File size: 66,544 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
""" Test cases for time series specific (freq conversion, etc) """
from datetime import (
    date,
    datetime,
    time,
    timedelta,
)
import pickle

import numpy as np
import pytest

from pandas._libs.tslibs import (
    BaseOffset,
    to_offset,
)
from pandas._libs.tslibs.dtypes import freq_to_period_freqstr

from pandas import (
    DataFrame,
    Index,
    NaT,
    Series,
    concat,
    isna,
    to_datetime,
)
import pandas._testing as tm
from pandas.core.indexes.datetimes import (
    DatetimeIndex,
    bdate_range,
    date_range,
)
from pandas.core.indexes.period import (
    Period,
    PeriodIndex,
    period_range,
)
from pandas.core.indexes.timedeltas import timedelta_range
from pandas.tests.plotting.common import _check_ticks_props

from pandas.tseries.offsets import WeekOfMonth

mpl = pytest.importorskip("matplotlib")


class TestTSPlot:
    @pytest.mark.filterwarnings("ignore::UserWarning")
    def test_ts_plot_with_tz(self, tz_aware_fixture):
        # GH2877, GH17173, GH31205, GH31580
        tz = tz_aware_fixture
        index = date_range("1/1/2011", periods=2, freq="h", tz=tz)
        ts = Series([188.5, 328.25], index=index)
        _check_plot_works(ts.plot)
        ax = ts.plot()
        xdata = next(iter(ax.get_lines())).get_xdata()
        # Check first and last points' labels are correct
        assert (xdata[0].hour, xdata[0].minute) == (0, 0)
        assert (xdata[-1].hour, xdata[-1].minute) == (1, 0)

    def test_fontsize_set_correctly(self):
        # For issue #8765
        df = DataFrame(
            np.random.default_rng(2).standard_normal((10, 9)), index=range(10)
        )
        _, ax = mpl.pyplot.subplots()
        df.plot(fontsize=2, ax=ax)
        for label in ax.get_xticklabels() + ax.get_yticklabels():
            assert label.get_fontsize() == 2

    def test_frame_inferred(self):
        # inferred freq
        idx = date_range("1/1/1987", freq="MS", periods=100)
        idx = DatetimeIndex(idx.values, freq=None)

        df = DataFrame(
            np.random.default_rng(2).standard_normal((len(idx), 3)), index=idx
        )
        _check_plot_works(df.plot)

        # axes freq
        idx = idx[0:40].union(idx[45:99])
        df2 = DataFrame(
            np.random.default_rng(2).standard_normal((len(idx), 3)), index=idx
        )
        _check_plot_works(df2.plot)

    def test_frame_inferred_n_gt_1(self):
        # N > 1
        idx = date_range("2008-1-1 00:15:00", freq="15min", periods=10)
        idx = DatetimeIndex(idx.values, freq=None)
        df = DataFrame(
            np.random.default_rng(2).standard_normal((len(idx), 3)), index=idx
        )
        _check_plot_works(df.plot)

    def test_is_error_nozeroindex(self):
        # GH11858
        i = np.array([1, 2, 3])
        a = DataFrame(i, index=i)
        _check_plot_works(a.plot, xerr=a)
        _check_plot_works(a.plot, yerr=a)

    def test_nonnumeric_exclude(self):
        idx = date_range("1/1/1987", freq="YE", periods=3)
        df = DataFrame({"A": ["x", "y", "z"], "B": [1, 2, 3]}, idx)

        fig, ax = mpl.pyplot.subplots()
        df.plot(ax=ax)  # it works
        assert len(ax.get_lines()) == 1  # B was plotted
        mpl.pyplot.close(fig)

    def test_nonnumeric_exclude_error(self):
        idx = date_range("1/1/1987", freq="YE", periods=3)
        df = DataFrame({"A": ["x", "y", "z"], "B": [1, 2, 3]}, idx)
        msg = "no numeric data to plot"
        with pytest.raises(TypeError, match=msg):
            df["A"].plot()

    @pytest.mark.parametrize("freq", ["s", "min", "h", "D", "W", "M", "Q", "Y"])
    def test_tsplot_period(self, freq):
        idx = period_range("12/31/1999", freq=freq, periods=100)
        ser = Series(np.random.default_rng(2).standard_normal(len(idx)), idx)
        _, ax = mpl.pyplot.subplots()
        _check_plot_works(ser.plot, ax=ax)

    @pytest.mark.parametrize(
        "freq", ["s", "min", "h", "D", "W", "ME", "QE-DEC", "YE", "1B30Min"]
    )
    def test_tsplot_datetime(self, freq):
        idx = date_range("12/31/1999", freq=freq, periods=100)
        ser = Series(np.random.default_rng(2).standard_normal(len(idx)), idx)
        _, ax = mpl.pyplot.subplots()
        _check_plot_works(ser.plot, ax=ax)

    def test_tsplot(self):
        ts = Series(
            np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
        )
        _, ax = mpl.pyplot.subplots()
        ts.plot(style="k", ax=ax)
        color = (0.0, 0.0, 0.0, 1)
        assert color == ax.get_lines()[0].get_color()

    def test_both_style_and_color(self):
        ts = Series(
            np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
        )
        msg = (
            "Cannot pass 'style' string with a color symbol and 'color' "
            "keyword argument. Please use one or the other or pass 'style' "
            "without a color symbol"
        )
        with pytest.raises(ValueError, match=msg):
            ts.plot(style="b-", color="#000099")

        s = ts.reset_index(drop=True)
        with pytest.raises(ValueError, match=msg):
            s.plot(style="b-", color="#000099")

    @pytest.mark.parametrize("freq", ["ms", "us"])
    def test_high_freq(self, freq):
        _, ax = mpl.pyplot.subplots()
        rng = date_range("1/1/2012", periods=100, freq=freq)
        ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng)
        _check_plot_works(ser.plot, ax=ax)

    def test_get_datevalue(self):
        from pandas.plotting._matplotlib.converter import get_datevalue

        assert get_datevalue(None, "D") is None
        assert get_datevalue(1987, "Y") == 1987
        assert get_datevalue(Period(1987, "Y"), "M") == Period("1987-12", "M").ordinal
        assert get_datevalue("1/1/1987", "D") == Period("1987-1-1", "D").ordinal

    def test_ts_plot_format_coord(self):
        def check_format_of_first_point(ax, expected_string):
            first_line = ax.get_lines()[0]
            first_x = first_line.get_xdata()[0].ordinal
            first_y = first_line.get_ydata()[0]
            assert expected_string == ax.format_coord(first_x, first_y)

        annual = Series(1, index=date_range("2014-01-01", periods=3, freq="YE-DEC"))
        _, ax = mpl.pyplot.subplots()
        annual.plot(ax=ax)
        check_format_of_first_point(ax, "t = 2014  y = 1.000000")

        # note this is added to the annual plot already in existence, and
        # changes its freq field
        daily = Series(1, index=date_range("2014-01-01", periods=3, freq="D"))
        daily.plot(ax=ax)
        check_format_of_first_point(ax, "t = 2014-01-01  y = 1.000000")

    @pytest.mark.parametrize("freq", ["s", "min", "h", "D", "W", "M", "Q", "Y"])
    def test_line_plot_period_series(self, freq):
        idx = period_range("12/31/1999", freq=freq, periods=100)
        ser = Series(np.random.default_rng(2).standard_normal(len(idx)), idx)
        _check_plot_works(ser.plot, ser.index.freq)

    @pytest.mark.parametrize(
        "frqncy", ["1s", "3s", "5min", "7h", "4D", "8W", "11M", "3Y"]
    )
    def test_line_plot_period_mlt_series(self, frqncy):
        # test period index line plot for series with multiples (`mlt`) of the
        # frequency (`frqncy`) rule code. tests resolution of issue #14763
        idx = period_range("12/31/1999", freq=frqncy, periods=100)
        s = Series(np.random.default_rng(2).standard_normal(len(idx)), idx)
        _check_plot_works(s.plot, s.index.freq.rule_code)

    @pytest.mark.parametrize(
        "freq", ["s", "min", "h", "D", "W", "ME", "QE-DEC", "YE", "1B30Min"]
    )
    def test_line_plot_datetime_series(self, freq):
        idx = date_range("12/31/1999", freq=freq, periods=100)
        ser = Series(np.random.default_rng(2).standard_normal(len(idx)), idx)
        _check_plot_works(ser.plot, ser.index.freq.rule_code)

    @pytest.mark.parametrize("freq", ["s", "min", "h", "D", "W", "ME", "QE", "YE"])
    def test_line_plot_period_frame(self, freq):
        idx = date_range("12/31/1999", freq=freq, periods=100)
        df = DataFrame(
            np.random.default_rng(2).standard_normal((len(idx), 3)),
            index=idx,
            columns=["A", "B", "C"],
        )
        _check_plot_works(df.plot, df.index.freq)

    @pytest.mark.parametrize(
        "frqncy", ["1s", "3s", "5min", "7h", "4D", "8W", "11M", "3Y"]
    )
    def test_line_plot_period_mlt_frame(self, frqncy):
        # test period index line plot for DataFrames with multiples (`mlt`)
        # of the frequency (`frqncy`) rule code. tests resolution of issue
        # #14763
        idx = period_range("12/31/1999", freq=frqncy, periods=100)
        df = DataFrame(
            np.random.default_rng(2).standard_normal((len(idx), 3)),
            index=idx,
            columns=["A", "B", "C"],
        )
        freq = freq_to_period_freqstr(1, df.index.freq.rule_code)
        freq = df.index.asfreq(freq).freq
        _check_plot_works(df.plot, freq)

    @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
    @pytest.mark.parametrize(
        "freq", ["s", "min", "h", "D", "W", "ME", "QE-DEC", "YE", "1B30Min"]
    )
    def test_line_plot_datetime_frame(self, freq):
        idx = date_range("12/31/1999", freq=freq, periods=100)
        df = DataFrame(
            np.random.default_rng(2).standard_normal((len(idx), 3)),
            index=idx,
            columns=["A", "B", "C"],
        )
        freq = freq_to_period_freqstr(1, df.index.freq.rule_code)
        freq = df.index.to_period(freq).freq
        _check_plot_works(df.plot, freq)

    @pytest.mark.parametrize(
        "freq", ["s", "min", "h", "D", "W", "ME", "QE-DEC", "YE", "1B30Min"]
    )
    def test_line_plot_inferred_freq(self, freq):
        idx = date_range("12/31/1999", freq=freq, periods=100)
        ser = Series(np.random.default_rng(2).standard_normal(len(idx)), idx)
        ser = Series(ser.values, Index(np.asarray(ser.index)))
        _check_plot_works(ser.plot, ser.index.inferred_freq)

        ser = ser.iloc[[0, 3, 5, 6]]
        _check_plot_works(ser.plot)

    def test_fake_inferred_business(self):
        _, ax = mpl.pyplot.subplots()
        rng = date_range("2001-1-1", "2001-1-10")
        ts = Series(range(len(rng)), index=rng)
        ts = concat([ts[:3], ts[5:]])
        ts.plot(ax=ax)
        assert not hasattr(ax, "freq")

    def test_plot_offset_freq(self):
        ser = Series(
            np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
        )
        _check_plot_works(ser.plot)

    def test_plot_offset_freq_business(self):
        dr = date_range("2023-01-01", freq="BQS", periods=10)
        ser = Series(np.random.default_rng(2).standard_normal(len(dr)), index=dr)
        _check_plot_works(ser.plot)

    def test_plot_multiple_inferred_freq(self):
        dr = Index([datetime(2000, 1, 1), datetime(2000, 1, 6), datetime(2000, 1, 11)])
        ser = Series(np.random.default_rng(2).standard_normal(len(dr)), index=dr)
        _check_plot_works(ser.plot)

    @pytest.mark.xfail(reason="Api changed in 3.6.0")
    def test_uhf(self):
        import pandas.plotting._matplotlib.converter as conv

        idx = date_range("2012-6-22 21:59:51.960928", freq="ms", periods=500)
        df = DataFrame(
            np.random.default_rng(2).standard_normal((len(idx), 2)), index=idx
        )

        _, ax = mpl.pyplot.subplots()
        df.plot(ax=ax)
        axis = ax.get_xaxis()

        tlocs = axis.get_ticklocs()
        tlabels = axis.get_ticklabels()
        for loc, label in zip(tlocs, tlabels):
            xp = conv._from_ordinal(loc).strftime("%H:%M:%S.%f")
            rs = str(label.get_text())
            if len(rs):
                assert xp == rs

    def test_irreg_hf(self):
        idx = date_range("2012-6-22 21:59:51", freq="s", periods=10)
        df = DataFrame(
            np.random.default_rng(2).standard_normal((len(idx), 2)), index=idx
        )

        irreg = df.iloc[[0, 1, 3, 4]]
        _, ax = mpl.pyplot.subplots()
        irreg.plot(ax=ax)
        diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff()

        sec = 1.0 / 24 / 60 / 60
        assert (np.fabs(diffs[1:] - [sec, sec * 2, sec]) < 1e-8).all()

    def test_irreg_hf_object(self):
        idx = date_range("2012-6-22 21:59:51", freq="s", periods=10)
        df2 = DataFrame(
            np.random.default_rng(2).standard_normal((len(idx), 2)), index=idx
        )
        _, ax = mpl.pyplot.subplots()
        df2.index = df2.index.astype(object)
        df2.plot(ax=ax)
        diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff()
        sec = 1.0 / 24 / 60 / 60
        assert (np.fabs(diffs[1:] - sec) < 1e-8).all()

    def test_irregular_datetime64_repr_bug(self):
        ser = Series(
            np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
        )
        ser = ser.iloc[[0, 1, 2, 7]]

        _, ax = mpl.pyplot.subplots()

        ret = ser.plot(ax=ax)
        assert ret is not None

        for rs, xp in zip(ax.get_lines()[0].get_xdata(), ser.index):
            assert rs == xp

    def test_business_freq(self):
        bts = Series(range(5), period_range("2020-01-01", periods=5))
        msg = r"PeriodDtype\[B\] is deprecated"
        dt = bts.index[0].to_timestamp()
        with tm.assert_produces_warning(FutureWarning, match=msg):
            bts.index = period_range(start=dt, periods=len(bts), freq="B")
        _, ax = mpl.pyplot.subplots()
        bts.plot(ax=ax)
        assert ax.get_lines()[0].get_xydata()[0, 0] == bts.index[0].ordinal
        idx = ax.get_lines()[0].get_xdata()
        with tm.assert_produces_warning(FutureWarning, match=msg):
            assert PeriodIndex(data=idx).freqstr == "B"

    def test_business_freq_convert(self):
        bts = Series(
            np.arange(300, dtype=np.float64),
            index=date_range("2020-01-01", periods=300, freq="B"),
        ).asfreq("BME")
        ts = bts.to_period("M")
        _, ax = mpl.pyplot.subplots()
        bts.plot(ax=ax)
        assert ax.get_lines()[0].get_xydata()[0, 0] == ts.index[0].ordinal
        idx = ax.get_lines()[0].get_xdata()
        assert PeriodIndex(data=idx).freqstr == "M"

    def test_freq_with_no_period_alias(self):
        # GH34487
        freq = WeekOfMonth()
        bts = Series(
            np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
        ).asfreq(freq)
        _, ax = mpl.pyplot.subplots()
        bts.plot(ax=ax)

        idx = ax.get_lines()[0].get_xdata()
        msg = "freq not specified and cannot be inferred"
        with pytest.raises(ValueError, match=msg):
            PeriodIndex(data=idx)

    def test_nonzero_base(self):
        # GH2571
        idx = date_range("2012-12-20", periods=24, freq="h") + timedelta(minutes=30)
        df = DataFrame(np.arange(24), index=idx)
        _, ax = mpl.pyplot.subplots()
        df.plot(ax=ax)
        rs = ax.get_lines()[0].get_xdata()
        assert not Index(rs).is_normalized

    def test_dataframe(self):
        bts = DataFrame(
            {
                "a": Series(
                    np.arange(10, dtype=np.float64),
                    index=date_range("2020-01-01", periods=10),
                )
            }
        )
        _, ax = mpl.pyplot.subplots()
        bts.plot(ax=ax)
        idx = ax.get_lines()[0].get_xdata()
        tm.assert_index_equal(bts.index.to_period(), PeriodIndex(idx))

    @pytest.mark.filterwarnings(
        "ignore:Period with BDay freq is deprecated:FutureWarning"
    )
    @pytest.mark.parametrize(
        "obj",
        [
            Series(
                np.arange(10, dtype=np.float64),
                index=date_range("2020-01-01", periods=10),
            ),
            DataFrame(
                {
                    "a": Series(
                        np.arange(10, dtype=np.float64),
                        index=date_range("2020-01-01", periods=10),
                    ),
                    "b": Series(
                        np.arange(10, dtype=np.float64),
                        index=date_range("2020-01-01", periods=10),
                    )
                    + 1,
                }
            ),
        ],
    )
    def test_axis_limits(self, obj):
        _, ax = mpl.pyplot.subplots()
        obj.plot(ax=ax)
        xlim = ax.get_xlim()
        ax.set_xlim(xlim[0] - 5, xlim[1] + 10)
        result = ax.get_xlim()
        assert result[0] == xlim[0] - 5
        assert result[1] == xlim[1] + 10

        # string
        expected = (Period("1/1/2000", ax.freq), Period("4/1/2000", ax.freq))
        ax.set_xlim("1/1/2000", "4/1/2000")
        result = ax.get_xlim()
        assert int(result[0]) == expected[0].ordinal
        assert int(result[1]) == expected[1].ordinal

        # datetime
        expected = (Period("1/1/2000", ax.freq), Period("4/1/2000", ax.freq))
        ax.set_xlim(datetime(2000, 1, 1), datetime(2000, 4, 1))
        result = ax.get_xlim()
        assert int(result[0]) == expected[0].ordinal
        assert int(result[1]) == expected[1].ordinal
        fig = ax.get_figure()
        mpl.pyplot.close(fig)

    def test_get_finder(self):
        import pandas.plotting._matplotlib.converter as conv

        assert conv.get_finder(to_offset("B")) == conv._daily_finder
        assert conv.get_finder(to_offset("D")) == conv._daily_finder
        assert conv.get_finder(to_offset("ME")) == conv._monthly_finder
        assert conv.get_finder(to_offset("QE")) == conv._quarterly_finder
        assert conv.get_finder(to_offset("YE")) == conv._annual_finder
        assert conv.get_finder(to_offset("W")) == conv._daily_finder

    def test_finder_daily(self):
        day_lst = [10, 40, 252, 400, 950, 2750, 10000]

        msg = "Period with BDay freq is deprecated"
        with tm.assert_produces_warning(FutureWarning, match=msg):
            xpl1 = xpl2 = [Period("1999-1-1", freq="B").ordinal] * len(day_lst)
        rs1 = []
        rs2 = []
        for n in day_lst:
            rng = bdate_range("1999-1-1", periods=n)
            ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng)
            _, ax = mpl.pyplot.subplots()
            ser.plot(ax=ax)
            xaxis = ax.get_xaxis()
            rs1.append(xaxis.get_majorticklocs()[0])

            vmin, vmax = ax.get_xlim()
            ax.set_xlim(vmin + 0.9, vmax)
            rs2.append(xaxis.get_majorticklocs()[0])
            mpl.pyplot.close(ax.get_figure())

        assert rs1 == xpl1
        assert rs2 == xpl2

    def test_finder_quarterly(self):
        yrs = [3.5, 11]

        xpl1 = xpl2 = [Period("1988Q1").ordinal] * len(yrs)
        rs1 = []
        rs2 = []
        for n in yrs:
            rng = period_range("1987Q2", periods=int(n * 4), freq="Q")
            ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng)
            _, ax = mpl.pyplot.subplots()
            ser.plot(ax=ax)
            xaxis = ax.get_xaxis()
            rs1.append(xaxis.get_majorticklocs()[0])

            (vmin, vmax) = ax.get_xlim()
            ax.set_xlim(vmin + 0.9, vmax)
            rs2.append(xaxis.get_majorticklocs()[0])
            mpl.pyplot.close(ax.get_figure())

        assert rs1 == xpl1
        assert rs2 == xpl2

    def test_finder_monthly(self):
        yrs = [1.15, 2.5, 4, 11]

        xpl1 = xpl2 = [Period("Jan 1988").ordinal] * len(yrs)
        rs1 = []
        rs2 = []
        for n in yrs:
            rng = period_range("1987Q2", periods=int(n * 12), freq="M")
            ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng)
            _, ax = mpl.pyplot.subplots()
            ser.plot(ax=ax)
            xaxis = ax.get_xaxis()
            rs1.append(xaxis.get_majorticklocs()[0])

            vmin, vmax = ax.get_xlim()
            ax.set_xlim(vmin + 0.9, vmax)
            rs2.append(xaxis.get_majorticklocs()[0])
            mpl.pyplot.close(ax.get_figure())

        assert rs1 == xpl1
        assert rs2 == xpl2

    def test_finder_monthly_long(self):
        rng = period_range("1988Q1", periods=24 * 12, freq="M")
        ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng)
        _, ax = mpl.pyplot.subplots()
        ser.plot(ax=ax)
        xaxis = ax.get_xaxis()
        rs = xaxis.get_majorticklocs()[0]
        xp = Period("1989Q1", "M").ordinal
        assert rs == xp

    def test_finder_annual(self):
        xp = [1987, 1988, 1990, 1990, 1995, 2020, 2070, 2170]
        xp = [Period(x, freq="Y").ordinal for x in xp]
        rs = []
        for nyears in [5, 10, 19, 49, 99, 199, 599, 1001]:
            rng = period_range("1987", periods=nyears, freq="Y")
            ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng)
            _, ax = mpl.pyplot.subplots()
            ser.plot(ax=ax)
            xaxis = ax.get_xaxis()
            rs.append(xaxis.get_majorticklocs()[0])
            mpl.pyplot.close(ax.get_figure())

        assert rs == xp

    @pytest.mark.slow
    def test_finder_minutely(self):
        nminutes = 50 * 24 * 60
        rng = date_range("1/1/1999", freq="Min", periods=nminutes)
        ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng)
        _, ax = mpl.pyplot.subplots()
        ser.plot(ax=ax)
        xaxis = ax.get_xaxis()
        rs = xaxis.get_majorticklocs()[0]
        xp = Period("1/1/1999", freq="Min").ordinal

        assert rs == xp

    def test_finder_hourly(self):
        nhours = 23
        rng = date_range("1/1/1999", freq="h", periods=nhours)
        ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng)
        _, ax = mpl.pyplot.subplots()
        ser.plot(ax=ax)
        xaxis = ax.get_xaxis()
        rs = xaxis.get_majorticklocs()[0]
        xp = Period("1/1/1999", freq="h").ordinal

        assert rs == xp

    def test_gaps(self):
        ts = Series(
            np.arange(30, dtype=np.float64), index=date_range("2020-01-01", periods=30)
        )
        ts.iloc[5:25] = np.nan
        _, ax = mpl.pyplot.subplots()
        ts.plot(ax=ax)
        lines = ax.get_lines()
        assert len(lines) == 1
        line = lines[0]
        data = line.get_xydata()

        data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)

        assert isinstance(data, np.ma.core.MaskedArray)
        mask = data.mask
        assert mask[5:25, 1].all()
        mpl.pyplot.close(ax.get_figure())

    def test_gaps_irregular(self):
        # irregular
        ts = Series(
            np.arange(30, dtype=np.float64), index=date_range("2020-01-01", periods=30)
        )
        ts = ts.iloc[[0, 1, 2, 5, 7, 9, 12, 15, 20]]
        ts.iloc[2:5] = np.nan
        _, ax = mpl.pyplot.subplots()
        ax = ts.plot(ax=ax)
        lines = ax.get_lines()
        assert len(lines) == 1
        line = lines[0]
        data = line.get_xydata()

        data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)

        assert isinstance(data, np.ma.core.MaskedArray)
        mask = data.mask
        assert mask[2:5, 1].all()
        mpl.pyplot.close(ax.get_figure())

    def test_gaps_non_ts(self):
        # non-ts
        idx = [0, 1, 2, 5, 7, 9, 12, 15, 20]
        ser = Series(np.random.default_rng(2).standard_normal(len(idx)), idx)
        ser.iloc[2:5] = np.nan
        _, ax = mpl.pyplot.subplots()
        ser.plot(ax=ax)
        lines = ax.get_lines()
        assert len(lines) == 1
        line = lines[0]
        data = line.get_xydata()
        data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)

        assert isinstance(data, np.ma.core.MaskedArray)
        mask = data.mask
        assert mask[2:5, 1].all()

    def test_gap_upsample(self):
        low = Series(
            np.arange(30, dtype=np.float64), index=date_range("2020-01-01", periods=30)
        )
        low.iloc[5:25] = np.nan
        _, ax = mpl.pyplot.subplots()
        low.plot(ax=ax)

        idxh = date_range(low.index[0], low.index[-1], freq="12h")
        s = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh)
        s.plot(secondary_y=True)
        lines = ax.get_lines()
        assert len(lines) == 1
        assert len(ax.right_ax.get_lines()) == 1

        line = lines[0]
        data = line.get_xydata()
        data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)

        assert isinstance(data, np.ma.core.MaskedArray)
        mask = data.mask
        assert mask[5:25, 1].all()

    def test_secondary_y(self):
        ser = Series(np.random.default_rng(2).standard_normal(10))
        fig, _ = mpl.pyplot.subplots()
        ax = ser.plot(secondary_y=True)
        assert hasattr(ax, "left_ax")
        assert not hasattr(ax, "right_ax")
        axes = fig.get_axes()
        line = ax.get_lines()[0]
        xp = Series(line.get_ydata(), line.get_xdata())
        tm.assert_series_equal(ser, xp)
        assert ax.get_yaxis().get_ticks_position() == "right"
        assert not axes[0].get_yaxis().get_visible()
        mpl.pyplot.close(fig)

    def test_secondary_y_yaxis(self):
        Series(np.random.default_rng(2).standard_normal(10))
        ser2 = Series(np.random.default_rng(2).standard_normal(10))
        _, ax2 = mpl.pyplot.subplots()
        ser2.plot(ax=ax2)
        assert ax2.get_yaxis().get_ticks_position() == "left"
        mpl.pyplot.close(ax2.get_figure())

    def test_secondary_both(self):
        ser = Series(np.random.default_rng(2).standard_normal(10))
        ser2 = Series(np.random.default_rng(2).standard_normal(10))
        ax = ser2.plot()
        ax2 = ser.plot(secondary_y=True)
        assert ax.get_yaxis().get_visible()
        assert not hasattr(ax, "left_ax")
        assert hasattr(ax, "right_ax")
        assert hasattr(ax2, "left_ax")
        assert not hasattr(ax2, "right_ax")

    def test_secondary_y_ts(self):
        idx = date_range("1/1/2000", periods=10)
        ser = Series(np.random.default_rng(2).standard_normal(10), idx)
        fig, _ = mpl.pyplot.subplots()
        ax = ser.plot(secondary_y=True)
        assert hasattr(ax, "left_ax")
        assert not hasattr(ax, "right_ax")
        axes = fig.get_axes()
        line = ax.get_lines()[0]
        xp = Series(line.get_ydata(), line.get_xdata()).to_timestamp()
        tm.assert_series_equal(ser, xp)
        assert ax.get_yaxis().get_ticks_position() == "right"
        assert not axes[0].get_yaxis().get_visible()
        mpl.pyplot.close(fig)

    def test_secondary_y_ts_yaxis(self):
        idx = date_range("1/1/2000", periods=10)
        ser2 = Series(np.random.default_rng(2).standard_normal(10), idx)
        _, ax2 = mpl.pyplot.subplots()
        ser2.plot(ax=ax2)
        assert ax2.get_yaxis().get_ticks_position() == "left"
        mpl.pyplot.close(ax2.get_figure())

    def test_secondary_y_ts_visible(self):
        idx = date_range("1/1/2000", periods=10)
        ser2 = Series(np.random.default_rng(2).standard_normal(10), idx)
        ax = ser2.plot()
        assert ax.get_yaxis().get_visible()

    def test_secondary_kde(self):
        pytest.importorskip("scipy")
        ser = Series(np.random.default_rng(2).standard_normal(10))
        fig, ax = mpl.pyplot.subplots()
        ax = ser.plot(secondary_y=True, kind="density", ax=ax)
        assert hasattr(ax, "left_ax")
        assert not hasattr(ax, "right_ax")
        axes = fig.get_axes()
        assert axes[1].get_yaxis().get_ticks_position() == "right"

    def test_secondary_bar(self):
        ser = Series(np.random.default_rng(2).standard_normal(10))
        fig, ax = mpl.pyplot.subplots()
        ser.plot(secondary_y=True, kind="bar", ax=ax)
        axes = fig.get_axes()
        assert axes[1].get_yaxis().get_ticks_position() == "right"

    def test_secondary_frame(self):
        df = DataFrame(
            np.random.default_rng(2).standard_normal((5, 3)), columns=["a", "b", "c"]
        )
        axes = df.plot(secondary_y=["a", "c"], subplots=True)
        assert axes[0].get_yaxis().get_ticks_position() == "right"
        assert axes[1].get_yaxis().get_ticks_position() == "left"
        assert axes[2].get_yaxis().get_ticks_position() == "right"

    def test_secondary_bar_frame(self):
        df = DataFrame(
            np.random.default_rng(2).standard_normal((5, 3)), columns=["a", "b", "c"]
        )
        axes = df.plot(kind="bar", secondary_y=["a", "c"], subplots=True)
        assert axes[0].get_yaxis().get_ticks_position() == "right"
        assert axes[1].get_yaxis().get_ticks_position() == "left"
        assert axes[2].get_yaxis().get_ticks_position() == "right"

    def test_mixed_freq_regular_first(self):
        # TODO
        s1 = Series(
            np.arange(20, dtype=np.float64),
            index=date_range("2020-01-01", periods=20, freq="B"),
        )
        s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15]]

        # it works!
        _, ax = mpl.pyplot.subplots()
        s1.plot(ax=ax)

        ax2 = s2.plot(style="g", ax=ax)
        lines = ax2.get_lines()
        msg = r"PeriodDtype\[B\] is deprecated"
        with tm.assert_produces_warning(FutureWarning, match=msg):
            idx1 = PeriodIndex(lines[0].get_xdata())
            idx2 = PeriodIndex(lines[1].get_xdata())

            tm.assert_index_equal(idx1, s1.index.to_period("B"))
            tm.assert_index_equal(idx2, s2.index.to_period("B"))

            left, right = ax2.get_xlim()
            pidx = s1.index.to_period()
        assert left <= pidx[0].ordinal
        assert right >= pidx[-1].ordinal

    def test_mixed_freq_irregular_first(self):
        s1 = Series(
            np.arange(20, dtype=np.float64), index=date_range("2020-01-01", periods=20)
        )
        s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15]]
        _, ax = mpl.pyplot.subplots()
        s2.plot(style="g", ax=ax)
        s1.plot(ax=ax)
        assert not hasattr(ax, "freq")
        lines = ax.get_lines()
        x1 = lines[0].get_xdata()
        tm.assert_numpy_array_equal(x1, s2.index.astype(object).values)
        x2 = lines[1].get_xdata()
        tm.assert_numpy_array_equal(x2, s1.index.astype(object).values)

    def test_mixed_freq_regular_first_df(self):
        # GH 9852
        s1 = Series(
            np.arange(20, dtype=np.float64),
            index=date_range("2020-01-01", periods=20, freq="B"),
        ).to_frame()
        s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15], :]
        _, ax = mpl.pyplot.subplots()
        s1.plot(ax=ax)
        ax2 = s2.plot(style="g", ax=ax)
        lines = ax2.get_lines()
        msg = r"PeriodDtype\[B\] is deprecated"
        with tm.assert_produces_warning(FutureWarning, match=msg):
            idx1 = PeriodIndex(lines[0].get_xdata())
            idx2 = PeriodIndex(lines[1].get_xdata())
            assert idx1.equals(s1.index.to_period("B"))
            assert idx2.equals(s2.index.to_period("B"))
            left, right = ax2.get_xlim()
            pidx = s1.index.to_period()
        assert left <= pidx[0].ordinal
        assert right >= pidx[-1].ordinal

    def test_mixed_freq_irregular_first_df(self):
        # GH 9852
        s1 = Series(
            np.arange(20, dtype=np.float64), index=date_range("2020-01-01", periods=20)
        ).to_frame()
        s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15], :]
        _, ax = mpl.pyplot.subplots()
        s2.plot(style="g", ax=ax)
        s1.plot(ax=ax)
        assert not hasattr(ax, "freq")
        lines = ax.get_lines()
        x1 = lines[0].get_xdata()
        tm.assert_numpy_array_equal(x1, s2.index.astype(object).values)
        x2 = lines[1].get_xdata()
        tm.assert_numpy_array_equal(x2, s1.index.astype(object).values)

    def test_mixed_freq_hf_first(self):
        idxh = date_range("1/1/1999", periods=365, freq="D")
        idxl = date_range("1/1/1999", periods=12, freq="ME")
        high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh)
        low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl)
        _, ax = mpl.pyplot.subplots()
        high.plot(ax=ax)
        low.plot(ax=ax)
        for line in ax.get_lines():
            assert PeriodIndex(data=line.get_xdata()).freq == "D"

    def test_mixed_freq_alignment(self):
        ts_ind = date_range("2012-01-01 13:00", "2012-01-02", freq="h")
        ts_data = np.random.default_rng(2).standard_normal(12)

        ts = Series(ts_data, index=ts_ind)
        ts2 = ts.asfreq("min").interpolate()

        _, ax = mpl.pyplot.subplots()
        ax = ts.plot(ax=ax)
        ts2.plot(style="r", ax=ax)

        assert ax.lines[0].get_xdata()[0] == ax.lines[1].get_xdata()[0]

    def test_mixed_freq_lf_first(self):
        idxh = date_range("1/1/1999", periods=365, freq="D")
        idxl = date_range("1/1/1999", periods=12, freq="ME")
        high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh)
        low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl)
        _, ax = mpl.pyplot.subplots()
        low.plot(legend=True, ax=ax)
        high.plot(legend=True, ax=ax)
        for line in ax.get_lines():
            assert PeriodIndex(data=line.get_xdata()).freq == "D"
        leg = ax.get_legend()
        assert len(leg.texts) == 2
        mpl.pyplot.close(ax.get_figure())

    def test_mixed_freq_lf_first_hourly(self):
        idxh = date_range("1/1/1999", periods=240, freq="min")
        idxl = date_range("1/1/1999", periods=4, freq="h")
        high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh)
        low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl)
        _, ax = mpl.pyplot.subplots()
        low.plot(ax=ax)
        high.plot(ax=ax)
        for line in ax.get_lines():
            assert PeriodIndex(data=line.get_xdata()).freq == "min"

    @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
    def test_mixed_freq_irreg_period(self):
        ts = Series(
            np.arange(30, dtype=np.float64), index=date_range("2020-01-01", periods=30)
        )
        irreg = ts.iloc[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, 17, 18, 29]]
        msg = r"PeriodDtype\[B\] is deprecated"
        with tm.assert_produces_warning(FutureWarning, match=msg):
            rng = period_range("1/3/2000", periods=30, freq="B")
        ps = Series(np.random.default_rng(2).standard_normal(len(rng)), rng)
        _, ax = mpl.pyplot.subplots()
        irreg.plot(ax=ax)
        ps.plot(ax=ax)

    def test_mixed_freq_shared_ax(self):
        # GH13341, using sharex=True
        idx1 = date_range("2015-01-01", periods=3, freq="ME")
        idx2 = idx1[:1].union(idx1[2:])
        s1 = Series(range(len(idx1)), idx1)
        s2 = Series(range(len(idx2)), idx2)

        _, (ax1, ax2) = mpl.pyplot.subplots(nrows=2, sharex=True)
        s1.plot(ax=ax1)
        s2.plot(ax=ax2)

        assert ax1.freq == "M"
        assert ax2.freq == "M"
        assert ax1.lines[0].get_xydata()[0, 0] == ax2.lines[0].get_xydata()[0, 0]

    def test_mixed_freq_shared_ax_twin_x(self):
        # GH13341, using sharex=True
        idx1 = date_range("2015-01-01", periods=3, freq="ME")
        idx2 = idx1[:1].union(idx1[2:])
        s1 = Series(range(len(idx1)), idx1)
        s2 = Series(range(len(idx2)), idx2)
        # using twinx
        _, ax1 = mpl.pyplot.subplots()
        ax2 = ax1.twinx()
        s1.plot(ax=ax1)
        s2.plot(ax=ax2)

        assert ax1.lines[0].get_xydata()[0, 0] == ax2.lines[0].get_xydata()[0, 0]

    @pytest.mark.xfail(reason="TODO (GH14330, GH14322)")
    def test_mixed_freq_shared_ax_twin_x_irregular_first(self):
        # GH13341, using sharex=True
        idx1 = date_range("2015-01-01", periods=3, freq="M")
        idx2 = idx1[:1].union(idx1[2:])
        s1 = Series(range(len(idx1)), idx1)
        s2 = Series(range(len(idx2)), idx2)
        _, ax1 = mpl.pyplot.subplots()
        ax2 = ax1.twinx()
        s2.plot(ax=ax1)
        s1.plot(ax=ax2)
        assert ax1.lines[0].get_xydata()[0, 0] == ax2.lines[0].get_xydata()[0, 0]

    def test_nat_handling(self):
        _, ax = mpl.pyplot.subplots()

        dti = DatetimeIndex(["2015-01-01", NaT, "2015-01-03"])
        s = Series(range(len(dti)), dti)
        s.plot(ax=ax)
        xdata = ax.get_lines()[0].get_xdata()
        # plot x data is bounded by index values
        assert s.index.min() <= Series(xdata).min()
        assert Series(xdata).max() <= s.index.max()

    def test_to_weekly_resampling_disallow_how_kwd(self):
        idxh = date_range("1/1/1999", periods=52, freq="W")
        idxl = date_range("1/1/1999", periods=12, freq="ME")
        high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh)
        low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl)
        _, ax = mpl.pyplot.subplots()
        high.plot(ax=ax)

        msg = (
            "'how' is not a valid keyword for plotting functions. If plotting "
            "multiple objects on shared axes, resample manually first."
        )
        with pytest.raises(ValueError, match=msg):
            low.plot(ax=ax, how="foo")

    def test_to_weekly_resampling(self):
        idxh = date_range("1/1/1999", periods=52, freq="W")
        idxl = date_range("1/1/1999", periods=12, freq="ME")
        high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh)
        low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl)
        _, ax = mpl.pyplot.subplots()
        high.plot(ax=ax)
        low.plot(ax=ax)
        for line in ax.get_lines():
            assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq

    def test_from_weekly_resampling(self):
        idxh = date_range("1/1/1999", periods=52, freq="W")
        idxl = date_range("1/1/1999", periods=12, freq="ME")
        high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh)
        low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl)
        _, ax = mpl.pyplot.subplots()
        low.plot(ax=ax)
        high.plot(ax=ax)

        expected_h = idxh.to_period().asi8.astype(np.float64)
        expected_l = np.array(
            [1514, 1519, 1523, 1527, 1531, 1536, 1540, 1544, 1549, 1553, 1558, 1562],
            dtype=np.float64,
        )
        for line in ax.get_lines():
            assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
            xdata = line.get_xdata(orig=False)
            if len(xdata) == 12:  # idxl lines
                tm.assert_numpy_array_equal(xdata, expected_l)
            else:
                tm.assert_numpy_array_equal(xdata, expected_h)

    @pytest.mark.parametrize("kind1, kind2", [("line", "area"), ("area", "line")])
    def test_from_resampling_area_line_mixed(self, kind1, kind2):
        idxh = date_range("1/1/1999", periods=52, freq="W")
        idxl = date_range("1/1/1999", periods=12, freq="ME")
        high = DataFrame(
            np.random.default_rng(2).random((len(idxh), 3)),
            index=idxh,
            columns=[0, 1, 2],
        )
        low = DataFrame(
            np.random.default_rng(2).random((len(idxl), 3)),
            index=idxl,
            columns=[0, 1, 2],
        )

        _, ax = mpl.pyplot.subplots()
        low.plot(kind=kind1, stacked=True, ax=ax)
        high.plot(kind=kind2, stacked=True, ax=ax)

        # check low dataframe result
        expected_x = np.array(
            [
                1514,
                1519,
                1523,
                1527,
                1531,
                1536,
                1540,
                1544,
                1549,
                1553,
                1558,
                1562,
            ],
            dtype=np.float64,
        )
        expected_y = np.zeros(len(expected_x), dtype=np.float64)
        for i in range(3):
            line = ax.lines[i]
            assert PeriodIndex(line.get_xdata()).freq == idxh.freq
            tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x)
            # check stacked values are correct
            expected_y += low[i].values
            tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y)

        # check high dataframe result
        expected_x = idxh.to_period().asi8.astype(np.float64)
        expected_y = np.zeros(len(expected_x), dtype=np.float64)
        for i in range(3):
            line = ax.lines[3 + i]
            assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
            tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x)
            expected_y += high[i].values
            tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y)

    @pytest.mark.parametrize("kind1, kind2", [("line", "area"), ("area", "line")])
    def test_from_resampling_area_line_mixed_high_to_low(self, kind1, kind2):
        idxh = date_range("1/1/1999", periods=52, freq="W")
        idxl = date_range("1/1/1999", periods=12, freq="ME")
        high = DataFrame(
            np.random.default_rng(2).random((len(idxh), 3)),
            index=idxh,
            columns=[0, 1, 2],
        )
        low = DataFrame(
            np.random.default_rng(2).random((len(idxl), 3)),
            index=idxl,
            columns=[0, 1, 2],
        )
        _, ax = mpl.pyplot.subplots()
        high.plot(kind=kind1, stacked=True, ax=ax)
        low.plot(kind=kind2, stacked=True, ax=ax)

        # check high dataframe result
        expected_x = idxh.to_period().asi8.astype(np.float64)
        expected_y = np.zeros(len(expected_x), dtype=np.float64)
        for i in range(3):
            line = ax.lines[i]
            assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
            tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x)
            expected_y += high[i].values
            tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y)

        # check low dataframe result
        expected_x = np.array(
            [
                1514,
                1519,
                1523,
                1527,
                1531,
                1536,
                1540,
                1544,
                1549,
                1553,
                1558,
                1562,
            ],
            dtype=np.float64,
        )
        expected_y = np.zeros(len(expected_x), dtype=np.float64)
        for i in range(3):
            lines = ax.lines[3 + i]
            assert PeriodIndex(data=lines.get_xdata()).freq == idxh.freq
            tm.assert_numpy_array_equal(lines.get_xdata(orig=False), expected_x)
            expected_y += low[i].values
            tm.assert_numpy_array_equal(lines.get_ydata(orig=False), expected_y)

    def test_mixed_freq_second_millisecond(self):
        # GH 7772, GH 7760
        idxh = date_range("2014-07-01 09:00", freq="s", periods=50)
        idxl = date_range("2014-07-01 09:00", freq="100ms", periods=500)
        high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh)
        low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl)
        # high to low
        _, ax = mpl.pyplot.subplots()
        high.plot(ax=ax)
        low.plot(ax=ax)
        assert len(ax.get_lines()) == 2
        for line in ax.get_lines():
            assert PeriodIndex(data=line.get_xdata()).freq == "ms"

    def test_mixed_freq_second_millisecond_low_to_high(self):
        # GH 7772, GH 7760
        idxh = date_range("2014-07-01 09:00", freq="s", periods=50)
        idxl = date_range("2014-07-01 09:00", freq="100ms", periods=500)
        high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh)
        low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl)
        # low to high
        _, ax = mpl.pyplot.subplots()
        low.plot(ax=ax)
        high.plot(ax=ax)
        assert len(ax.get_lines()) == 2
        for line in ax.get_lines():
            assert PeriodIndex(data=line.get_xdata()).freq == "ms"

    def test_irreg_dtypes(self):
        # date
        idx = [date(2000, 1, 1), date(2000, 1, 5), date(2000, 1, 20)]
        df = DataFrame(
            np.random.default_rng(2).standard_normal((len(idx), 3)),
            Index(idx, dtype=object),
        )
        _check_plot_works(df.plot)

    def test_irreg_dtypes_dt64(self):
        # np.datetime64
        idx = date_range("1/1/2000", periods=10)
        idx = idx[[0, 2, 5, 9]].astype(object)
        df = DataFrame(np.random.default_rng(2).standard_normal((len(idx), 3)), idx)
        _, ax = mpl.pyplot.subplots()
        _check_plot_works(df.plot, ax=ax)

    def test_time(self):
        t = datetime(1, 1, 1, 3, 30, 0)
        deltas = np.random.default_rng(2).integers(1, 20, 3).cumsum()
        ts = np.array([(t + timedelta(minutes=int(x))).time() for x in deltas])
        df = DataFrame(
            {
                "a": np.random.default_rng(2).standard_normal(len(ts)),
                "b": np.random.default_rng(2).standard_normal(len(ts)),
            },
            index=ts,
        )
        _, ax = mpl.pyplot.subplots()
        df.plot(ax=ax)

        # verify tick labels
        ticks = ax.get_xticks()
        labels = ax.get_xticklabels()
        for _tick, _label in zip(ticks, labels):
            m, s = divmod(int(_tick), 60)
            h, m = divmod(m, 60)
            rs = _label.get_text()
            if len(rs) > 0:
                if s != 0:
                    xp = time(h, m, s).strftime("%H:%M:%S")
                else:
                    xp = time(h, m, s).strftime("%H:%M")
                assert xp == rs

    def test_time_change_xlim(self):
        t = datetime(1, 1, 1, 3, 30, 0)
        deltas = np.random.default_rng(2).integers(1, 20, 3).cumsum()
        ts = np.array([(t + timedelta(minutes=int(x))).time() for x in deltas])
        df = DataFrame(
            {
                "a": np.random.default_rng(2).standard_normal(len(ts)),
                "b": np.random.default_rng(2).standard_normal(len(ts)),
            },
            index=ts,
        )
        _, ax = mpl.pyplot.subplots()
        df.plot(ax=ax)

        # verify tick labels
        ticks = ax.get_xticks()
        labels = ax.get_xticklabels()
        for _tick, _label in zip(ticks, labels):
            m, s = divmod(int(_tick), 60)
            h, m = divmod(m, 60)
            rs = _label.get_text()
            if len(rs) > 0:
                if s != 0:
                    xp = time(h, m, s).strftime("%H:%M:%S")
                else:
                    xp = time(h, m, s).strftime("%H:%M")
                assert xp == rs

        # change xlim
        ax.set_xlim("1:30", "5:00")

        # check tick labels again
        ticks = ax.get_xticks()
        labels = ax.get_xticklabels()
        for _tick, _label in zip(ticks, labels):
            m, s = divmod(int(_tick), 60)
            h, m = divmod(m, 60)
            rs = _label.get_text()
            if len(rs) > 0:
                if s != 0:
                    xp = time(h, m, s).strftime("%H:%M:%S")
                else:
                    xp = time(h, m, s).strftime("%H:%M")
                assert xp == rs

    def test_time_musec(self):
        t = datetime(1, 1, 1, 3, 30, 0)
        deltas = np.random.default_rng(2).integers(1, 20, 3).cumsum()
        ts = np.array([(t + timedelta(microseconds=int(x))).time() for x in deltas])
        df = DataFrame(
            {
                "a": np.random.default_rng(2).standard_normal(len(ts)),
                "b": np.random.default_rng(2).standard_normal(len(ts)),
            },
            index=ts,
        )
        _, ax = mpl.pyplot.subplots()
        ax = df.plot(ax=ax)

        # verify tick labels
        ticks = ax.get_xticks()
        labels = ax.get_xticklabels()
        for _tick, _label in zip(ticks, labels):
            m, s = divmod(int(_tick), 60)

            us = round((_tick - int(_tick)) * 1e6)

            h, m = divmod(m, 60)
            rs = _label.get_text()
            if len(rs) > 0:
                if (us % 1000) != 0:
                    xp = time(h, m, s, us).strftime("%H:%M:%S.%f")
                elif (us // 1000) != 0:
                    xp = time(h, m, s, us).strftime("%H:%M:%S.%f")[:-3]
                elif s != 0:
                    xp = time(h, m, s, us).strftime("%H:%M:%S")
                else:
                    xp = time(h, m, s, us).strftime("%H:%M")
                assert xp == rs

    def test_secondary_upsample(self):
        idxh = date_range("1/1/1999", periods=365, freq="D")
        idxl = date_range("1/1/1999", periods=12, freq="ME")
        high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh)
        low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl)
        _, ax = mpl.pyplot.subplots()
        low.plot(ax=ax)
        ax = high.plot(secondary_y=True, ax=ax)
        for line in ax.get_lines():
            assert PeriodIndex(line.get_xdata()).freq == "D"
        assert hasattr(ax, "left_ax")
        assert not hasattr(ax, "right_ax")
        for line in ax.left_ax.get_lines():
            assert PeriodIndex(line.get_xdata()).freq == "D"

    def test_secondary_legend(self):
        fig = mpl.pyplot.figure()
        ax = fig.add_subplot(211)

        # ts
        df = DataFrame(
            np.random.default_rng(2).standard_normal((10, 4)),
            columns=Index(list("ABCD"), dtype=object),
            index=date_range("2000-01-01", periods=10, freq="B"),
        )
        df.plot(secondary_y=["A", "B"], ax=ax)
        leg = ax.get_legend()
        assert len(leg.get_lines()) == 4
        assert leg.get_texts()[0].get_text() == "A (right)"
        assert leg.get_texts()[1].get_text() == "B (right)"
        assert leg.get_texts()[2].get_text() == "C"
        assert leg.get_texts()[3].get_text() == "D"
        assert ax.right_ax.get_legend() is None
        colors = set()
        for line in leg.get_lines():
            colors.add(line.get_color())

        # TODO: color cycle problems
        assert len(colors) == 4
        mpl.pyplot.close(fig)

    def test_secondary_legend_right(self):
        df = DataFrame(
            np.random.default_rng(2).standard_normal((10, 4)),
            columns=Index(list("ABCD"), dtype=object),
            index=date_range("2000-01-01", periods=10, freq="B"),
        )
        fig = mpl.pyplot.figure()
        ax = fig.add_subplot(211)
        df.plot(secondary_y=["A", "C"], mark_right=False, ax=ax)
        leg = ax.get_legend()
        assert len(leg.get_lines()) == 4
        assert leg.get_texts()[0].get_text() == "A"
        assert leg.get_texts()[1].get_text() == "B"
        assert leg.get_texts()[2].get_text() == "C"
        assert leg.get_texts()[3].get_text() == "D"
        mpl.pyplot.close(fig)

    def test_secondary_legend_bar(self):
        df = DataFrame(
            np.random.default_rng(2).standard_normal((10, 4)),
            columns=Index(list("ABCD"), dtype=object),
            index=date_range("2000-01-01", periods=10, freq="B"),
        )
        fig, ax = mpl.pyplot.subplots()
        df.plot(kind="bar", secondary_y=["A"], ax=ax)
        leg = ax.get_legend()
        assert leg.get_texts()[0].get_text() == "A (right)"
        assert leg.get_texts()[1].get_text() == "B"
        mpl.pyplot.close(fig)

    def test_secondary_legend_bar_right(self):
        df = DataFrame(
            np.random.default_rng(2).standard_normal((10, 4)),
            columns=Index(list("ABCD"), dtype=object),
            index=date_range("2000-01-01", periods=10, freq="B"),
        )
        fig, ax = mpl.pyplot.subplots()
        df.plot(kind="bar", secondary_y=["A"], mark_right=False, ax=ax)
        leg = ax.get_legend()
        assert leg.get_texts()[0].get_text() == "A"
        assert leg.get_texts()[1].get_text() == "B"
        mpl.pyplot.close(fig)

    def test_secondary_legend_multi_col(self):
        df = DataFrame(
            np.random.default_rng(2).standard_normal((10, 4)),
            columns=Index(list("ABCD"), dtype=object),
            index=date_range("2000-01-01", periods=10, freq="B"),
        )
        fig = mpl.pyplot.figure()
        ax = fig.add_subplot(211)
        df = DataFrame(
            np.random.default_rng(2).standard_normal((10, 4)),
            columns=Index(list("ABCD"), dtype=object),
            index=date_range("2000-01-01", periods=10, freq="B"),
        )
        ax = df.plot(secondary_y=["C", "D"], ax=ax)
        leg = ax.get_legend()
        assert len(leg.get_lines()) == 4
        assert ax.right_ax.get_legend() is None
        colors = set()
        for line in leg.get_lines():
            colors.add(line.get_color())

        # TODO: color cycle problems
        assert len(colors) == 4
        mpl.pyplot.close(fig)

    def test_secondary_legend_nonts(self):
        # non-ts
        df = DataFrame(
            1.1 * np.arange(120).reshape((30, 4)),
            columns=Index(list("ABCD"), dtype=object),
            index=Index([f"i-{i}" for i in range(30)], dtype=object),
        )
        fig = mpl.pyplot.figure()
        ax = fig.add_subplot(211)
        ax = df.plot(secondary_y=["A", "B"], ax=ax)
        leg = ax.get_legend()
        assert len(leg.get_lines()) == 4
        assert ax.right_ax.get_legend() is None
        colors = set()
        for line in leg.get_lines():
            colors.add(line.get_color())

        # TODO: color cycle problems
        assert len(colors) == 4
        mpl.pyplot.close()

    def test_secondary_legend_nonts_multi_col(self):
        # non-ts
        df = DataFrame(
            1.1 * np.arange(120).reshape((30, 4)),
            columns=Index(list("ABCD"), dtype=object),
            index=Index([f"i-{i}" for i in range(30)], dtype=object),
        )
        fig = mpl.pyplot.figure()
        ax = fig.add_subplot(211)
        ax = df.plot(secondary_y=["C", "D"], ax=ax)
        leg = ax.get_legend()
        assert len(leg.get_lines()) == 4
        assert ax.right_ax.get_legend() is None
        colors = set()
        for line in leg.get_lines():
            colors.add(line.get_color())

        # TODO: color cycle problems
        assert len(colors) == 4

    @pytest.mark.xfail(reason="Api changed in 3.6.0")
    def test_format_date_axis(self):
        rng = date_range("1/1/2012", periods=12, freq="ME")
        df = DataFrame(np.random.default_rng(2).standard_normal((len(rng), 3)), rng)
        _, ax = mpl.pyplot.subplots()
        ax = df.plot(ax=ax)
        xaxis = ax.get_xaxis()
        for line in xaxis.get_ticklabels():
            if len(line.get_text()) > 0:
                assert line.get_rotation() == 30

    def test_ax_plot(self):
        x = date_range(start="2012-01-02", periods=10, freq="D")
        y = list(range(len(x)))
        _, ax = mpl.pyplot.subplots()
        lines = ax.plot(x, y, label="Y")
        tm.assert_index_equal(DatetimeIndex(lines[0].get_xdata()), x)

    def test_mpl_nopandas(self):
        dates = [date(2008, 12, 31), date(2009, 1, 31)]
        values1 = np.arange(10.0, 11.0, 0.5)
        values2 = np.arange(11.0, 12.0, 0.5)

        _, ax = mpl.pyplot.subplots()
        (
            line1,
            line2,
        ) = ax.plot(
            [x.toordinal() for x in dates],
            values1,
            "-",
            [x.toordinal() for x in dates],
            values2,
            "-",
            linewidth=4,
        )

        exp = np.array([x.toordinal() for x in dates], dtype=np.float64)
        tm.assert_numpy_array_equal(line1.get_xydata()[:, 0], exp)
        exp = np.array([x.toordinal() for x in dates], dtype=np.float64)
        tm.assert_numpy_array_equal(line2.get_xydata()[:, 0], exp)

    def test_irregular_ts_shared_ax_xlim(self):
        # GH 2960
        from pandas.plotting._matplotlib.converter import DatetimeConverter

        ts = Series(
            np.arange(20, dtype=np.float64), index=date_range("2020-01-01", periods=20)
        )
        ts_irregular = ts.iloc[[1, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 18]]

        # plot the left section of the irregular series, then the right section
        _, ax = mpl.pyplot.subplots()
        ts_irregular[:5].plot(ax=ax)
        ts_irregular[5:].plot(ax=ax)

        # check that axis limits are correct
        left, right = ax.get_xlim()
        assert left <= DatetimeConverter.convert(ts_irregular.index.min(), "", ax)
        assert right >= DatetimeConverter.convert(ts_irregular.index.max(), "", ax)

    def test_secondary_y_non_ts_xlim(self):
        # GH 3490 - non-timeseries with secondary y
        index_1 = [1, 2, 3, 4]
        index_2 = [5, 6, 7, 8]
        s1 = Series(1, index=index_1)
        s2 = Series(2, index=index_2)

        _, ax = mpl.pyplot.subplots()
        s1.plot(ax=ax)
        left_before, right_before = ax.get_xlim()
        s2.plot(secondary_y=True, ax=ax)
        left_after, right_after = ax.get_xlim()

        assert left_before >= left_after
        assert right_before < right_after

    def test_secondary_y_regular_ts_xlim(self):
        # GH 3490 - regular-timeseries with secondary y
        index_1 = date_range(start="2000-01-01", periods=4, freq="D")
        index_2 = date_range(start="2000-01-05", periods=4, freq="D")
        s1 = Series(1, index=index_1)
        s2 = Series(2, index=index_2)

        _, ax = mpl.pyplot.subplots()
        s1.plot(ax=ax)
        left_before, right_before = ax.get_xlim()
        s2.plot(secondary_y=True, ax=ax)
        left_after, right_after = ax.get_xlim()

        assert left_before >= left_after
        assert right_before < right_after

    def test_secondary_y_mixed_freq_ts_xlim(self):
        # GH 3490 - mixed frequency timeseries with secondary y
        rng = date_range("2000-01-01", periods=10000, freq="min")
        ts = Series(1, index=rng)

        _, ax = mpl.pyplot.subplots()
        ts.plot(ax=ax)
        left_before, right_before = ax.get_xlim()
        ts.resample("D").mean().plot(secondary_y=True, ax=ax)
        left_after, right_after = ax.get_xlim()

        # a downsample should not have changed either limit
        assert left_before == left_after
        assert right_before == right_after

    def test_secondary_y_irregular_ts_xlim(self):
        # GH 3490 - irregular-timeseries with secondary y
        from pandas.plotting._matplotlib.converter import DatetimeConverter

        ts = Series(
            np.arange(20, dtype=np.float64), index=date_range("2020-01-01", periods=20)
        )
        ts_irregular = ts.iloc[[1, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 18]]

        _, ax = mpl.pyplot.subplots()
        ts_irregular[:5].plot(ax=ax)
        # plot higher-x values on secondary axis
        ts_irregular[5:].plot(secondary_y=True, ax=ax)
        # ensure secondary limits aren't overwritten by plot on primary
        ts_irregular[:5].plot(ax=ax)

        left, right = ax.get_xlim()
        assert left <= DatetimeConverter.convert(ts_irregular.index.min(), "", ax)
        assert right >= DatetimeConverter.convert(ts_irregular.index.max(), "", ax)

    def test_plot_outofbounds_datetime(self):
        # 2579 - checking this does not raise
        values = [date(1677, 1, 1), date(1677, 1, 2)]
        _, ax = mpl.pyplot.subplots()
        ax.plot(values)

        values = [datetime(1677, 1, 1, 12), datetime(1677, 1, 2, 12)]
        ax.plot(values)

    def test_format_timedelta_ticks_narrow(self):
        expected_labels = [f"00:00:00.0000000{i:0>2d}" for i in np.arange(10)]

        rng = timedelta_range("0", periods=10, freq="ns")
        df = DataFrame(np.random.default_rng(2).standard_normal((len(rng), 3)), rng)
        _, ax = mpl.pyplot.subplots()
        df.plot(fontsize=2, ax=ax)
        mpl.pyplot.draw()
        labels = ax.get_xticklabels()

        result_labels = [x.get_text() for x in labels]
        assert len(result_labels) == len(expected_labels)
        assert result_labels == expected_labels

    def test_format_timedelta_ticks_wide(self):
        expected_labels = [
            "00:00:00",
            "1 days 03:46:40",
            "2 days 07:33:20",
            "3 days 11:20:00",
            "4 days 15:06:40",
            "5 days 18:53:20",
            "6 days 22:40:00",
            "8 days 02:26:40",
            "9 days 06:13:20",
        ]

        rng = timedelta_range("0", periods=10, freq="1 d")
        df = DataFrame(np.random.default_rng(2).standard_normal((len(rng), 3)), rng)
        _, ax = mpl.pyplot.subplots()
        ax = df.plot(fontsize=2, ax=ax)
        mpl.pyplot.draw()
        labels = ax.get_xticklabels()

        result_labels = [x.get_text() for x in labels]
        assert len(result_labels) == len(expected_labels)
        assert result_labels == expected_labels

    def test_timedelta_plot(self):
        # test issue #8711
        s = Series(range(5), timedelta_range("1day", periods=5))
        _, ax = mpl.pyplot.subplots()
        _check_plot_works(s.plot, ax=ax)

    def test_timedelta_long_period(self):
        # test long period
        index = timedelta_range("1 day 2 hr 30 min 10 s", periods=10, freq="1 d")
        s = Series(np.random.default_rng(2).standard_normal(len(index)), index)
        _, ax = mpl.pyplot.subplots()
        _check_plot_works(s.plot, ax=ax)

    def test_timedelta_short_period(self):
        # test short period
        index = timedelta_range("1 day 2 hr 30 min 10 s", periods=10, freq="1 ns")
        s = Series(np.random.default_rng(2).standard_normal(len(index)), index)
        _, ax = mpl.pyplot.subplots()
        _check_plot_works(s.plot, ax=ax)

    def test_hist(self):
        # https://github.com/matplotlib/matplotlib/issues/8459
        rng = date_range("1/1/2011", periods=10, freq="h")
        x = rng
        w1 = np.arange(0, 1, 0.1)
        w2 = np.arange(0, 1, 0.1)[::-1]
        _, ax = mpl.pyplot.subplots()
        ax.hist([x, x], weights=[w1, w2])

    def test_overlapping_datetime(self):
        # GB 6608
        s1 = Series(
            [1, 2, 3],
            index=[
                datetime(1995, 12, 31),
                datetime(2000, 12, 31),
                datetime(2005, 12, 31),
            ],
        )
        s2 = Series(
            [1, 2, 3],
            index=[
                datetime(1997, 12, 31),
                datetime(2003, 12, 31),
                datetime(2008, 12, 31),
            ],
        )

        # plot first series, then add the second series to those axes,
        # then try adding the first series again
        _, ax = mpl.pyplot.subplots()
        s1.plot(ax=ax)
        s2.plot(ax=ax)
        s1.plot(ax=ax)

    @pytest.mark.xfail(reason="GH9053 matplotlib does not use ax.xaxis.converter")
    def test_add_matplotlib_datetime64(self):
        # GH9053 - ensure that a plot with PeriodConverter still understands
        # datetime64 data. This still fails because matplotlib overrides the
        # ax.xaxis.converter with a DatetimeConverter
        s = Series(
            np.random.default_rng(2).standard_normal(10),
            index=date_range("1970-01-02", periods=10),
        )
        ax = s.plot()
        with tm.assert_produces_warning(DeprecationWarning):
            # multi-dimensional indexing
            ax.plot(s.index, s.values, color="g")
        l1, l2 = ax.lines
        tm.assert_numpy_array_equal(l1.get_xydata(), l2.get_xydata())

    def test_matplotlib_scatter_datetime64(self):
        # https://github.com/matplotlib/matplotlib/issues/11391
        df = DataFrame(np.random.default_rng(2).random((10, 2)), columns=["x", "y"])
        df["time"] = date_range("2018-01-01", periods=10, freq="D")
        _, ax = mpl.pyplot.subplots()
        ax.scatter(x="time", y="y", data=df)
        mpl.pyplot.draw()
        label = ax.get_xticklabels()[0]
        expected = "2018-01-01"
        assert label.get_text() == expected

    def test_check_xticks_rot(self):
        # https://github.com/pandas-dev/pandas/issues/29460
        # regular time series
        x = to_datetime(["2020-05-01", "2020-05-02", "2020-05-03"])
        df = DataFrame({"x": x, "y": [1, 2, 3]})
        axes = df.plot(x="x", y="y")
        _check_ticks_props(axes, xrot=0)

    def test_check_xticks_rot_irregular(self):
        # irregular time series
        x = to_datetime(["2020-05-01", "2020-05-02", "2020-05-04"])
        df = DataFrame({"x": x, "y": [1, 2, 3]})
        axes = df.plot(x="x", y="y")
        _check_ticks_props(axes, xrot=30)

    def test_check_xticks_rot_use_idx(self):
        # irregular time series
        x = to_datetime(["2020-05-01", "2020-05-02", "2020-05-04"])
        df = DataFrame({"x": x, "y": [1, 2, 3]})
        # use timeseries index or not
        axes = df.set_index("x").plot(y="y", use_index=True)
        _check_ticks_props(axes, xrot=30)
        axes = df.set_index("x").plot(y="y", use_index=False)
        _check_ticks_props(axes, xrot=0)

    def test_check_xticks_rot_sharex(self):
        # irregular time series
        x = to_datetime(["2020-05-01", "2020-05-02", "2020-05-04"])
        df = DataFrame({"x": x, "y": [1, 2, 3]})
        # separate subplots
        axes = df.plot(x="x", y="y", subplots=True, sharex=True)
        _check_ticks_props(axes, xrot=30)
        axes = df.plot(x="x", y="y", subplots=True, sharex=False)
        _check_ticks_props(axes, xrot=0)


def _check_plot_works(f, freq=None, series=None, *args, **kwargs):
    import matplotlib.pyplot as plt

    fig = plt.gcf()

    try:
        plt.clf()
        ax = fig.add_subplot(211)
        orig_ax = kwargs.pop("ax", plt.gca())
        orig_axfreq = getattr(orig_ax, "freq", None)

        ret = f(*args, **kwargs)
        assert ret is not None  # do something more intelligent

        ax = kwargs.pop("ax", plt.gca())
        if series is not None:
            dfreq = series.index.freq
            if isinstance(dfreq, BaseOffset):
                dfreq = dfreq.rule_code
            if orig_axfreq is None:
                assert ax.freq == dfreq

        if freq is not None:
            ax_freq = to_offset(ax.freq, is_period=True)
        if freq is not None and orig_axfreq is None:
            assert ax_freq == freq

        ax = fig.add_subplot(212)
        kwargs["ax"] = ax
        ret = f(*args, **kwargs)
        assert ret is not None  # TODO: do something more intelligent

        # GH18439, GH#24088, statsmodels#4772
        with tm.ensure_clean(return_filelike=True) as path:
            pickle.dump(fig, path)
    finally:
        plt.close(fig)