File size: 12,385 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
from functools import update_wrapper, lru_cache
import inspect

from ._pocketfft import helper as _helper

import numpy as np
from scipy._lib._array_api import array_namespace


def next_fast_len(target, real=False):
    """Find the next fast size of input data to ``fft``, for zero-padding, etc.

    SciPy's FFT algorithms gain their speed by a recursive divide and conquer
    strategy. This relies on efficient functions for small prime factors of the
    input length. Thus, the transforms are fastest when using composites of the
    prime factors handled by the fft implementation. If there are efficient
    functions for all radices <= `n`, then the result will be a number `x`
    >= ``target`` with only prime factors < `n`. (Also known as `n`-smooth
    numbers)

    Parameters
    ----------
    target : int
        Length to start searching from. Must be a positive integer.
    real : bool, optional
        True if the FFT involves real input or output (e.g., `rfft` or `hfft`
        but not `fft`). Defaults to False.

    Returns
    -------
    out : int
        The smallest fast length greater than or equal to ``target``.

    Notes
    -----
    The result of this function may change in future as performance
    considerations change, for example, if new prime factors are added.

    Calling `fft` or `ifft` with real input data performs an ``'R2C'``
    transform internally.

    Examples
    --------
    On a particular machine, an FFT of prime length takes 11.4 ms:

    >>> from scipy import fft
    >>> import numpy as np
    >>> rng = np.random.default_rng()
    >>> min_len = 93059  # prime length is worst case for speed
    >>> a = rng.standard_normal(min_len)
    >>> b = fft.fft(a)

    Zero-padding to the next regular length reduces computation time to
    1.6 ms, a speedup of 7.3 times:

    >>> fft.next_fast_len(min_len, real=True)
    93312
    >>> b = fft.fft(a, 93312)

    Rounding up to the next power of 2 is not optimal, taking 3.0 ms to
    compute; 1.9 times longer than the size given by ``next_fast_len``:

    >>> b = fft.fft(a, 131072)

    """
    pass


# Directly wrap the c-function good_size but take the docstring etc., from the
# next_fast_len function above
_sig = inspect.signature(next_fast_len)
next_fast_len = update_wrapper(lru_cache(_helper.good_size), next_fast_len)
next_fast_len.__wrapped__ = _helper.good_size
next_fast_len.__signature__ = _sig


def prev_fast_len(target, real=False):
    """Find the previous fast size of input data to ``fft``.
    Useful for discarding a minimal number of samples before FFT.

    SciPy's FFT algorithms gain their speed by a recursive divide and conquer
    strategy. This relies on efficient functions for small prime factors of the
    input length. Thus, the transforms are fastest when using composites of the
    prime factors handled by the fft implementation. If there are efficient
    functions for all radices <= `n`, then the result will be a number `x`
    <= ``target`` with only prime factors <= `n`. (Also known as `n`-smooth
    numbers)

    Parameters
    ----------
    target : int
        Maximum length to search until. Must be a positive integer.
    real : bool, optional
        True if the FFT involves real input or output (e.g., `rfft` or `hfft`
        but not `fft`). Defaults to False.

    Returns
    -------
    out : int
        The largest fast length less than or equal to ``target``.

    Notes
    -----
    The result of this function may change in future as performance
    considerations change, for example, if new prime factors are added.

    Calling `fft` or `ifft` with real input data performs an ``'R2C'``
    transform internally.

    In the current implementation, prev_fast_len assumes radices of
    2,3,5,7,11 for complex FFT and 2,3,5 for real FFT.

    Examples
    --------
    On a particular machine, an FFT of prime length takes 16.2 ms:

    >>> from scipy import fft
    >>> import numpy as np
    >>> rng = np.random.default_rng()
    >>> max_len = 93059  # prime length is worst case for speed
    >>> a = rng.standard_normal(max_len)
    >>> b = fft.fft(a)

    Performing FFT on the maximum fast length less than max_len
    reduces the computation time to 1.5 ms, a speedup of 10.5 times:

    >>> fft.prev_fast_len(max_len, real=True)
    92160
    >>> c = fft.fft(a[:92160]) # discard last 899 samples

    """
    pass


# Directly wrap the c-function prev_good_size but take the docstring etc.,
# from the prev_fast_len function above
_sig_prev_fast_len = inspect.signature(prev_fast_len)
prev_fast_len = update_wrapper(lru_cache()(_helper.prev_good_size), prev_fast_len)
prev_fast_len.__wrapped__ = _helper.prev_good_size
prev_fast_len.__signature__ = _sig_prev_fast_len


def _init_nd_shape_and_axes(x, shape, axes):
    """Handle shape and axes arguments for N-D transforms.

    Returns the shape and axes in a standard form, taking into account negative
    values and checking for various potential errors.

    Parameters
    ----------
    x : array_like
        The input array.
    shape : int or array_like of ints or None
        The shape of the result. If both `shape` and `axes` (see below) are
        None, `shape` is ``x.shape``; if `shape` is None but `axes` is
        not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
        If `shape` is -1, the size of the corresponding dimension of `x` is
        used.
    axes : int or array_like of ints or None
        Axes along which the calculation is computed.
        The default is over all axes.
        Negative indices are automatically converted to their positive
        counterparts.

    Returns
    -------
    shape : tuple
        The shape of the result as a tuple of integers.
    axes : list
        Axes along which the calculation is computed, as a list of integers.

    """
    x = np.asarray(x)
    return _helper._init_nd_shape_and_axes(x, shape, axes)


def fftfreq(n, d=1.0, *, xp=None, device=None):
    """Return the Discrete Fourier Transform sample frequencies.

    The returned float array `f` contains the frequency bin centers in cycles
    per unit of the sample spacing (with zero at the start).  For instance, if
    the sample spacing is in seconds, then the frequency unit is cycles/second.

    Given a window length `n` and a sample spacing `d`::

      f = [0, 1, ...,   n/2-1,     -n/2, ..., -1] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n)   if n is odd

    Parameters
    ----------
    n : int
        Window length.
    d : scalar, optional
        Sample spacing (inverse of the sampling rate). Defaults to 1.
    xp : array_namespace, optional
        The namespace for the return array. Default is None, where NumPy is used.
    device : device, optional
        The device for the return array.
        Only valid when `xp.fft.fftfreq` implements the device parameter.
     
    Returns
    -------
    f : ndarray
        Array of length `n` containing the sample frequencies.

    Examples
    --------
    >>> import numpy as np
    >>> import scipy.fft
    >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
    >>> fourier = scipy.fft.fft(signal)
    >>> n = signal.size
    >>> timestep = 0.1
    >>> freq = scipy.fft.fftfreq(n, d=timestep)
    >>> freq
    array([ 0.  ,  1.25,  2.5 , ..., -3.75, -2.5 , -1.25])

    """
    xp = np if xp is None else xp
    # numpy does not yet support the `device` keyword
    # `xp.__name__ != 'numpy'` should be removed when numpy is compatible
    if hasattr(xp, 'fft') and xp.__name__ != 'numpy':
        return xp.fft.fftfreq(n, d=d, device=device)
    if device is not None:
        raise ValueError('device parameter is not supported for input array type')
    return np.fft.fftfreq(n, d=d)


def rfftfreq(n, d=1.0, *, xp=None, device=None):
    """Return the Discrete Fourier Transform sample frequencies
    (for usage with rfft, irfft).

    The returned float array `f` contains the frequency bin centers in cycles
    per unit of the sample spacing (with zero at the start).  For instance, if
    the sample spacing is in seconds, then the frequency unit is cycles/second.

    Given a window length `n` and a sample spacing `d`::

      f = [0, 1, ...,     n/2-1,     n/2] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n)   if n is odd

    Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`)
    the Nyquist frequency component is considered to be positive.

    Parameters
    ----------
    n : int
        Window length.
    d : scalar, optional
        Sample spacing (inverse of the sampling rate). Defaults to 1.
    xp : array_namespace, optional
        The namespace for the return array. Default is None, where NumPy is used.
    device : device, optional
        The device for the return array.
        Only valid when `xp.fft.rfftfreq` implements the device parameter.

    Returns
    -------
    f : ndarray
        Array of length ``n//2 + 1`` containing the sample frequencies.

    Examples
    --------
    >>> import numpy as np
    >>> import scipy.fft
    >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
    >>> fourier = scipy.fft.rfft(signal)
    >>> n = signal.size
    >>> sample_rate = 100
    >>> freq = scipy.fft.fftfreq(n, d=1./sample_rate)
    >>> freq
    array([  0.,  10.,  20., ..., -30., -20., -10.])
    >>> freq = scipy.fft.rfftfreq(n, d=1./sample_rate)
    >>> freq
    array([  0.,  10.,  20.,  30.,  40.,  50.])

    """
    xp = np if xp is None else xp
    # numpy does not yet support the `device` keyword
    # `xp.__name__ != 'numpy'` should be removed when numpy is compatible
    if hasattr(xp, 'fft') and xp.__name__ != 'numpy':
        return xp.fft.rfftfreq(n, d=d, device=device)
    if device is not None:
        raise ValueError('device parameter is not supported for input array type')
    return np.fft.rfftfreq(n, d=d)


def fftshift(x, axes=None):
    """Shift the zero-frequency component to the center of the spectrum.

    This function swaps half-spaces for all axes listed (defaults to all).
    Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.

    Parameters
    ----------
    x : array_like
        Input array.
    axes : int or shape tuple, optional
        Axes over which to shift.  Default is None, which shifts all axes.

    Returns
    -------
    y : ndarray
        The shifted array.

    See Also
    --------
    ifftshift : The inverse of `fftshift`.

    Examples
    --------
    >>> import numpy as np
    >>> freqs = np.fft.fftfreq(10, 0.1)
    >>> freqs
    array([ 0.,  1.,  2., ..., -3., -2., -1.])
    >>> np.fft.fftshift(freqs)
    array([-5., -4., -3., -2., -1.,  0.,  1.,  2.,  3.,  4.])

    Shift the zero-frequency component only along the second axis:

    >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
    >>> freqs
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])
    >>> np.fft.fftshift(freqs, axes=(1,))
    array([[ 2.,  0.,  1.],
           [-4.,  3.,  4.],
           [-1., -3., -2.]])

    """
    xp = array_namespace(x)
    if hasattr(xp, 'fft'):
        return xp.fft.fftshift(x, axes=axes)
    x = np.asarray(x)
    y = np.fft.fftshift(x, axes=axes)
    return xp.asarray(y)


def ifftshift(x, axes=None):
    """The inverse of `fftshift`. Although identical for even-length `x`, the
    functions differ by one sample for odd-length `x`.

    Parameters
    ----------
    x : array_like
        Input array.
    axes : int or shape tuple, optional
        Axes over which to calculate.  Defaults to None, which shifts all axes.

    Returns
    -------
    y : ndarray
        The shifted array.

    See Also
    --------
    fftshift : Shift zero-frequency component to the center of the spectrum.

    Examples
    --------
    >>> import numpy as np
    >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
    >>> freqs
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])
    >>> np.fft.ifftshift(np.fft.fftshift(freqs))
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])

    """
    xp = array_namespace(x)
    if hasattr(xp, 'fft'):
        return xp.fft.ifftshift(x, axes=axes)
    x = np.asarray(x)
    y = np.fft.ifftshift(x, axes=axes)
    return xp.asarray(y)