        result = df[key]
        expected = Series([1, 3], name=0)
        tm.assert_series_equal(result, expected)

        # series __getitem__
        ser = Series([1, 2])
        result = ser[key]
        assert result == 1

    def test_inf_upcast(self):
        # GH 16957
        # We should be able to use np.inf as a key
        # np.inf should cause an index to convert to float

        # Test with np.inf in rows
        df = DataFrame(columns=[0])
        df.loc[1] = 1
        df.loc[2] = 2
        df.loc[np.inf] = 3

        # make sure we can look up the value
        assert df.loc[np.inf, 0] == 3

        result = df.index
        expected = Index([1, 2, np.inf], dtype=np.float64)
        tm.assert_index_equal(result, expected)

    def test_setitem_dtype_upcast(self):
        # GH3216
        df = DataFrame([{"a": 1}, {"a": 3, "b": 2}])
        df["c"] = np.nan
        assert df["c"].dtype == np.float64

        with tm.assert_produces_warning(
            FutureWarning, match="item of incompatible dtype"
        ):
            df.loc[0, "c"] = "foo"
        expected = DataFrame(
            {"a": [1, 3], "b": [np.nan, 2], "c": Series(["foo", np.nan], dtype=object)}
        )
        tm.assert_frame_equal(df, expected)

    @pytest.mark.parametrize("val", [3.14, "wxyz"])
    def test_setitem_dtype_upcast2(self, val):
        # GH10280
        df = DataFrame(
            np.arange(6, dtype="int64").reshape(2, 3),
            index=list("ab"),
            columns=["foo", "bar", "baz"],
        )

        left = df.copy()
        with tm.assert_produces_warning(
            FutureWarning, match="item of incompatible dtype"
        ):
            left.loc["a", "bar"] = val
        right = DataFrame(
            [[0, val, 2], [3, 4, 5]],
            index=list("ab"),
            columns=["foo", "bar", "baz"],
        )

        tm.assert_frame_equal(left, right)
        assert is_integer_dtype(left["foo"])
        assert is_integer_dtype(left["baz"])

    def test_setitem_dtype_upcast3(self):
        left = DataFrame(
            np.arange(6, dtype="int64").reshape(2, 3) / 10.0,
            index=list("ab"),
            columns=["foo", "bar", "baz"],
        )
        with tm.assert_produces_warning(
            FutureWarning, match="item of incompatible dtype"
        ):
            left.loc["a", "bar"] = "wxyz"

        right = DataFrame(
            [[0, "wxyz", 0.2], [0.3, 0.4, 0.5]],
            index=list("ab"),
            columns=["foo", "bar", "baz"],
        )

        tm.assert_frame_equal(left, right)
        assert is_float_dtype(left["foo"])
        assert is_float_dtype(left["baz"])

    def test_dups_fancy_indexing(self):
        # GH 3455

        df = DataFrame(np.eye(3), columns=["a", "a", "b"])
        result = df[["b", "a"]].columns
        expected = Index(["b", "a", "a"])
        tm.assert_index_equal(result, expected)

    def test_dups_fancy_indexing_across_dtypes(self):
        # across dtypes
        df = DataFrame([[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]], columns=list("aaaaaaa"))
        result = DataFrame([[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]])
        result.columns = list("aaaaaaa")  # GH#3468

        # GH#3509 smoke tests for indexing with duplicate columns
        df.iloc[:, 4]
        result.iloc[:, 4]

        tm.assert_frame_equal(df, result)

    def test_dups_fancy_indexing_not_in_order(self):
        # GH 3561, dups not in selected order
        df = DataFrame(
            {"test": [5, 7, 9, 11], "test1": [4.0, 5, 6, 7], "other": list("abcd")},
            index=["A", "A", "B", "C"],
        )
        rows = ["C", "B"]
        expected = DataFrame(
            {"test": [11, 9], "test1": [7.0, 6], "other": ["d", "c"]}, index=rows
        )
        result = df.loc[rows]
        tm.assert_frame_equal(result, expected)

        result = df.loc[Index(rows)]
        tm.assert_frame_equal(result, expected)

        rows = ["C", "B", "E"]
        with pytest.raises(KeyError, match="not in index"):
            df.loc[rows]

        # see GH5553, make sure we use the right indexer
        rows = ["F", "G", "H", "C", "B", "E"]
        with pytest.raises(KeyError, match="not in index"):
            df.loc[rows]

    def test_dups_fancy_indexing_only_missing_label(self, using_infer_string):
        # List containing only missing label
        dfnu = DataFrame(
            np.random.default_rng(2).standard_normal((5, 3)), index=list("AABCD")
        )
        if using_infer_string:
            with pytest.raises(
                KeyError,
                match=re.escape(
                    "\"None of [Index(['E'], dtype='string')] are in the [index]\""
                ),
            ):
                dfnu.loc[["E"]]
        else:
            with pytest.raises(
                KeyError,
                match=re.escape(
                    "\"None of [Index(['E'], dtype='object')] are in the [index]\""
                ),
            ):
                dfnu.loc[["E"]]

    @pytest.mark.parametrize("vals", [[0, 1, 2], list("abc")])
    def test_dups_fancy_indexing_missing_label(self, vals):
        # GH 4619; duplicate indexer with missing label
        df = DataFrame({"A": vals})
        with pytest.raises(KeyError, match="not in index"):
            df.loc[[0, 8, 0]]

    def test_dups_fancy_indexing_non_unique(self):
        # non unique with non unique selector
        df = DataFrame({"test": [5, 7, 9, 11]}, index=["A", "A", "B", "C"])
        with pytest.raises(KeyError, match="not in index"):
            df.loc[["A", "A", "E"]]

    def test_dups_fancy_indexing2(self):
        # GH 5835
        # dups on index and missing values
        df = DataFrame(
            np.random.default_rng(2).standard_normal((5, 5)),
            columns=["A", "B", "B", "B", "A"],
        )

        with pytest.raises(KeyError, match="not in index"):
            df.loc[:, ["A", "B", "C"]]

    def test_dups_fancy_indexing3(self):
        # GH 6504, multi-axis indexing
        df = DataFrame(
            np.random.default_rng(2).standard_normal((9, 2)),
            index=[1, 1, 1, 2, 2, 2, 3, 3, 3],
            columns=["a", "b"],
        )

        expected = df.iloc[0:6]
        result = df.loc[[1, 2]]
        tm.assert_frame_equal(result, expected)

        expected = df
        result = df.loc[:, ["a", "b"]]
        tm.assert_frame_equal(result, expected)

        expected = df.iloc[0:6, :]
        result = df.loc[[1, 2], ["a", "b"]]
        tm.assert_frame_equal(result, expected)

    def test_duplicate_int_indexing(self, indexer_sl):
        # GH 17347
        ser = Series(range(3), index=[1, 1, 3])
        expected = Series(range(2), index=[1, 1])
        result = indexer_sl(ser)[[1]]
        tm.assert_series_equal(result, expected)

    def test_indexing_mixed_frame_bug(self):
        # GH3492
        df = DataFrame(
            {"a": {1: "aaa", 2: "bbb", 3: "ccc"}, "b": {1: 111, 2: 222, 3: 333}}
        )

        # this works, new column is created correctly
        df["test"] = df["a"].apply(lambda x: "_" if x == "aaa" else x)

        # this does not work, ie column test is not changed
        idx = df["test"] == "_"
        temp = df.loc[idx, "a"].apply(lambda x: "-----" if x == "aaa" else x)
        df.loc[idx, "test"] = temp
        assert df.iloc[0, 2] == "-----"

    def test_multitype_list_index_access(self):
        # GH 10610
        df = DataFrame(
            np.random.default_rng(2).random((10, 5)), columns=["a"] + [20, 21, 22, 23]
        )

        with pytest.raises(KeyError, match=re.escape("'[26, -8] not in index'")):
            df[[22, 26, -8]]
        assert df[21].shape[0] == df.shape[0]

    def test_set_index_nan(self):
        # GH 3586
        df = DataFrame(
            {
                "PRuid": {
                    17: "nonQC",
                    18: "nonQC",
                    19: "nonQC",
                    20: "10",
                    21: "11",
                    22: "12",
                    23: "13",
                    24: "24",
                    25: "35",
                    26: "46",
                    27: "47",
                    28: "48",
                    29: "59",
                    30: "10",
                },
                "QC": {
                    17: 0.0,
                    18: 0.0,
                    19: 0.0,
                    20: np.nan,
                    21: np.nan,
                    22: np.nan,
                    23: np.nan,
                    24: 1.0,
                    25: np.nan,
                    26: np.nan,
                    27: np.nan,
                    28: np.nan,
                    29: np.nan,
                    30: np.nan,
                },
                "data": {
                    17: 7.9544899999999998,
                    18: 8.0142609999999994,
                    19: 7.8591520000000008,
                    20: 0.86140349999999999,
                    21: 0.87853110000000001,
                    22: 0.8427041999999999,
                    23: 0.78587700000000005,
                    24: 0.73062459999999996,
                    25: 0.81668560000000001,
                    26: 0.81927080000000008,
                    27: 0.80705009999999999,
                    28: 0.81440240000000008,
                    29: 0.80140849999999997,
                    30: 0.81307740000000006,
                },
                "year": {
                    17: 2006,
                    18: 2007,
                    19: 2008,
                    20: 1985,
                    21: 1985,
                    22: 1985,
                    23: 1985,
                    24: 1985,
                    25: 1985,
                    26: 1985,
                    27: 1985,
                    28: 1985,
                    29: 1985,
                    30: 1986,
                },
            }
        ).reset_index()

        result = (
            df.set_index(["year", "PRuid", "QC"])
            .reset_index()
            .reindex(columns=df.columns)
        )
        tm.assert_frame_equal(result, df)

    @pytest.mark.xfail(
        using_pyarrow_string_dtype(), reason="can't multiply arrow strings"
    )
    def test_multi_assign(self):
        # GH 3626, an assignment of a sub-df to a df
        # set float64 to avoid upcast when setting nan
        df = DataFrame(
            {
                "FC": ["a", "b", "a", "b", "a", "b"],
                "PF": [0, 0, 0, 0, 1, 1],
                "col1": list(range(6)),
                "col2": list(range(6, 12)),
            }
        ).astype({"col2": "float64"})
        df.iloc[1, 0] = np.nan
        df2 = df.copy()

        mask = ~df2.FC.isna()
        cols = ["col1", "col2"]

        dft = df2 * 2
        dft.iloc[3, 3] = np.nan

        expected = DataFrame(
            {
                "FC": ["a", np.nan, "a", "b", "a", "b"],
                "PF": [0, 0, 0, 0, 1, 1],
                "col1": Series([0, 1, 4, 6, 8, 10]),
                "col2": [12, 7, 16, np.nan, 20, 22],
            }
        )

        # frame on rhs
        df2.loc[mask, cols] = dft.loc[mask, cols]
        tm.assert_frame_equal(df2, expected)

        # with an ndarray on rhs
        # coerces to float64 because values has float64 dtype
        # GH 14001
        expected = DataFrame(
            {
                "FC": ["a", np.nan, "a", "b", "a", "b"],
                "PF": [0, 0, 0, 0, 1, 1],
                "col1": [0, 1, 4, 6, 8, 10],
                "col2": [12, 7, 16, np.nan, 20, 22],
            }
        )
        df2 = df.copy()
        df2.loc[mask, cols] = dft.loc[mask, cols].values
        tm.assert_frame_equal(df2, expected)

    def test_multi_assign_broadcasting_rhs(self):
        # broadcasting on the rhs is required
        df = DataFrame(
            {
                "A": [1, 2, 0, 0, 0],
                "B": [0, 0, 0, 10, 11],
                "C": [0, 0, 0, 10, 11],
                "D": [3, 4, 5, 6, 7],
            }
        )

        expected = df.copy()
        mask = expected["A"] == 0
        for col in ["A", "B"]:
            expected.loc[mask, col] = df["D"]

        df.loc[df["A"] == 0, ["A", "B"]] = df["D"].copy()
        tm.assert_frame_equal(df, expected)

    def test_setitem_list(self):
        # GH 6043
        # iloc with a list
        df = DataFrame(index=[0, 1], columns=[0])
        df.iloc[1, 0] = [1, 2, 3]
        df.iloc[1, 0] = [1, 2]

        result = DataFrame(index=[0, 1], columns=[0])
        result.iloc[1, 0] = [1, 2]

        tm.assert_frame_equal(result, df)

    def test_string_slice(self):
        # GH 14424
        # string indexing against datetimelike with object
        # dtype should properly raises KeyError
        df = DataFrame([1], Index([pd.Timestamp("2011-01-01")], dtype=object))
        assert df.index._is_all_dates
        with pytest.raises(KeyError, match="'2011'"):
            df["2011"]

        with pytest.raises(KeyError, match="'2011'"):
            df.loc["2011", 0]

    def test_string_slice_empty(self):
        # GH 14424

        df = DataFrame()
        assert not df.index._is_all_dates
        with pytest.raises(KeyError, match="'2011'"):
            df["2011"]

        with pytest.raises(KeyError, match="^0$"):
            df.loc["2011", 0]

    def test_astype_assignment(self, using_infer_string):
        # GH4312 (iloc)
        df_orig = DataFrame(
            [["1", "2", "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG")
        )

        df = df_orig.copy()

        # with the enforcement of GH#45333 in 2.0, this setting is attempted inplace,
        #  so object dtype is retained
        df.iloc[:, 0:2] = df.iloc[:, 0:2].astype(np.int64)
        expected = DataFrame(
            [[1, 2, "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG")
        )
        if not using_infer_string:
            expected["A"] = expected["A"].astype(object)
            expected["B"] = expected["B"].astype(object)
        tm.assert_frame_equal(df, expected)

        # GH5702 (loc)
        df = df_orig.copy()
        df.loc[:, "A"] = df.loc[:, "A"].astype(np.int64)
        expected = DataFrame(
            [[1, "2", "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG")
        )
        if not using_infer_string:
            expected["A"] = expected["A"].astype(object)
        tm.assert_frame_equal(df, expected)

        df = df_orig.copy()
        df.loc[:, ["B", "C"]] = df.loc[:, ["B", "C"]].astype(np.int64)
        expected = DataFrame(
            [["1", 2, 3, ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG")
        )
        if not using_infer_string:
            expected["B"] = expected["B"].astype(object)
            expected["C"] = expected["C"].astype(object)
        tm.assert_frame_equal(df, expected)

    def test_astype_assignment_full_replacements(self):
        # full replacements / no nans
        df = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]})

        # With the enforcement of GH#45333 in 2.0, this assignment occurs inplace,
        #  so float64 is retained
        df.iloc[:, 0] = df["A"].astype(np.int64)
        expected = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]})
        tm.assert_frame_equal(df, expected)

        df = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]})
        df.loc[:, "A"] = df["A"].astype(np.int64)
        tm.assert_frame_equal(df, expected)

    @pytest.mark.parametrize("indexer", [tm.getitem, tm.loc])
    def test_index_type_coercion(self, indexer):
        # GH 11836
        # if we have an index type and set it with something that looks
        # to numpy like the same, but is actually, not
        # (e.g. setting with a float or string '0')
        # then we need to coerce to object

        # integer indexes
        for s in [Series(range(5)), Series(range(5), index=range(1, 6))]:
            assert is_integer_dtype(s.index)

            s2 = s.copy()
            indexer(s2)[0.1] = 0
            assert is_float_dtype(s2.index)
            assert indexer(s2)[0.1] == 0

            s2 = s.copy()
            indexer(s2)[0.0] = 0
            exp = s.index
            if 0 not in s:
                exp = Index(s.index.tolist() + [0])
            tm.assert_index_equal(s2.index, exp)

            s2 = s.copy()
            indexer(s2)["0"] = 0
            assert is_object_dtype(s2.index)

        for s in [Series(range(5), index=np.arange(5.0))]:
            assert is_float_dtype(s.index)

            s2 = s.copy()
            indexer(s2)[0.1] = 0
            assert is_float_dtype(s2.index)
            assert indexer(s2)[0.1] == 0

            s2 = s.copy()
            indexer(s2)[0.0] = 0
            tm.assert_index_equal(s2.index, s.index)

            s2 = s.copy()
            indexer(s2)["0"] = 0
            assert is_object_dtype(s2.index)


class TestMisc:
    def test_float_index_to_mixed(self):
        df = DataFrame(
            {
                0.0: np.random.default_rng(2).random(10),
                1.0: np.random.default_rng(2).random(10),
            }
        )
        df["a"] = 10

        expected = DataFrame({0.0: df[0.0], 1.0: df[1.0], "a": [10] * 10})
        tm.assert_frame_equal(expected, df)

    def test_float_index_non_scalar_assignment(self):
        df = DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}, index=[1.0, 2.0, 3.0])
        df.loc[df.index[:2]] = 1
        expected = DataFrame({"a": [1, 1, 3], "b": [1, 1, 5]}, index=df.index)
        tm.assert_frame_equal(expected, df)

    def test_loc_setitem_fullindex_views(self):
        df = DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}, index=[1.0, 2.0, 3.0])
        df2 = df.copy()
        df.loc[df.index] = df.loc[df.index]
        tm.assert_frame_equal(df, df2)

    @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="can't set int into string")
    def test_rhs_alignment(self):
        # GH8258, tests that both rows & columns are aligned to what is
        # assigned to. covers both uniform data-type & multi-type cases
        def run_tests(df, rhs, right_loc, right_iloc):
            # label, index, slice
            lbl_one, idx_one, slice_one = list("bcd"), [1, 2, 3], slice(1, 4)
            lbl_two, idx_two, slice_two = ["joe", "jolie"], [1, 2], slice(1, 3)

            left = df.copy()
            left.loc[lbl_one, lbl_two] = rhs
            tm.assert_frame_equal(left, right_loc)

            left = df.copy()
            left.iloc[idx_one, idx_two] = rhs
            tm.assert_frame_equal(left, right_iloc)

            left = df.copy()
            left.iloc[slice_one, slice_two] = rhs
            tm.assert_frame_equal(left, right_iloc)

        xs = np.arange(20).reshape(5, 4)
        cols = ["jim", "joe", "jolie", "joline"]
        df = DataFrame(xs, columns=cols, index=list("abcde"), dtype="int64")

        # right hand side; permute the indices and multiplpy by -2
        rhs = -2 * df.iloc[3:0:-1, 2:0:-1]

        # expected `right` result; just multiply by -2
        right_iloc = df.copy()
        right_iloc["joe"] = [1, 14, 10, 6, 17]
        right_iloc["jolie"] = [2, 13, 9, 5, 18]
        right_iloc.iloc[1:4, 1:3] *= -2
        right_loc = df.copy()
        right_loc.iloc[1:4, 1:3] *= -2

        # run tests with uniform dtypes
        run_tests(df, rhs, right_loc, right_iloc)

        # make frames multi-type & re-run tests
        for frame in [df, rhs, right_loc, right_iloc]:
            frame["joe"] = frame["joe"].astype("float64")
            frame["jolie"] = frame["jolie"].map(lambda x: f"@{x}")
        right_iloc["joe"] = [1.0, "@-28", "@-20", "@-12", 17.0]
        right_iloc["jolie"] = ["@2", -26.0, -18.0, -10.0, "@18"]
        with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
            run_tests(df, rhs, right_loc, right_iloc)

    @pytest.mark.parametrize(
        "idx", [_mklbl("A", 20), np.arange(20) + 100, np.linspace(100, 150, 20)]
    )
    def test_str_label_slicing_with_negative_step(self, idx):
        SLC = pd.IndexSlice

        idx = Index(idx)
        ser = Series(np.arange(20), index=idx)
        tm.assert_indexing_slices_equivalent(ser, SLC[idx[9] :: -1], SLC[9::-1])
        tm.assert_indexing_slices_equivalent(ser, SLC[: idx[9] : -1], SLC[:8:-1])
        tm.assert_indexing_slices_equivalent(
            ser, SLC[idx[13] : idx[9] : -1], SLC[13:8:-1]
        )
        tm.assert_indexing_slices_equivalent(ser, SLC[idx[9] : idx[13] : -1], SLC[:0])

    def test_slice_with_zero_step_raises(self, index, indexer_sl, frame_or_series):
        obj = frame_or_series(np.arange(len(index)), index=index)
        with pytest.raises(ValueError, match="slice step cannot be zero"):
            indexer_sl(obj)[::0]

    def test_loc_setitem_indexing_assignment_dict_already_exists(self):
        index = Index([-5, 0, 5], name="z")
        df = DataFrame({"x": [1, 2, 6], "y": [2, 2, 8]}, index=index)
        expected = df.copy()
        rhs = {"x": 9, "y": 99}
        df.loc[5] = rhs
        expected.loc[5] = [9, 99]
        tm.assert_frame_equal(df, expected)

        # GH#38335 same thing, mixed dtypes
        df = DataFrame({"x": [1, 2, 6], "y": [2.0, 2.0, 8.0]}, index=index)
        df.loc[5] = rhs
        expected = DataFrame({"x": [1, 2, 9], "y": [2.0, 2.0, 99.0]}, index=index)
        tm.assert_frame_equal(df, expected)

    def test_iloc_getitem_indexing_dtypes_on_empty(self):
        # Check that .iloc returns correct dtypes GH9983
        df = DataFrame({"a": [1, 2, 3], "b": ["b", "b2", "b3"]})
        df2 = df.iloc[[], :]

        assert df2.loc[:, "a"].dtype == np.int64
        tm.assert_series_equal(df2.loc[:, "a"], df2.iloc[:, 0])

    @pytest.mark.parametrize("size", [5, 999999, 1000000])
    def test_loc_range_in_series_indexing(self, size):
        # range can cause an indexing error
        # GH 11652
        s = Series(index=range(size), dtype=np.float64)
        s.loc[range(1)] = 42
        tm.assert_series_equal(s.loc[range(1)], Series(42.0, index=[0]))

        s.loc[range(2)] = 43
        tm.assert_series_equal(s.loc[range(2)], Series(43.0, index=[0, 1]))

    def test_partial_boolean_frame_indexing(self):
        # GH 17170
        df = DataFrame(
            np.arange(9.0).reshape(3, 3), index=list("abc"), columns=list("ABC")
        )
        index_df = DataFrame(1, index=list("ab"), columns=list("AB"))
        result = df[index_df.notnull()]
        expected = DataFrame(
            np.array([[0.0, 1.0, np.nan], [3.0, 4.0, np.nan], [np.nan] * 3]),
            index=list("abc"),
            columns=list("ABC"),
        )
        tm.assert_frame_equal(result, expected)

    def test_no_reference_cycle(self):
        df = DataFrame({"a": [0, 1], "b": [2, 3]})
        for name in ("loc", "iloc", "at", "iat"):
            getattr(df, name)
        wr = weakref.ref(df)
        del df
        assert wr() is None

    def test_label_indexing_on_nan(self, nulls_fixture):
        # GH 32431
        df = Series([1, "{1,2}", 1, nulls_fixture])
        vc = df.value_counts(dropna=False)
        result1 = vc.loc[nulls_fixture]
        result2 = vc[nulls_fixture]

        expected = 1
        assert result1 == expected
        assert result2 == expected


class TestDataframeNoneCoercion:
    EXPECTED_SINGLE_ROW_RESULTS = [
        # For numeric series, we should coerce to NaN.
        ([1, 2, 3], [np.nan, 2, 3], FutureWarning),
        ([1.0, 2.0, 3.0], [np.nan, 2.0, 3.0], None),
        # For datetime series, we should coerce to NaT.
        (
            [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
            [NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)],
            None,
        ),
        # For objects, we should preserve the None value.
        (["foo", "bar", "baz"], [None, "bar", "baz"], None),
    ]

    @pytest.mark.parametrize("expected", EXPECTED_SINGLE_ROW_RESULTS)
    def test_coercion_with_loc(self, expected):
        start_data, expected_result, warn = expected

        start_dataframe = DataFrame({"foo": start_data})
        start_dataframe.loc[0, ["foo"]] = None

        expected_dataframe = DataFrame({"foo": expected_result})
        tm.assert_frame_equal(start_dataframe, expected_dataframe)

    @pytest.mark.parametrize("expected", EXPECTED_SINGLE_ROW_RESULTS)
    def test_coercion_with_setitem_and_dataframe(self, expected):
        start_data, expected_result, warn = expected

        start_dataframe = DataFrame({"foo": start_data})
        start_dataframe[start_dataframe["foo"] == start_dataframe["foo"][0]] = None

        expected_dataframe = DataFrame({"foo": expected_result})
        tm.assert_frame_equal(start_dataframe, expected_dataframe)

    @pytest.mark.parametrize("expected", EXPECTED_SINGLE_ROW_RESULTS)
    def test_none_coercion_loc_and_dataframe(self, expected):
        start_data, expected_result, warn = expected

        start_dataframe = DataFrame({"foo": start_data})
        start_dataframe.loc[start_dataframe["foo"] == start_dataframe["foo"][0]] = None

        expected_dataframe = DataFrame({"foo": expected_result})
        tm.assert_frame_equal(start_dataframe, expected_dataframe)

    def test_none_coercion_mixed_dtypes(self):
        start_dataframe = DataFrame(
            {
                "a": [1, 2, 3],
                "b": [1.0, 2.0, 3.0],
                "c": [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
                "d": ["a", "b", "c"],
            }
        )
        start_dataframe.iloc[0] = None

        exp = DataFrame(
            {
                "a": [np.nan, 2, 3],
                "b": [np.nan, 2.0, 3.0],
                "c": [NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)],
                "d": [None, "b", "c"],
            }
        )
        tm.assert_frame_equal(start_dataframe, exp)


class TestDatetimelikeCoercion:
    def test_setitem_dt64_string_scalar(self, tz_naive_fixture, indexer_sli):
        # dispatching _can_hold_element to underlying DatetimeArray
        tz = tz_naive_fixture

        dti = date_range("2016-01-01", periods=3, tz=tz)
        ser = Series(dti.copy(deep=True))

        values = ser._values

        newval = "2018-01-01"
        values._validate_setitem_value(newval)

        indexer_sli(ser)[0] = newval

        if tz is None:
            # TODO(EA2D): we can make this no-copy in tz-naive case too
            assert ser.dtype == dti.dtype
            assert ser._values._ndarray is values._ndarray
        else:
            assert ser._values is values

    @pytest.mark.parametrize("box", [list, np.array, pd.array, pd.Categorical, Index])
    @pytest.mark.parametrize(
        "key", [[0, 1], slice(0, 2), np.array([True, True, False])]
    )
    def test_setitem_dt64_string_values(self, tz_naive_fixture, indexer_sli, key, box):
        # dispatching _can_hold_element to underling DatetimeArray
        tz = tz_naive_fixture

        if isinstance(key, slice) and indexer_sli is tm.loc:
            key = slice(0, 1)

        dti = date_range("2016-01-01", periods=3, tz=tz)
        ser = Series(dti.copy(deep=True))

        values = ser._values

        newvals = box(["2019-01-01", "2010-01-02"])
        values._validate_setitem_value(newvals)

        indexer_sli(ser)[key] = newvals

        if tz is None:
            # TODO(EA2D): we can make this no-copy in tz-naive case too
            assert ser.dtype == dti.dtype
            assert ser._values._ndarray is values._ndarray
        else:
            assert ser._values is values

    @pytest.mark.parametrize("scalar", ["3 Days", offsets.Hour(4)])
    def test_setitem_td64_scalar(self, indexer_sli, scalar):
        # dispatching _can_hold_element to underling TimedeltaArray
        tdi = timedelta_range("1 Day", periods=3)
        ser = Series(tdi.copy(deep=True))

        values = ser._values
        values._validate_setitem_value(scalar)

        indexer_sli(ser)[0] = scalar
        assert ser._values._ndarray is values._ndarray

    @pytest.mark.parametrize("box", [list, np.array, pd.array, pd.Categorical, Index])
    @pytest.mark.parametrize(
        "key", [[0, 1], slice(0, 2), np.array([True, True, False])]
    )
    def test_setitem_td64_string_values(self, indexer_sli, key, box):
        # dispatching _can_hold_element to underling TimedeltaArray
        if isinstance(key, slice) and indexer_sli is tm.loc:
            key = slice(0, 1)

        tdi = timedelta_range("1 Day", periods=3)
        ser = Series(tdi.copy(deep=True))

        values = ser._values

        newvals = box(["10 Days", "44 hours"])
        values._validate_setitem_value(newvals)

        indexer_sli(ser)[key] = newvals
        assert ser._values._ndarray is values._ndarray


def test_extension_array_cross_section():
    # A cross-section of a homogeneous EA should be an EA
    df = DataFrame(
        {
            "A": pd.array([1, 2], dtype="Int64"),
            "B": pd.array([3, 4], dtype="Int64"),
        },
        index=["a", "b"],
    )
    expected = Series(pd.array([1, 3], dtype="Int64"), index=["A", "B"], name="a")
    result = df.loc["a"]
    tm.assert_series_equal(result, expected)

    result = df.iloc[0]
    tm.assert_series_equal(result, expected)


def test_extension_array_cross_section_converts():
    # all numeric columns -> numeric series
    df = DataFrame(
        {
            "A": pd.array([1, 2], dtype="Int64"),
            "B": np.array([1, 2], dtype="int64"),
        },
        index=["a", "b"],
    )
    result = df.loc["a"]
    expected = Series([1, 1], dtype="Int64", index=["A", "B"], name="a")
    tm.assert_series_equal(result, expected)

    result = df.iloc[0]
    tm.assert_series_equal(result, expected)

    # mixed columns -> object series
    df = DataFrame(
        {"A": pd.array([1, 2], dtype="Int64"), "B": np.array(["a", "b"])},
        index=["a", "b"],
    )
    result = df.loc["a"]
    expected = Series([1, "a"], dtype=object, index=["A", "B"], name="a")
    tm.assert_series_equal(result, expected)

    result = df.iloc[0]
    tm.assert_series_equal(result, expected)


@pytest.mark.parametrize(
    "ser, keys",
    [(Series([10]), (0, 0)), (Series([1, 2, 3], index=list("abc")), (0, 1))],
)
def test_ser_tup_indexer_exceeds_dimensions(ser, keys, indexer_li):
    # GH#13831
    exp_err, exp_msg = IndexingError, "Too many indexers"
    with pytest.raises(exp_err, match=exp_msg):
        indexer_li(ser)[keys]

    if indexer_li == tm.iloc:
        # For iloc.__setitem__ we let numpy handle the error reporting.
        exp_err, exp_msg = IndexError, "too many indices for array"

    with pytest.raises(exp_err, match=exp_msg):
        indexer_li(ser)[keys] = 0


def test_ser_list_indexer_exceeds_dimensions(indexer_li):
    # GH#13831
    # Make sure an exception is raised when a tuple exceeds the dimension of the series,
    # but not list when a list is used.
    ser = Series([10])
    res = indexer_li(ser)[[0, 0]]
    exp = Series([10, 10], index=Index([0, 0]))
    tm.assert_series_equal(res, exp)


@pytest.mark.parametrize(
    "value", [(0, 1), [0, 1], np.array([0, 1]), array.array("b", [0, 1])]
)
def test_scalar_setitem_with_nested_value(value):
    # For numeric data, we try to unpack and thus raise for mismatching length
    df = DataFrame({"A": [1, 2, 3]})
    msg = "|".join(
        [
            "Must have equal len keys and value",
            "setting an array element with a sequence",
        ]
    )
    with pytest.raises(ValueError, match=msg):
        df.loc[0, "B"] = value

    # TODO For object dtype this happens as well, but should we rather preserve
    # the nested data and set as such?
    df = DataFrame({"A": [1, 2, 3], "B": np.array([1, "a", "b"], dtype=object)})
    with pytest.raises(ValueError, match="Must have equal len keys and value"):
        df.loc[0, "B"] = value
    # if isinstance(value, np.ndarray):
    #     assert (df.loc[0, "B"] == value).all()
    # else:
    #     assert df.loc[0, "B"] == value


@pytest.mark.parametrize(
    "value", [(0, 1), [0, 1], np.array([0, 1]), array.array("b", [0, 1])]
)
def test_scalar_setitem_series_with_nested_value(value, indexer_sli):
    # For numeric data, we try to unpack and thus raise for mismatching length
    ser = Series([1, 2, 3])
    with pytest.raises(ValueError, match="setting an array element with a sequence"):
        indexer_sli(ser)[0] = value

    # but for object dtype we preserve the nested data and set as such
    ser = Series([1, "a", "b"], dtype=object)
    indexer_sli(ser)[0] = value
    if isinstance(value, np.ndarray):
        assert (ser.loc[0] == value).all()
    else:
        assert ser.loc[0] == value


@pytest.mark.parametrize(
    "value", [(0.0,), [0.0], np.array([0.0]), array.array("d", [0.0])]
)
def test_scalar_setitem_with_nested_value_length1(value):
    # https://github.com/pandas-dev/pandas/issues/46268

    # For numeric data, assigning length-1 array to scalar position gets unpacked
    df = DataFrame({"A": [1, 2, 3]})
    df.loc[0, "B"] = value
    expected = DataFrame({"A": [1, 2, 3], "B": [0.0, np.nan, np.nan]})
    tm.assert_frame_equal(df, expected)

    # but for object dtype we preserve the nested data
    df = DataFrame({"A": [1, 2, 3], "B": np.array([1, "a", "b"], dtype=object)})
    df.loc[0, "B"] = value
    if isinstance(value, np.ndarray):
        assert (df.loc[0, "B"] == value).all()
    else:
        assert df.loc[0, "B"] == value


@pytest.mark.parametrize(
    "value", [(0.0,), [0.0], np.array([0.0]), array.array("d", [0.0])]
)
def test_scalar_setitem_series_with_nested_value_length1(value, indexer_sli):
    # For numeric data, assigning length-1 array to scalar position gets unpacked
    # TODO this only happens in case of ndarray, should we make this consistent
    # for all list-likes? (as happens for DataFrame.(i)loc, see test above)
    ser = Series([1.0, 2.0, 3.0])
    if isinstance(value, np.ndarray):
        indexer_sli(ser)[0] = value
        expected = Series([0.0, 2.0, 3.0])
        tm.assert_series_equal(ser, expected)
    else:
        with pytest.raises(
            ValueError, match="setting an array element with a sequence"
        ):
            indexer_sli(ser)[0] = value

    # but for object dtype we preserve the nested data
    ser = Series([1, "a", "b"], dtype=object)
    indexer_sli(ser)[0] = value
    if isinstance(value, np.ndarray):
        assert (ser.loc[0] == value).all()
    else:
        assert ser.loc[0] == value


def test_object_dtype_series_set_series_element():
    # GH 48933
    s1 = Series(dtype="O", index=["a", "b"])

    s1["a"] = Series()
    s1.loc["b"] = Series()

    tm.assert_series_equal(s1.loc["a"], Series())
    tm.assert_series_equal(s1.loc["b"], Series())

    s2 = Series(dtype="O", index=["a", "b"])

    s2.iloc[1] = Series()
    tm.assert_series_equal(s2.iloc[1], Series())