File size: 20,755 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
"""
manage legacy pickle tests

How to add pickle tests:

1. Install pandas version intended to output the pickle.

2. Execute "generate_legacy_storage_files.py" to create the pickle.
$ python generate_legacy_storage_files.py <output_dir> pickle

3. Move the created pickle to "data/legacy_pickle/<version>" directory.
"""
from __future__ import annotations

from array import array
import bz2
import datetime
import functools
from functools import partial
import gzip
import io
import os
from pathlib import Path
import pickle
import shutil
import tarfile
from typing import Any
import uuid
import zipfile

import numpy as np
import pytest

from pandas.compat import (
    get_lzma_file,
    is_platform_little_endian,
)
from pandas.compat._optional import import_optional_dependency
from pandas.compat.compressors import flatten_buffer
import pandas.util._test_decorators as td

import pandas as pd
from pandas import (
    DataFrame,
    Index,
    Series,
    period_range,
)
import pandas._testing as tm
from pandas.tests.io.generate_legacy_storage_files import create_pickle_data

import pandas.io.common as icom
from pandas.tseries.offsets import (
    Day,
    MonthEnd,
)


# ---------------------
# comparison functions
# ---------------------
def compare_element(result, expected, typ):
    if isinstance(expected, Index):
        tm.assert_index_equal(expected, result)
        return

    if typ.startswith("sp_"):
        tm.assert_equal(result, expected)
    elif typ == "timestamp":
        if expected is pd.NaT:
            assert result is pd.NaT
        else:
            assert result == expected
    else:
        comparator = getattr(tm, f"assert_{typ}_equal", tm.assert_almost_equal)
        comparator(result, expected)


# ---------------------
# tests
# ---------------------


@pytest.mark.parametrize(
    "data",
    [
        b"123",
        b"123456",
        bytearray(b"123"),
        memoryview(b"123"),
        pickle.PickleBuffer(b"123"),
        array("I", [1, 2, 3]),
        memoryview(b"123456").cast("B", (3, 2)),
        memoryview(b"123456").cast("B", (3, 2))[::2],
        np.arange(12).reshape((3, 4), order="C"),
        np.arange(12).reshape((3, 4), order="F"),
        np.arange(12).reshape((3, 4), order="C")[:, ::2],
    ],
)
def test_flatten_buffer(data):
    result = flatten_buffer(data)
    expected = memoryview(data).tobytes("A")
    assert result == expected
    if isinstance(data, (bytes, bytearray)):
        assert result is data
    elif isinstance(result, memoryview):
        assert result.ndim == 1
        assert result.format == "B"
        assert result.contiguous
        assert result.shape == (result.nbytes,)


def test_pickles(datapath):
    if not is_platform_little_endian():
        pytest.skip("known failure on non-little endian")

    # For loop for compat with --strict-data-files
    for legacy_pickle in Path(__file__).parent.glob("data/legacy_pickle/*/*.p*kl*"):
        legacy_pickle = datapath(legacy_pickle)

        data = pd.read_pickle(legacy_pickle)

        for typ, dv in data.items():
            for dt, result in dv.items():
                expected = data[typ][dt]

                if typ == "series" and dt == "ts":
                    # GH 7748
                    tm.assert_series_equal(result, expected)
                    assert result.index.freq == expected.index.freq
                    assert not result.index.freq.normalize
                    tm.assert_series_equal(result > 0, expected > 0)

                    # GH 9291
                    freq = result.index.freq
                    assert freq + Day(1) == Day(2)

                    res = freq + pd.Timedelta(hours=1)
                    assert isinstance(res, pd.Timedelta)
                    assert res == pd.Timedelta(days=1, hours=1)

                    res = freq + pd.Timedelta(nanoseconds=1)
                    assert isinstance(res, pd.Timedelta)
                    assert res == pd.Timedelta(days=1, nanoseconds=1)
                elif typ == "index" and dt == "period":
                    tm.assert_index_equal(result, expected)
                    assert isinstance(result.freq, MonthEnd)
                    assert result.freq == MonthEnd()
                    assert result.freqstr == "M"
                    tm.assert_index_equal(result.shift(2), expected.shift(2))
                elif typ == "series" and dt in ("dt_tz", "cat"):
                    tm.assert_series_equal(result, expected)
                elif typ == "frame" and dt in (
                    "dt_mixed_tzs",
                    "cat_onecol",
                    "cat_and_float",
                ):
                    tm.assert_frame_equal(result, expected)
                else:
                    compare_element(result, expected, typ)


def python_pickler(obj, path):
    with open(path, "wb") as fh:
        pickle.dump(obj, fh, protocol=-1)


def python_unpickler(path):
    with open(path, "rb") as fh:
        fh.seek(0)
        return pickle.load(fh)


def flatten(data: dict) -> list[tuple[str, Any]]:
    """Flatten create_pickle_data"""
    return [
        (typ, example)
        for typ, examples in data.items()
        for example in examples.values()
    ]


@pytest.mark.parametrize(
    "pickle_writer",
    [
        pytest.param(python_pickler, id="python"),
        pytest.param(pd.to_pickle, id="pandas_proto_default"),
        pytest.param(
            functools.partial(pd.to_pickle, protocol=pickle.HIGHEST_PROTOCOL),
            id="pandas_proto_highest",
        ),
        pytest.param(functools.partial(pd.to_pickle, protocol=4), id="pandas_proto_4"),
        pytest.param(
            functools.partial(pd.to_pickle, protocol=5),
            id="pandas_proto_5",
        ),
    ],
)
@pytest.mark.parametrize("writer", [pd.to_pickle, python_pickler])
@pytest.mark.parametrize("typ, expected", flatten(create_pickle_data()))
def test_round_trip_current(typ, expected, pickle_writer, writer):
    with tm.ensure_clean() as path:
        # test writing with each pickler
        pickle_writer(expected, path)

        # test reading with each unpickler
        result = pd.read_pickle(path)
        compare_element(result, expected, typ)

        result = python_unpickler(path)
        compare_element(result, expected, typ)

        # and the same for file objects (GH 35679)
        with open(path, mode="wb") as handle:
            writer(expected, path)
            handle.seek(0)  # shouldn't close file handle
        with open(path, mode="rb") as handle:
            result = pd.read_pickle(handle)
            handle.seek(0)  # shouldn't close file handle
        compare_element(result, expected, typ)


def test_pickle_path_pathlib():
    df = DataFrame(
        1.1 * np.arange(120).reshape((30, 4)),
        columns=Index(list("ABCD"), dtype=object),
        index=Index([f"i-{i}" for i in range(30)], dtype=object),
    )
    result = tm.round_trip_pathlib(df.to_pickle, pd.read_pickle)
    tm.assert_frame_equal(df, result)


def test_pickle_path_localpath():
    df = DataFrame(
        1.1 * np.arange(120).reshape((30, 4)),
        columns=Index(list("ABCD"), dtype=object),
        index=Index([f"i-{i}" for i in range(30)], dtype=object),
    )
    result = tm.round_trip_localpath(df.to_pickle, pd.read_pickle)
    tm.assert_frame_equal(df, result)


# ---------------------
# test pickle compression
# ---------------------


@pytest.fixture
def get_random_path():
    return f"__{uuid.uuid4()}__.pickle"


class TestCompression:
    _extension_to_compression = icom.extension_to_compression

    def compress_file(self, src_path, dest_path, compression):
        if compression is None:
            shutil.copyfile(src_path, dest_path)
            return

        if compression == "gzip":
            f = gzip.open(dest_path, "w")
        elif compression == "bz2":
            f = bz2.BZ2File(dest_path, "w")
        elif compression == "zip":
            with zipfile.ZipFile(dest_path, "w", compression=zipfile.ZIP_DEFLATED) as f:
                f.write(src_path, os.path.basename(src_path))
        elif compression == "tar":
            with open(src_path, "rb") as fh:
                with tarfile.open(dest_path, mode="w") as tar:
                    tarinfo = tar.gettarinfo(src_path, os.path.basename(src_path))
                    tar.addfile(tarinfo, fh)
        elif compression == "xz":
            f = get_lzma_file()(dest_path, "w")
        elif compression == "zstd":
            f = import_optional_dependency("zstandard").open(dest_path, "wb")
        else:
            msg = f"Unrecognized compression type: {compression}"
            raise ValueError(msg)

        if compression not in ["zip", "tar"]:
            with open(src_path, "rb") as fh:
                with f:
                    f.write(fh.read())

    def test_write_explicit(self, compression, get_random_path):
        base = get_random_path
        path1 = base + ".compressed"
        path2 = base + ".raw"

        with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2:
            df = DataFrame(
                1.1 * np.arange(120).reshape((30, 4)),
                columns=Index(list("ABCD"), dtype=object),
                index=Index([f"i-{i}" for i in range(30)], dtype=object),
            )

            # write to compressed file
            df.to_pickle(p1, compression=compression)

            # decompress
            with tm.decompress_file(p1, compression=compression) as f:
                with open(p2, "wb") as fh:
                    fh.write(f.read())

            # read decompressed file
            df2 = pd.read_pickle(p2, compression=None)

            tm.assert_frame_equal(df, df2)

    @pytest.mark.parametrize("compression", ["", "None", "bad", "7z"])
    def test_write_explicit_bad(self, compression, get_random_path):
        with pytest.raises(ValueError, match="Unrecognized compression type"):
            with tm.ensure_clean(get_random_path) as path:
                df = DataFrame(
                    1.1 * np.arange(120).reshape((30, 4)),
                    columns=Index(list("ABCD"), dtype=object),
                    index=Index([f"i-{i}" for i in range(30)], dtype=object),
                )
                df.to_pickle(path, compression=compression)

    def test_write_infer(self, compression_ext, get_random_path):
        base = get_random_path
        path1 = base + compression_ext
        path2 = base + ".raw"
        compression = self._extension_to_compression.get(compression_ext.lower())

        with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2:
            df = DataFrame(
                1.1 * np.arange(120).reshape((30, 4)),
                columns=Index(list("ABCD"), dtype=object),
                index=Index([f"i-{i}" for i in range(30)], dtype=object),
            )

            # write to compressed file by inferred compression method
            df.to_pickle(p1)

            # decompress
            with tm.decompress_file(p1, compression=compression) as f:
                with open(p2, "wb") as fh:
                    fh.write(f.read())

            # read decompressed file
            df2 = pd.read_pickle(p2, compression=None)

            tm.assert_frame_equal(df, df2)

    def test_read_explicit(self, compression, get_random_path):
        base = get_random_path
        path1 = base + ".raw"
        path2 = base + ".compressed"

        with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2:
            df = DataFrame(
                1.1 * np.arange(120).reshape((30, 4)),
                columns=Index(list("ABCD"), dtype=object),
                index=Index([f"i-{i}" for i in range(30)], dtype=object),
            )

            # write to uncompressed file
            df.to_pickle(p1, compression=None)

            # compress
            self.compress_file(p1, p2, compression=compression)

            # read compressed file
            df2 = pd.read_pickle(p2, compression=compression)
            tm.assert_frame_equal(df, df2)

    def test_read_infer(self, compression_ext, get_random_path):
        base = get_random_path
        path1 = base + ".raw"
        path2 = base + compression_ext
        compression = self._extension_to_compression.get(compression_ext.lower())

        with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2:
            df = DataFrame(
                1.1 * np.arange(120).reshape((30, 4)),
                columns=Index(list("ABCD"), dtype=object),
                index=Index([f"i-{i}" for i in range(30)], dtype=object),
            )

            # write to uncompressed file
            df.to_pickle(p1, compression=None)

            # compress
            self.compress_file(p1, p2, compression=compression)

            # read compressed file by inferred compression method
            df2 = pd.read_pickle(p2)
            tm.assert_frame_equal(df, df2)


# ---------------------
# test pickle compression
# ---------------------


class TestProtocol:
    @pytest.mark.parametrize("protocol", [-1, 0, 1, 2])
    def test_read(self, protocol, get_random_path):
        with tm.ensure_clean(get_random_path) as path:
            df = DataFrame(
                1.1 * np.arange(120).reshape((30, 4)),
                columns=Index(list("ABCD"), dtype=object),
                index=Index([f"i-{i}" for i in range(30)], dtype=object),
            )
            df.to_pickle(path, protocol=protocol)
            df2 = pd.read_pickle(path)
            tm.assert_frame_equal(df, df2)


@pytest.mark.parametrize(
    ["pickle_file", "excols"],
    [
        ("test_py27.pkl", Index(["a", "b", "c"])),
        (
            "test_mi_py27.pkl",
            pd.MultiIndex.from_arrays([["a", "b", "c"], ["A", "B", "C"]]),
        ),
    ],
)
def test_unicode_decode_error(datapath, pickle_file, excols):
    # pickle file written with py27, should be readable without raising
    #  UnicodeDecodeError, see GH#28645 and GH#31988
    path = datapath("io", "data", "pickle", pickle_file)
    df = pd.read_pickle(path)

    # just test the columns are correct since the values are random
    tm.assert_index_equal(df.columns, excols)


# ---------------------
# tests for buffer I/O
# ---------------------


def test_pickle_buffer_roundtrip():
    with tm.ensure_clean() as path:
        df = DataFrame(
            1.1 * np.arange(120).reshape((30, 4)),
            columns=Index(list("ABCD"), dtype=object),
            index=Index([f"i-{i}" for i in range(30)], dtype=object),
        )
        with open(path, "wb") as fh:
            df.to_pickle(fh)
        with open(path, "rb") as fh:
            result = pd.read_pickle(fh)
        tm.assert_frame_equal(df, result)


# ---------------------
# tests for URL I/O
# ---------------------


@pytest.mark.parametrize(
    "mockurl", ["http://url.com", "ftp://test.com", "http://gzip.com"]
)
def test_pickle_generalurl_read(monkeypatch, mockurl):
    def python_pickler(obj, path):
        with open(path, "wb") as fh:
            pickle.dump(obj, fh, protocol=-1)

    class MockReadResponse:
        def __init__(self, path) -> None:
            self.file = open(path, "rb")
            if "gzip" in path:
                self.headers = {"Content-Encoding": "gzip"}
            else:
                self.headers = {"Content-Encoding": ""}

        def __enter__(self):
            return self

        def __exit__(self, *args):
            self.close()

        def read(self):
            return self.file.read()

        def close(self):
            return self.file.close()

    with tm.ensure_clean() as path:

        def mock_urlopen_read(*args, **kwargs):
            return MockReadResponse(path)

        df = DataFrame(
            1.1 * np.arange(120).reshape((30, 4)),
            columns=Index(list("ABCD"), dtype=object),
            index=Index([f"i-{i}" for i in range(30)], dtype=object),
        )
        python_pickler(df, path)
        monkeypatch.setattr("urllib.request.urlopen", mock_urlopen_read)
        result = pd.read_pickle(mockurl)
        tm.assert_frame_equal(df, result)


def test_pickle_fsspec_roundtrip():
    pytest.importorskip("fsspec")
    with tm.ensure_clean():
        mockurl = "memory://mockfile"
        df = DataFrame(
            1.1 * np.arange(120).reshape((30, 4)),
            columns=Index(list("ABCD"), dtype=object),
            index=Index([f"i-{i}" for i in range(30)], dtype=object),
        )
        df.to_pickle(mockurl)
        result = pd.read_pickle(mockurl)
        tm.assert_frame_equal(df, result)


class MyTz(datetime.tzinfo):
    def __init__(self) -> None:
        pass


def test_read_pickle_with_subclass():
    # GH 12163
    expected = Series(dtype=object), MyTz()
    result = tm.round_trip_pickle(expected)

    tm.assert_series_equal(result[0], expected[0])
    assert isinstance(result[1], MyTz)


def test_pickle_binary_object_compression(compression):
    """
    Read/write from binary file-objects w/wo compression.

    GH 26237, GH 29054, and GH 29570
    """
    df = DataFrame(
        1.1 * np.arange(120).reshape((30, 4)),
        columns=Index(list("ABCD"), dtype=object),
        index=Index([f"i-{i}" for i in range(30)], dtype=object),
    )

    # reference for compression
    with tm.ensure_clean() as path:
        df.to_pickle(path, compression=compression)
        reference = Path(path).read_bytes()

    # write
    buffer = io.BytesIO()
    df.to_pickle(buffer, compression=compression)
    buffer.seek(0)

    # gzip  and zip safe the filename: cannot compare the compressed content
    assert buffer.getvalue() == reference or compression in ("gzip", "zip", "tar")

    # read
    read_df = pd.read_pickle(buffer, compression=compression)
    buffer.seek(0)
    tm.assert_frame_equal(df, read_df)


def test_pickle_dataframe_with_multilevel_index(
    multiindex_year_month_day_dataframe_random_data,
    multiindex_dataframe_random_data,
):
    ymd = multiindex_year_month_day_dataframe_random_data
    frame = multiindex_dataframe_random_data

    def _test_roundtrip(frame):
        unpickled = tm.round_trip_pickle(frame)
        tm.assert_frame_equal(frame, unpickled)

    _test_roundtrip(frame)
    _test_roundtrip(frame.T)
    _test_roundtrip(ymd)
    _test_roundtrip(ymd.T)


def test_pickle_timeseries_periodindex():
    # GH#2891
    prng = period_range("1/1/2011", "1/1/2012", freq="M")
    ts = Series(np.random.default_rng(2).standard_normal(len(prng)), prng)
    new_ts = tm.round_trip_pickle(ts)
    assert new_ts.index.freqstr == "M"


@pytest.mark.parametrize(
    "name", [777, 777.0, "name", datetime.datetime(2001, 11, 11), (1, 2)]
)
def test_pickle_preserve_name(name):
    unpickled = tm.round_trip_pickle(Series(np.arange(10, dtype=np.float64), name=name))
    assert unpickled.name == name


def test_pickle_datetimes(datetime_series):
    unp_ts = tm.round_trip_pickle(datetime_series)
    tm.assert_series_equal(unp_ts, datetime_series)


def test_pickle_strings(string_series):
    unp_series = tm.round_trip_pickle(string_series)
    tm.assert_series_equal(unp_series, string_series)


@td.skip_array_manager_invalid_test
def test_pickle_preserves_block_ndim():
    # GH#37631
    ser = Series(list("abc")).astype("category").iloc[[0]]
    res = tm.round_trip_pickle(ser)

    assert res._mgr.blocks[0].ndim == 1
    assert res._mgr.blocks[0].shape == (1,)

    # GH#37631 OP issue was about indexing, underlying problem was pickle
    tm.assert_series_equal(res[[True]], ser)


@pytest.mark.parametrize("protocol", [pickle.DEFAULT_PROTOCOL, pickle.HIGHEST_PROTOCOL])
def test_pickle_big_dataframe_compression(protocol, compression):
    # GH#39002
    df = DataFrame(range(100000))
    result = tm.round_trip_pathlib(
        partial(df.to_pickle, protocol=protocol, compression=compression),
        partial(pd.read_pickle, compression=compression),
    )
    tm.assert_frame_equal(df, result)


def test_pickle_frame_v124_unpickle_130(datapath):
    # GH#42345 DataFrame created in 1.2.x, unpickle in 1.3.x
    path = datapath(
        Path(__file__).parent,
        "data",
        "legacy_pickle",
        "1.2.4",
        "empty_frame_v1_2_4-GH#42345.pkl",
    )
    with open(path, "rb") as fd:
        df = pickle.load(fd)

    expected = DataFrame(index=[], columns=[])
    tm.assert_frame_equal(df, expected)


def test_pickle_pos_args_deprecation():
    # GH-54229
    df = DataFrame({"a": [1, 2, 3]})
    msg = (
        r"Starting with pandas version 3.0 all arguments of to_pickle except for the "
        r"argument 'path' will be keyword-only."
    )
    with tm.assert_produces_warning(FutureWarning, match=msg):
        buffer = io.BytesIO()
        df.to_pickle(buffer, "infer")