File size: 9,927 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import numpy as np
from scipy.integrate import ode
from .common import validate_tol, validate_first_step, warn_extraneous
from .base import OdeSolver, DenseOutput


class LSODA(OdeSolver):
    """Adams/BDF method with automatic stiffness detection and switching.

    This is a wrapper to the Fortran solver from ODEPACK [1]_. It switches
    automatically between the nonstiff Adams method and the stiff BDF method.
    The method was originally detailed in [2]_.

    Parameters
    ----------
    fun : callable
        Right-hand side of the system: the time derivative of the state ``y``
        at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a
        scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. ``fun`` must
        return an array of the same shape as ``y``. See `vectorized` for more
        information.
    t0 : float
        Initial time.
    y0 : array_like, shape (n,)
        Initial state.
    t_bound : float
        Boundary time - the integration won't continue beyond it. It also
        determines the direction of the integration.
    first_step : float or None, optional
        Initial step size. Default is ``None`` which means that the algorithm
        should choose.
    min_step : float, optional
        Minimum allowed step size. Default is 0.0, i.e., the step size is not
        bounded and determined solely by the solver.
    max_step : float, optional
        Maximum allowed step size. Default is np.inf, i.e., the step size is not
        bounded and determined solely by the solver.
    rtol, atol : float and array_like, optional
        Relative and absolute tolerances. The solver keeps the local error
        estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
        relative accuracy (number of correct digits), while `atol` controls
        absolute accuracy (number of correct decimal places). To achieve the
        desired `rtol`, set `atol` to be smaller than the smallest value that
        can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
        allowable error. If `atol` is larger than ``rtol * abs(y)`` the
        number of correct digits is not guaranteed. Conversely, to achieve the
        desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
        than `atol`. If components of y have different scales, it might be
        beneficial to set different `atol` values for different components by
        passing array_like with shape (n,) for `atol`. Default values are
        1e-3 for `rtol` and 1e-6 for `atol`.
    jac : None or callable, optional
        Jacobian matrix of the right-hand side of the system with respect to
        ``y``. The Jacobian matrix has shape (n, n) and its element (i, j) is
        equal to ``d f_i / d y_j``. The function will be called as
        ``jac(t, y)``. If None (default), the Jacobian will be
        approximated by finite differences. It is generally recommended to
        provide the Jacobian rather than relying on a finite-difference
        approximation.
    lband, uband : int or None
        Parameters defining the bandwidth of the Jacobian,
        i.e., ``jac[i, j] != 0 only for i - lband <= j <= i + uband``. Setting
        these requires your jac routine to return the Jacobian in the packed format:
        the returned array must have ``n`` columns and ``uband + lband + 1``
        rows in which Jacobian diagonals are written. Specifically
        ``jac_packed[uband + i - j , j] = jac[i, j]``. The same format is used
        in `scipy.linalg.solve_banded` (check for an illustration).
        These parameters can be also used with ``jac=None`` to reduce the
        number of Jacobian elements estimated by finite differences.
    vectorized : bool, optional
        Whether `fun` may be called in a vectorized fashion. False (default)
        is recommended for this solver.

        If ``vectorized`` is False, `fun` will always be called with ``y`` of
        shape ``(n,)``, where ``n = len(y0)``.

        If ``vectorized`` is True, `fun` may be called with ``y`` of shape
        ``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave
        such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of
        the returned array is the time derivative of the state corresponding
        with a column of ``y``).

        Setting ``vectorized=True`` allows for faster finite difference
        approximation of the Jacobian by methods 'Radau' and 'BDF', but
        will result in slower execution for this solver.

    Attributes
    ----------
    n : int
        Number of equations.
    status : string
        Current status of the solver: 'running', 'finished' or 'failed'.
    t_bound : float
        Boundary time.
    direction : float
        Integration direction: +1 or -1.
    t : float
        Current time.
    y : ndarray
        Current state.
    t_old : float
        Previous time. None if no steps were made yet.
    nfev : int
        Number of evaluations of the right-hand side.
    njev : int
        Number of evaluations of the Jacobian.

    References
    ----------
    .. [1] A. C. Hindmarsh, "ODEPACK, A Systematized Collection of ODE
           Solvers," IMACS Transactions on Scientific Computation, Vol 1.,
           pp. 55-64, 1983.
    .. [2] L. Petzold, "Automatic selection of methods for solving stiff and
           nonstiff systems of ordinary differential equations", SIAM Journal
           on Scientific and Statistical Computing, Vol. 4, No. 1, pp. 136-148,
           1983.
    """
    def __init__(self, fun, t0, y0, t_bound, first_step=None, min_step=0.0,
                 max_step=np.inf, rtol=1e-3, atol=1e-6, jac=None, lband=None,
                 uband=None, vectorized=False, **extraneous):
        warn_extraneous(extraneous)
        super().__init__(fun, t0, y0, t_bound, vectorized)

        if first_step is None:
            first_step = 0  # LSODA value for automatic selection.
        else:
            first_step = validate_first_step(first_step, t0, t_bound)

        first_step *= self.direction

        if max_step == np.inf:
            max_step = 0  # LSODA value for infinity.
        elif max_step <= 0:
            raise ValueError("`max_step` must be positive.")

        if min_step < 0:
            raise ValueError("`min_step` must be nonnegative.")

        rtol, atol = validate_tol(rtol, atol, self.n)

        solver = ode(self.fun, jac)
        solver.set_integrator('lsoda', rtol=rtol, atol=atol, max_step=max_step,
                              min_step=min_step, first_step=first_step,
                              lband=lband, uband=uband)
        solver.set_initial_value(y0, t0)

        # Inject t_bound into rwork array as needed for itask=5.
        solver._integrator.rwork[0] = self.t_bound
        solver._integrator.call_args[4] = solver._integrator.rwork

        self._lsoda_solver = solver

    def _step_impl(self):
        solver = self._lsoda_solver
        integrator = solver._integrator

        # From lsoda.step and lsoda.integrate itask=5 means take a single
        # step and do not go past t_bound.
        itask = integrator.call_args[2]
        integrator.call_args[2] = 5
        solver._y, solver.t = integrator.run(
            solver.f, solver.jac or (lambda: None), solver._y, solver.t,
            self.t_bound, solver.f_params, solver.jac_params)
        integrator.call_args[2] = itask

        if solver.successful():
            self.t = solver.t
            self.y = solver._y
            # From LSODA Fortran source njev is equal to nlu.
            self.njev = integrator.iwork[12]
            self.nlu = integrator.iwork[12]
            return True, None
        else:
            return False, 'Unexpected istate in LSODA.'

    def _dense_output_impl(self):
        iwork = self._lsoda_solver._integrator.iwork
        rwork = self._lsoda_solver._integrator.rwork

        # We want to produce the Nordsieck history array, yh, up to the order
        # used in the last successful iteration. The step size is unimportant
        # because it will be scaled out in LsodaDenseOutput. Some additional
        # work may be required because ODEPACK's LSODA implementation produces
        # the Nordsieck history in the state needed for the next iteration.

        # iwork[13] contains order from last successful iteration, while
        # iwork[14] contains order to be attempted next.
        order = iwork[13]

        # rwork[11] contains the step size to be attempted next, while
        # rwork[10] contains step size from last successful iteration.
        h = rwork[11]

        # rwork[20:20 + (iwork[14] + 1) * self.n] contains entries of the
        # Nordsieck array in state needed for next iteration. We want
        # the entries up to order for the last successful step so use the 
        # following.
        yh = np.reshape(rwork[20:20 + (order + 1) * self.n],
                        (self.n, order + 1), order='F').copy()
        if iwork[14] < order:
            # If the order is set to decrease then the final column of yh
            # has not been updated within ODEPACK's LSODA
            # implementation because this column will not be used in the
            # next iteration. We must rescale this column to make the
            # associated step size consistent with the other columns.
            yh[:, -1] *= (h / rwork[10]) ** order

        return LsodaDenseOutput(self.t_old, self.t, h, order, yh)


class LsodaDenseOutput(DenseOutput):
    def __init__(self, t_old, t, h, order, yh):
        super().__init__(t_old, t)
        self.h = h
        self.yh = yh
        self.p = np.arange(order + 1)

    def _call_impl(self, t):
        if t.ndim == 0:
            x = ((t - self.t) / self.h) ** self.p
        else:
            x = ((t - self.t) / self.h) ** self.p[:, None]

        return np.dot(self.yh, x)