File size: 5,034 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
"""
Tests for Series cumulative operations.

See also
--------
tests.frame.test_cumulative
"""

import numpy as np
import pytest

import pandas as pd
import pandas._testing as tm

methods = {
    "cumsum": np.cumsum,
    "cumprod": np.cumprod,
    "cummin": np.minimum.accumulate,
    "cummax": np.maximum.accumulate,
}


class TestSeriesCumulativeOps:
    @pytest.mark.parametrize("func", [np.cumsum, np.cumprod])
    def test_datetime_series(self, datetime_series, func):
        tm.assert_numpy_array_equal(
            func(datetime_series).values,
            func(np.array(datetime_series)),
            check_dtype=True,
        )

        # with missing values
        ts = datetime_series.copy()
        ts[::2] = np.nan

        result = func(ts)[1::2]
        expected = func(np.array(ts.dropna()))

        tm.assert_numpy_array_equal(result.values, expected, check_dtype=False)

    @pytest.mark.parametrize("method", ["cummin", "cummax"])
    def test_cummin_cummax(self, datetime_series, method):
        ufunc = methods[method]

        result = getattr(datetime_series, method)().values
        expected = ufunc(np.array(datetime_series))

        tm.assert_numpy_array_equal(result, expected)
        ts = datetime_series.copy()
        ts[::2] = np.nan
        result = getattr(ts, method)()[1::2]
        expected = ufunc(ts.dropna())

        result.index = result.index._with_freq(None)
        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize(
        "ts",
        [
            pd.Timedelta(0),
            pd.Timestamp("1999-12-31"),
            pd.Timestamp("1999-12-31").tz_localize("US/Pacific"),
        ],
    )
    @pytest.mark.parametrize(
        "method, skipna, exp_tdi",
        [
            ["cummax", True, ["NaT", "2 days", "NaT", "2 days", "NaT", "3 days"]],
            ["cummin", True, ["NaT", "2 days", "NaT", "1 days", "NaT", "1 days"]],
            [
                "cummax",
                False,
                ["NaT", "NaT", "NaT", "NaT", "NaT", "NaT"],
            ],
            [
                "cummin",
                False,
                ["NaT", "NaT", "NaT", "NaT", "NaT", "NaT"],
            ],
        ],
    )
    def test_cummin_cummax_datetimelike(self, ts, method, skipna, exp_tdi):
        # with ts==pd.Timedelta(0), we are testing td64; with naive Timestamp
        #  we are testing datetime64[ns]; with Timestamp[US/Pacific]
        #  we are testing dt64tz
        tdi = pd.to_timedelta(["NaT", "2 days", "NaT", "1 days", "NaT", "3 days"])
        ser = pd.Series(tdi + ts)

        exp_tdi = pd.to_timedelta(exp_tdi)
        expected = pd.Series(exp_tdi + ts)
        result = getattr(ser, method)(skipna=skipna)
        tm.assert_series_equal(expected, result)

    @pytest.mark.parametrize(
        "func, exp",
        [
            ("cummin", pd.Period("2012-1-1", freq="D")),
            ("cummax", pd.Period("2012-1-2", freq="D")),
        ],
    )
    def test_cummin_cummax_period(self, func, exp):
        # GH#28385
        ser = pd.Series(
            [pd.Period("2012-1-1", freq="D"), pd.NaT, pd.Period("2012-1-2", freq="D")]
        )
        result = getattr(ser, func)(skipna=False)
        expected = pd.Series([pd.Period("2012-1-1", freq="D"), pd.NaT, pd.NaT])
        tm.assert_series_equal(result, expected)

        result = getattr(ser, func)(skipna=True)
        expected = pd.Series([pd.Period("2012-1-1", freq="D"), pd.NaT, exp])
        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize(
        "arg",
        [
            [False, False, False, True, True, False, False],
            [False, False, False, False, False, False, False],
        ],
    )
    @pytest.mark.parametrize(
        "func", [lambda x: x, lambda x: ~x], ids=["identity", "inverse"]
    )
    @pytest.mark.parametrize("method", methods.keys())
    def test_cummethods_bool(self, arg, func, method):
        # GH#6270
        # checking Series method vs the ufunc applied to the values

        ser = func(pd.Series(arg))
        ufunc = methods[method]

        exp_vals = ufunc(ser.values)
        expected = pd.Series(exp_vals)

        result = getattr(ser, method)()

        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize(
        "method, expected",
        [
            ["cumsum", pd.Series([0, 1, np.nan, 1], dtype=object)],
            ["cumprod", pd.Series([False, 0, np.nan, 0])],
            ["cummin", pd.Series([False, False, np.nan, False])],
            ["cummax", pd.Series([False, True, np.nan, True])],
        ],
    )
    def test_cummethods_bool_in_object_dtype(self, method, expected):
        ser = pd.Series([False, True, np.nan, False])
        result = getattr(ser, method)()
        tm.assert_series_equal(result, expected)

    def test_cumprod_timedelta(self):
        # GH#48111
        ser = pd.Series([pd.Timedelta(days=1), pd.Timedelta(days=3)])
        with pytest.raises(TypeError, match="cumprod not supported for Timedelta"):
            ser.cumprod()