File size: 6,326 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import datetime
from pathlib import Path

import numpy as np
import pytest

import pandas as pd
import pandas._testing as tm
from pandas.util.version import Version

pyreadstat = pytest.importorskip("pyreadstat")


# TODO(CoW) - detection of chained assignment in cython
# https://github.com/pandas-dev/pandas/issues/51315
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
@pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
@pytest.mark.parametrize("path_klass", [lambda p: p, Path])
def test_spss_labelled_num(path_klass, datapath):
    # test file from the Haven project (https://haven.tidyverse.org/)
    # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
    fname = path_klass(datapath("io", "data", "spss", "labelled-num.sav"))

    df = pd.read_spss(fname, convert_categoricals=True)
    expected = pd.DataFrame({"VAR00002": "This is one"}, index=[0])
    expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
    tm.assert_frame_equal(df, expected)

    df = pd.read_spss(fname, convert_categoricals=False)
    expected = pd.DataFrame({"VAR00002": 1.0}, index=[0])
    tm.assert_frame_equal(df, expected)


@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
@pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
def test_spss_labelled_num_na(datapath):
    # test file from the Haven project (https://haven.tidyverse.org/)
    # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
    fname = datapath("io", "data", "spss", "labelled-num-na.sav")

    df = pd.read_spss(fname, convert_categoricals=True)
    expected = pd.DataFrame({"VAR00002": ["This is one", None]})
    expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
    tm.assert_frame_equal(df, expected)

    df = pd.read_spss(fname, convert_categoricals=False)
    expected = pd.DataFrame({"VAR00002": [1.0, np.nan]})
    tm.assert_frame_equal(df, expected)


@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
@pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
def test_spss_labelled_str(datapath):
    # test file from the Haven project (https://haven.tidyverse.org/)
    # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
    fname = datapath("io", "data", "spss", "labelled-str.sav")

    df = pd.read_spss(fname, convert_categoricals=True)
    expected = pd.DataFrame({"gender": ["Male", "Female"]})
    expected["gender"] = pd.Categorical(expected["gender"])
    tm.assert_frame_equal(df, expected)

    df = pd.read_spss(fname, convert_categoricals=False)
    expected = pd.DataFrame({"gender": ["M", "F"]})
    tm.assert_frame_equal(df, expected)


@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
@pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
def test_spss_umlauts(datapath):
    # test file from the Haven project (https://haven.tidyverse.org/)
    # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
    fname = datapath("io", "data", "spss", "umlauts.sav")

    df = pd.read_spss(fname, convert_categoricals=True)
    expected = pd.DataFrame(
        {"var1": ["the ä umlaut", "the ü umlaut", "the ä umlaut", "the ö umlaut"]}
    )
    expected["var1"] = pd.Categorical(expected["var1"])
    tm.assert_frame_equal(df, expected)

    df = pd.read_spss(fname, convert_categoricals=False)
    expected = pd.DataFrame({"var1": [1.0, 2.0, 1.0, 3.0]})
    tm.assert_frame_equal(df, expected)


def test_spss_usecols(datapath):
    # usecols must be list-like
    fname = datapath("io", "data", "spss", "labelled-num.sav")

    with pytest.raises(TypeError, match="usecols must be list-like."):
        pd.read_spss(fname, usecols="VAR00002")


def test_spss_umlauts_dtype_backend(datapath, dtype_backend):
    # test file from the Haven project (https://haven.tidyverse.org/)
    # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT
    fname = datapath("io", "data", "spss", "umlauts.sav")

    df = pd.read_spss(fname, convert_categoricals=False, dtype_backend=dtype_backend)
    expected = pd.DataFrame({"var1": [1.0, 2.0, 1.0, 3.0]}, dtype="Int64")

    if dtype_backend == "pyarrow":
        pa = pytest.importorskip("pyarrow")

        from pandas.arrays import ArrowExtensionArray

        expected = pd.DataFrame(
            {
                col: ArrowExtensionArray(pa.array(expected[col], from_pandas=True))
                for col in expected.columns
            }
        )

    tm.assert_frame_equal(df, expected)


def test_invalid_dtype_backend():
    msg = (
        "dtype_backend numpy is invalid, only 'numpy_nullable' and "
        "'pyarrow' are allowed."
    )
    with pytest.raises(ValueError, match=msg):
        pd.read_spss("test", dtype_backend="numpy")


@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
@pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning")
def test_spss_metadata(datapath):
    # GH 54264
    fname = datapath("io", "data", "spss", "labelled-num.sav")

    df = pd.read_spss(fname)
    metadata = {
        "column_names": ["VAR00002"],
        "column_labels": [None],
        "column_names_to_labels": {"VAR00002": None},
        "file_encoding": "UTF-8",
        "number_columns": 1,
        "number_rows": 1,
        "variable_value_labels": {"VAR00002": {1.0: "This is one"}},
        "value_labels": {"labels0": {1.0: "This is one"}},
        "variable_to_label": {"VAR00002": "labels0"},
        "notes": [],
        "original_variable_types": {"VAR00002": "F8.0"},
        "readstat_variable_types": {"VAR00002": "double"},
        "table_name": None,
        "missing_ranges": {},
        "missing_user_values": {},
        "variable_storage_width": {"VAR00002": 8},
        "variable_display_width": {"VAR00002": 8},
        "variable_alignment": {"VAR00002": "unknown"},
        "variable_measure": {"VAR00002": "unknown"},
        "file_label": None,
        "file_format": "sav/zsav",
    }
    if Version(pyreadstat.__version__) >= Version("1.2.4"):
        metadata.update(
            {
                "creation_time": datetime.datetime(2015, 2, 6, 14, 33, 36),
                "modification_time": datetime.datetime(2015, 2, 6, 14, 33, 36),
            }
        )
    assert df.attrs == metadata