File size: 22,027 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
# Pytest customization
import json
import os
import warnings
import tempfile
from contextlib import contextmanager

import numpy as np
import numpy.testing as npt
import pytest
import hypothesis

from scipy._lib._fpumode import get_fpu_mode
from scipy._lib._testutils import FPUModeChangeWarning
from scipy._lib._array_api import SCIPY_ARRAY_API, SCIPY_DEVICE
from scipy._lib import _pep440

try:
    from scipy_doctest.conftest import dt_config
    HAVE_SCPDT = True
except ModuleNotFoundError:
    HAVE_SCPDT = False

try:
    import pytest_run_parallel  # noqa:F401
    PARALLEL_RUN_AVAILABLE = True
except Exception:
    PARALLEL_RUN_AVAILABLE = False


def pytest_configure(config):
    config.addinivalue_line("markers",
        "slow: Tests that are very slow.")
    config.addinivalue_line("markers",
        "xslow: mark test as extremely slow (not run unless explicitly requested)")
    config.addinivalue_line("markers",
        "xfail_on_32bit: mark test as failing on 32-bit platforms")
    try:
        import pytest_timeout  # noqa:F401
    except Exception:
        config.addinivalue_line(
            "markers", 'timeout: mark a test for a non-default timeout')
    try:
        # This is a more reliable test of whether pytest_fail_slow is installed
        # When I uninstalled it, `import pytest_fail_slow` didn't fail!
        from pytest_fail_slow import parse_duration  # type: ignore[import-not-found] # noqa:F401,E501
    except Exception:
        config.addinivalue_line(
            "markers", 'fail_slow: mark a test for a non-default timeout failure')
    config.addinivalue_line("markers",
        "skip_xp_backends(backends, reason=None, np_only=False, cpu_only=False, "
        "exceptions=None): "
        "mark the desired skip configuration for the `skip_xp_backends` fixture.")
    config.addinivalue_line("markers",
        "xfail_xp_backends(backends, reason=None, np_only=False, cpu_only=False, "
        "exceptions=None): "
        "mark the desired xfail configuration for the `xfail_xp_backends` fixture.")
    if not PARALLEL_RUN_AVAILABLE:
        config.addinivalue_line(
            'markers',
            'parallel_threads(n): run the given test function in parallel '
            'using `n` threads.')
        config.addinivalue_line(
            "markers",
            "thread_unsafe: mark the test function as single-threaded",
        )
        config.addinivalue_line(
            "markers",
            "iterations(n): run the given test function `n` times in each thread",
        )


def pytest_runtest_setup(item):
    mark = item.get_closest_marker("xslow")
    if mark is not None:
        try:
            v = int(os.environ.get('SCIPY_XSLOW', '0'))
        except ValueError:
            v = False
        if not v:
            pytest.skip("very slow test; "
                        "set environment variable SCIPY_XSLOW=1 to run it")
    mark = item.get_closest_marker("xfail_on_32bit")
    if mark is not None and np.intp(0).itemsize < 8:
        pytest.xfail(f'Fails on our 32-bit test platform(s): {mark.args[0]}')

    # Older versions of threadpoolctl have an issue that may lead to this
    # warning being emitted, see gh-14441
    with npt.suppress_warnings() as sup:
        sup.filter(pytest.PytestUnraisableExceptionWarning)

        try:
            from threadpoolctl import threadpool_limits

            HAS_THREADPOOLCTL = True
        except Exception:  # observed in gh-14441: (ImportError, AttributeError)
            # Optional dependency only. All exceptions are caught, for robustness
            HAS_THREADPOOLCTL = False

        if HAS_THREADPOOLCTL:
            # Set the number of openmp threads based on the number of workers
            # xdist is using to prevent oversubscription. Simplified version of what
            # sklearn does (it can rely on threadpoolctl and its builtin OpenMP helper
            # functions)
            try:
                xdist_worker_count = int(os.environ['PYTEST_XDIST_WORKER_COUNT'])
            except KeyError:
                # raises when pytest-xdist is not installed
                return

            if not os.getenv('OMP_NUM_THREADS'):
                max_openmp_threads = os.cpu_count() // 2  # use nr of physical cores
                threads_per_worker = max(max_openmp_threads // xdist_worker_count, 1)
                try:
                    threadpool_limits(threads_per_worker, user_api='blas')
                except Exception:
                    # May raise AttributeError for older versions of OpenBLAS.
                    # Catch any error for robustness.
                    return


@pytest.fixture(scope="function", autouse=True)
def check_fpu_mode(request):
    """
    Check FPU mode was not changed during the test.
    """
    old_mode = get_fpu_mode()
    yield
    new_mode = get_fpu_mode()

    if old_mode != new_mode:
        warnings.warn(f"FPU mode changed from {old_mode:#x} to {new_mode:#x} during "
                      "the test",
                      category=FPUModeChangeWarning, stacklevel=0)


if not PARALLEL_RUN_AVAILABLE:
    @pytest.fixture
    def num_parallel_threads():
        return 1


# Array API backend handling
xp_available_backends = {'numpy': np}

if SCIPY_ARRAY_API and isinstance(SCIPY_ARRAY_API, str):
    # fill the dict of backends with available libraries
    try:
        import array_api_strict
        xp_available_backends.update({'array_api_strict': array_api_strict})
        if _pep440.parse(array_api_strict.__version__) < _pep440.Version('2.0'):
            raise ImportError("array-api-strict must be >= version 2.0")
        array_api_strict.set_array_api_strict_flags(
            api_version='2023.12'
        )
    except ImportError:
        pass

    try:
        import torch  # type: ignore[import-not-found]
        xp_available_backends.update({'torch': torch})
        # can use `mps` or `cpu`
        torch.set_default_device(SCIPY_DEVICE)
    except ImportError:
        pass

    try:
        import cupy  # type: ignore[import-not-found]
        xp_available_backends.update({'cupy': cupy})
    except ImportError:
        pass

    try:
        import jax.numpy  # type: ignore[import-not-found]
        xp_available_backends.update({'jax.numpy': jax.numpy})
        jax.config.update("jax_enable_x64", True)
        jax.config.update("jax_default_device", jax.devices(SCIPY_DEVICE)[0])
    except ImportError:
        pass

    # by default, use all available backends
    if SCIPY_ARRAY_API.lower() not in ("1", "true"):
        SCIPY_ARRAY_API_ = json.loads(SCIPY_ARRAY_API)

        if 'all' in SCIPY_ARRAY_API_:
            pass  # same as True
        else:
            # only select a subset of backend by filtering out the dict
            try:
                xp_available_backends = {
                    backend: xp_available_backends[backend]
                    for backend in SCIPY_ARRAY_API_
                }
            except KeyError:
                msg = f"'--array-api-backend' must be in {xp_available_backends.keys()}"
                raise ValueError(msg)

if 'cupy' in xp_available_backends:
    SCIPY_DEVICE = 'cuda'

array_api_compatible = pytest.mark.parametrize("xp", xp_available_backends.values())

skip_xp_invalid_arg = pytest.mark.skipif(SCIPY_ARRAY_API,
    reason = ('Test involves masked arrays, object arrays, or other types '
              'that are not valid input when `SCIPY_ARRAY_API` is used.'))


def _backends_kwargs_from_request(request, skip_or_xfail):
    """A helper for {skip,xfail}_xp_backends"""
    # do not allow multiple backends
    args_ = request.keywords[f'{skip_or_xfail}_xp_backends'].args
    if len(args_) > 1:
        # np_only / cpu_only has args=(), otherwise it's ('numpy',)
        # and we do not allow ('numpy', 'cupy')
        raise ValueError(f"multiple backends: {args_}")

    markers = list(request.node.iter_markers(f'{skip_or_xfail}_xp_backends'))
    backends = []
    kwargs = {}
    for marker in markers:
        if marker.kwargs.get('np_only'):
            kwargs['np_only'] = True
            kwargs['exceptions'] = marker.kwargs.get('exceptions', [])
        elif marker.kwargs.get('cpu_only'):
            if not kwargs.get('np_only'):
                # if np_only is given, it is certainly cpu only
                kwargs['cpu_only'] = True
                kwargs['exceptions'] = marker.kwargs.get('exceptions', [])

        # add backends, if any
        if len(marker.args) > 0:
            backend = marker.args[0]  # was a tuple, ('numpy',) etc
            backends.append(backend)
            kwargs.update(**{backend: marker.kwargs})

    return backends, kwargs


@pytest.fixture
def skip_xp_backends(xp, request):
    """skip_xp_backends(backend=None, reason=None, np_only=False, cpu_only=False, exceptions=None)

    Skip a decorated test for the provided backend, or skip a category of backends.

    See ``skip_or_xfail_backends`` docstring for details. Note that, contrary to
    ``skip_or_xfail_backends``, the ``backend`` and ``reason`` arguments are optional
    single strings: this function only skips a single backend at a time.
    To skip multiple backends, provide multiple decorators.
    """  # noqa: E501
    if "skip_xp_backends" not in request.keywords:
        return

    backends, kwargs = _backends_kwargs_from_request(request, skip_or_xfail='skip')
    skip_or_xfail_xp_backends(xp, backends, kwargs, skip_or_xfail='skip')


@pytest.fixture
def xfail_xp_backends(xp, request):
    """xfail_xp_backends(backend=None, reason=None, np_only=False, cpu_only=False, exceptions=None)

    xfail a decorated test for the provided backend, or xfail a category of backends.

    See ``skip_or_xfail_backends`` docstring for details. Note that, contrary to
    ``skip_or_xfail_backends``, the ``backend`` and ``reason`` arguments are optional
    single strings: this function only xfails a single backend at a time.
    To xfail multiple backends, provide multiple decorators.
    """  # noqa: E501
    if "xfail_xp_backends" not in request.keywords:
        return
    backends, kwargs = _backends_kwargs_from_request(request, skip_or_xfail='xfail')
    skip_or_xfail_xp_backends(xp, backends, kwargs, skip_or_xfail='xfail')


def skip_or_xfail_xp_backends(xp, backends, kwargs, skip_or_xfail='skip'):
    """
    Skip based on the ``skip_xp_backends`` or ``xfail_xp_backends`` marker.

    See the "Support for the array API standard" docs page for usage examples.

    Parameters
    ----------
    backends : tuple
        Backends to skip/xfail, e.g. ``("array_api_strict", "torch")``.
        These are overriden when ``np_only`` is ``True``, and are not
        necessary to provide for non-CPU backends when ``cpu_only`` is ``True``.
        For a custom reason to apply, you should pass a dict ``{'reason': '...'}``
        to a keyword matching the name of the backend.
    reason : str, optional
        A reason for the skip/xfail in the case of ``np_only=True``.
        If unprovided, a default reason is used. Note that it is not possible
        to specify a custom reason with ``cpu_only``.
    np_only : bool, optional
        When ``True``, the test is skipped/xfailed for all backends other
        than the default NumPy backend. There is no need to provide
        any ``backends`` in this case. To specify a reason, pass a
        value to ``reason``. Default: ``False``.
    cpu_only : bool, optional
        When ``True``, the test is skipped/xfailed on non-CPU devices.
        There is no need to provide any ``backends`` in this case,
        but any ``backends`` will also be skipped on the CPU.
        Default: ``False``.
    exceptions : list, optional
        A list of exceptions for use with ``cpu_only`` or ``np_only``.
        This should be provided when delegation is implemented for some,
        but not all, non-CPU/non-NumPy backends.
    skip_or_xfail : str
        ``'skip'`` to skip, ``'xfail'`` to xfail.
    """
    skip_or_xfail = getattr(pytest, skip_or_xfail)
    np_only = kwargs.get("np_only", False)
    cpu_only = kwargs.get("cpu_only", False)
    exceptions = kwargs.get("exceptions", [])

    if reasons := kwargs.get("reasons"):
        raise ValueError(f"provide a single `reason=` kwarg; got {reasons=} instead")

    # input validation
    if np_only and cpu_only:
        # np_only is a stricter subset of cpu_only
        cpu_only = False
    if exceptions and not (cpu_only or np_only):
        raise ValueError("`exceptions` is only valid alongside `cpu_only` or `np_only`")

    if np_only:
        reason = kwargs.get("reason", "do not run with non-NumPy backends.")
        if not isinstance(reason, str) and len(reason) > 1:
            raise ValueError("please provide a singleton `reason` "
                             "when using `np_only`")
        if xp.__name__ != 'numpy' and xp.__name__ not in exceptions:
            skip_or_xfail(reason=reason)
        return
    if cpu_only:
        reason = ("no array-agnostic implementation or delegation available "
                  "for this backend and device")
        exceptions = [] if exceptions is None else exceptions
        if SCIPY_ARRAY_API and SCIPY_DEVICE != 'cpu':
            if xp.__name__ == 'cupy' and 'cupy' not in exceptions:
                skip_or_xfail(reason=reason)
            elif xp.__name__ == 'torch' and 'torch' not in exceptions:
                if 'cpu' not in xp.empty(0).device.type:
                    skip_or_xfail(reason=reason)
            elif xp.__name__ == 'jax.numpy' and 'jax.numpy' not in exceptions:
                for d in xp.empty(0).devices():
                    if 'cpu' not in d.device_kind:
                        skip_or_xfail(reason=reason)

    if backends is not None:
        for i, backend in enumerate(backends):
            if xp.__name__ == backend:
                reason = kwargs[backend].get('reason')
                if not reason:
                    reason = f"do not run with array API backend: {backend}"

                skip_or_xfail(reason=reason)


# Following the approach of NumPy's conftest.py...
# Use a known and persistent tmpdir for hypothesis' caches, which
# can be automatically cleared by the OS or user.
hypothesis.configuration.set_hypothesis_home_dir(
    os.path.join(tempfile.gettempdir(), ".hypothesis")
)

# We register two custom profiles for SciPy - for details see
# https://hypothesis.readthedocs.io/en/latest/settings.html
# The first is designed for our own CI runs; the latter also
# forces determinism and is designed for use via scipy.test()
hypothesis.settings.register_profile(
    name="nondeterministic", deadline=None, print_blob=True,
)
hypothesis.settings.register_profile(
    name="deterministic",
    deadline=None, print_blob=True, database=None, derandomize=True,
    suppress_health_check=list(hypothesis.HealthCheck),
)

# Profile is currently set by environment variable `SCIPY_HYPOTHESIS_PROFILE`
# In the future, it would be good to work the choice into dev.py.
SCIPY_HYPOTHESIS_PROFILE = os.environ.get("SCIPY_HYPOTHESIS_PROFILE",
                                          "deterministic")
hypothesis.settings.load_profile(SCIPY_HYPOTHESIS_PROFILE)


############################################################################
# doctesting stuff

if HAVE_SCPDT:

    # FIXME: populate the dict once
    @contextmanager
    def warnings_errors_and_rng(test=None):
        """Temporarily turn (almost) all warnings to errors.

        Filter out known warnings which we allow.
        """
        known_warnings = dict()

        # these functions are known to emit "divide by zero" RuntimeWarnings
        divide_by_zero = [
            'scipy.linalg.norm', 'scipy.ndimage.center_of_mass',
        ]
        for name in divide_by_zero:
            known_warnings[name] = dict(category=RuntimeWarning,
                                        message='divide by zero')

        # Deprecated stuff in scipy.signal and elsewhere
        deprecated = [
            'scipy.signal.cwt', 'scipy.signal.morlet', 'scipy.signal.morlet2',
            'scipy.signal.ricker',
            'scipy.integrate.simpson',
            'scipy.interpolate.interp2d',
            'scipy.linalg.kron',
        ]
        for name in deprecated:
            known_warnings[name] = dict(category=DeprecationWarning)

        from scipy import integrate
        # the functions are known to emit IntegrationWarnings
        integration_w = ['scipy.special.ellip_normal',
                         'scipy.special.ellip_harm_2',
        ]
        for name in integration_w:
            known_warnings[name] = dict(category=integrate.IntegrationWarning,
                                        message='The occurrence of roundoff')

        # scipy.stats deliberately emits UserWarnings sometimes
        user_w = ['scipy.stats.anderson_ksamp', 'scipy.stats.kurtosistest',
                  'scipy.stats.normaltest', 'scipy.sparse.linalg.norm']
        for name in user_w:
            known_warnings[name] = dict(category=UserWarning)

        # additional one-off warnings to filter
        dct = {
            'scipy.sparse.linalg.norm':
                dict(category=UserWarning, message="Exited at iteration"),
            # tutorials
            'linalg.rst':
                dict(message='the matrix subclass is not',
                     category=PendingDeprecationWarning),
            'stats.rst':
                dict(message='The maximum number of subdivisions',
                     category=integrate.IntegrationWarning),
        }
        known_warnings.update(dct)

        # these legitimately emit warnings in examples
        legit = set('scipy.signal.normalize')

        # Now, the meat of the matter: filter warnings,
        # also control the random seed for each doctest.

        # XXX: this matches the refguide-check behavior, but is a tad strange:
        # makes sure that the seed the old-fashioned np.random* methods is
        # *NOT* reproducible but the new-style `default_rng()` *IS* repoducible.
        # Should these two be either both repro or both not repro?

        from scipy._lib._util import _fixed_default_rng
        import numpy as np
        with _fixed_default_rng():
            np.random.seed(None)
            with warnings.catch_warnings():
                if test and test.name in known_warnings:
                    warnings.filterwarnings('ignore',
                                            **known_warnings[test.name])
                    yield
                elif test and test.name in legit:
                    yield
                else:
                    warnings.simplefilter('error', Warning)
                    yield

    dt_config.user_context_mgr = warnings_errors_and_rng
    dt_config.skiplist = set([
        'scipy.linalg.LinAlgError',     # comes from numpy
        'scipy.fftpack.fftshift',       # fftpack stuff is also from numpy
        'scipy.fftpack.ifftshift',
        'scipy.fftpack.fftfreq',
        'scipy.special.sinc',           # sinc is from numpy
        'scipy.optimize.show_options',  # does not have much to doctest
        'scipy.signal.normalize',       # manipulates warnings (XXX temp skip)
        'scipy.sparse.linalg.norm',     # XXX temp skip
        # these below test things which inherit from np.ndarray
        # cross-ref https://github.com/numpy/numpy/issues/28019
        'scipy.io.matlab.MatlabObject.strides',
        'scipy.io.matlab.MatlabObject.dtype',
        'scipy.io.matlab.MatlabOpaque.dtype',
        'scipy.io.matlab.MatlabOpaque.strides',
        'scipy.io.matlab.MatlabFunction.strides',
        'scipy.io.matlab.MatlabFunction.dtype'
    ])

    # these are affected by NumPy 2.0 scalar repr: rely on string comparison
    if np.__version__ < "2":
        dt_config.skiplist.update(set([
            'scipy.io.hb_read',
            'scipy.io.hb_write',
            'scipy.sparse.csgraph.connected_components',
            'scipy.sparse.csgraph.depth_first_order',
            'scipy.sparse.csgraph.shortest_path',
            'scipy.sparse.csgraph.floyd_warshall',
            'scipy.sparse.csgraph.dijkstra',
            'scipy.sparse.csgraph.bellman_ford',
            'scipy.sparse.csgraph.johnson',
            'scipy.sparse.csgraph.yen',
            'scipy.sparse.csgraph.breadth_first_order',
            'scipy.sparse.csgraph.reverse_cuthill_mckee',
            'scipy.sparse.csgraph.structural_rank',
            'scipy.sparse.csgraph.construct_dist_matrix',
            'scipy.sparse.csgraph.reconstruct_path',
            'scipy.ndimage.value_indices',
            'scipy.stats.mstats.describe',
    ]))

    # help pytest collection a bit: these names are either private
    # (distributions), or just do not need doctesting.
    dt_config.pytest_extra_ignore = [
        "scipy.stats.distributions",
        "scipy.optimize.cython_optimize",
        "scipy.test",
        "scipy.show_config",
        # equivalent to "pytest --ignore=path/to/file"
        "scipy/special/_precompute",
        "scipy/interpolate/_interpnd_info.py",
        "scipy/_lib/array_api_compat",
        "scipy/_lib/highs",
        "scipy/_lib/unuran",
        "scipy/_lib/_gcutils.py",
        "scipy/_lib/doccer.py",
        "scipy/_lib/_uarray",
    ]

    dt_config.pytest_extra_xfail = {
        # name: reason
        "ND_regular_grid.rst": "ReST parser limitation",
        "extrapolation_examples.rst": "ReST parser limitation",
        "sampling_pinv.rst": "__cinit__ unexpected argument",
        "sampling_srou.rst": "nan in scalar_power",
        "probability_distributions.rst": "integration warning",
    }

    # tutorials
    dt_config.pseudocode = set(['integrate.nquad(func,'])
    dt_config.local_resources = {
        'io.rst': [
            "octave_a.mat",
            "octave_cells.mat",
            "octave_struct.mat"
        ]
    }

    dt_config.strict_check = True
############################################################################