File size: 22,024 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
import sys
import copy
import heapq
import collections
import functools
import warnings

import numpy as np

from scipy._lib._util import MapWrapper, _FunctionWrapper


class LRUDict(collections.OrderedDict):
    def __init__(self, max_size):
        self.__max_size = max_size

    def __setitem__(self, key, value):
        existing_key = (key in self)
        super().__setitem__(key, value)
        if existing_key:
            self.move_to_end(key)
        elif len(self) > self.__max_size:
            self.popitem(last=False)

    def update(self, other):
        # Not needed below
        raise NotImplementedError()


class SemiInfiniteFunc:
    """
    Argument transform from (start, +-oo) to (0, 1)
    """
    def __init__(self, func, start, infty):
        self._func = func
        self._start = start
        self._sgn = -1 if infty < 0 else 1

        # Overflow threshold for the 1/t**2 factor
        self._tmin = sys.float_info.min**0.5

    def get_t(self, x):
        z = self._sgn * (x - self._start) + 1
        if z == 0:
            # Can happen only if point not in range
            return np.inf
        return 1 / z

    def __call__(self, t):
        if t < self._tmin:
            return 0.0
        else:
            x = self._start + self._sgn * (1 - t) / t
            f = self._func(x)
            return self._sgn * (f / t) / t


class DoubleInfiniteFunc:
    """
    Argument transform from (-oo, oo) to (-1, 1)
    """
    def __init__(self, func):
        self._func = func

        # Overflow threshold for the 1/t**2 factor
        self._tmin = sys.float_info.min**0.5

    def get_t(self, x):
        s = -1 if x < 0 else 1
        return s / (abs(x) + 1)

    def __call__(self, t):
        if abs(t) < self._tmin:
            return 0.0
        else:
            x = (1 - abs(t)) / t
            f = self._func(x)
            return (f / t) / t


def _max_norm(x):
    return np.amax(abs(x))


def _get_sizeof(obj):
    try:
        return sys.getsizeof(obj)
    except TypeError:
        # occurs on pypy
        if hasattr(obj, '__sizeof__'):
            return int(obj.__sizeof__())
        return 64


class _Bunch:
    def __init__(self, **kwargs):
        self.__keys = kwargs.keys()
        self.__dict__.update(**kwargs)

    def __repr__(self):
        key_value_pairs = ', '.join(
            f'{k}={repr(self.__dict__[k])}' for k in self.__keys
        )
        return f"_Bunch({key_value_pairs})"


def quad_vec(f, a, b, epsabs=1e-200, epsrel=1e-8, norm='2', cache_size=100e6,
             limit=10000, workers=1, points=None, quadrature=None, full_output=False,
             *, args=()):
    r"""Adaptive integration of a vector-valued function.

    Parameters
    ----------
    f : callable
        Vector-valued function f(x) to integrate.
    a : float
        Initial point.
    b : float
        Final point.
    epsabs : float, optional
        Absolute tolerance.
    epsrel : float, optional
        Relative tolerance.
    norm : {'max', '2'}, optional
        Vector norm to use for error estimation.
    cache_size : int, optional
        Number of bytes to use for memoization.
    limit : float or int, optional
        An upper bound on the number of subintervals used in the adaptive
        algorithm.
    workers : int or map-like callable, optional
        If `workers` is an integer, part of the computation is done in
        parallel subdivided to this many tasks (using
        :class:`python:multiprocessing.pool.Pool`).
        Supply `-1` to use all cores available to the Process.
        Alternatively, supply a map-like callable, such as
        :meth:`python:multiprocessing.pool.Pool.map` for evaluating the
        population in parallel.
        This evaluation is carried out as ``workers(func, iterable)``.
    points : list, optional
        List of additional breakpoints.
    quadrature : {'gk21', 'gk15', 'trapezoid'}, optional
        Quadrature rule to use on subintervals.
        Options: 'gk21' (Gauss-Kronrod 21-point rule),
        'gk15' (Gauss-Kronrod 15-point rule),
        'trapezoid' (composite trapezoid rule).
        Default: 'gk21' for finite intervals and 'gk15' for (semi-)infinite
    full_output : bool, optional
        Return an additional ``info`` dictionary.
    args : tuple, optional
        Extra arguments to pass to function, if any.

        .. versionadded:: 1.8.0

    Returns
    -------
    res : {float, array-like}
        Estimate for the result
    err : float
        Error estimate for the result in the given norm
    info : dict
        Returned only when ``full_output=True``.
        Info dictionary. Is an object with the attributes:

            success : bool
                Whether integration reached target precision.
            status : int
                Indicator for convergence, success (0),
                failure (1), and failure due to rounding error (2).
            neval : int
                Number of function evaluations.
            intervals : ndarray, shape (num_intervals, 2)
                Start and end points of subdivision intervals.
            integrals : ndarray, shape (num_intervals, ...)
                Integral for each interval.
                Note that at most ``cache_size`` values are recorded,
                and the array may contains *nan* for missing items.
            errors : ndarray, shape (num_intervals,)
                Estimated integration error for each interval.

    Notes
    -----
    The algorithm mainly follows the implementation of QUADPACK's
    DQAG* algorithms, implementing global error control and adaptive
    subdivision.

    The algorithm here has some differences to the QUADPACK approach:

    Instead of subdividing one interval at a time, the algorithm
    subdivides N intervals with largest errors at once. This enables
    (partial) parallelization of the integration.

    The logic of subdividing "next largest" intervals first is then
    not implemented, and we rely on the above extension to avoid
    concentrating on "small" intervals only.

    The Wynn epsilon table extrapolation is not used (QUADPACK uses it
    for infinite intervals). This is because the algorithm here is
    supposed to work on vector-valued functions, in an user-specified
    norm, and the extension of the epsilon algorithm to this case does
    not appear to be widely agreed. For max-norm, using elementwise
    Wynn epsilon could be possible, but we do not do this here with
    the hope that the epsilon extrapolation is mainly useful in
    special cases.

    References
    ----------
    [1] R. Piessens, E. de Doncker, QUADPACK (1983).

    Examples
    --------
    We can compute integrations of a vector-valued function:

    >>> from scipy.integrate import quad_vec
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> alpha = np.linspace(0.0, 2.0, num=30)
    >>> f = lambda x: x**alpha
    >>> x0, x1 = 0, 2
    >>> y, err = quad_vec(f, x0, x1)
    >>> plt.plot(alpha, y)
    >>> plt.xlabel(r"$\alpha$")
    >>> plt.ylabel(r"$\int_{0}^{2} x^\alpha dx$")
    >>> plt.show()

    When using the argument `workers`, one should ensure
    that the main module is import-safe, for instance
    by rewriting the example above as:

    .. code-block:: python

        from scipy.integrate import quad_vec
        import numpy as np
        import matplotlib.pyplot as plt

        alpha = np.linspace(0.0, 2.0, num=30)
        x0, x1 = 0, 2
        def f(x):
            return x**alpha

        if __name__ == "__main__":
            y, err = quad_vec(f, x0, x1, workers=2)
    """
    a = float(a)
    b = float(b)

    if args:
        if not isinstance(args, tuple):
            args = (args,)

        # create a wrapped function to allow the use of map and Pool.map
        f = _FunctionWrapper(f, args)

    # Use simple transformations to deal with integrals over infinite
    # intervals.
    kwargs = dict(epsabs=epsabs,
                  epsrel=epsrel,
                  norm=norm,
                  cache_size=cache_size,
                  limit=limit,
                  workers=workers,
                  points=points,
                  quadrature='gk15' if quadrature is None else quadrature,
                  full_output=full_output)
    if np.isfinite(a) and np.isinf(b):
        f2 = SemiInfiniteFunc(f, start=a, infty=b)
        if points is not None:
            kwargs['points'] = tuple(f2.get_t(xp) for xp in points)
        return quad_vec(f2, 0, 1, **kwargs)
    elif np.isfinite(b) and np.isinf(a):
        f2 = SemiInfiniteFunc(f, start=b, infty=a)
        if points is not None:
            kwargs['points'] = tuple(f2.get_t(xp) for xp in points)
        res = quad_vec(f2, 0, 1, **kwargs)
        return (-res[0],) + res[1:]
    elif np.isinf(a) and np.isinf(b):
        sgn = -1 if b < a else 1

        # NB. explicitly split integral at t=0, which separates
        # the positive and negative sides
        f2 = DoubleInfiniteFunc(f)
        if points is not None:
            kwargs['points'] = (0,) + tuple(f2.get_t(xp) for xp in points)
        else:
            kwargs['points'] = (0,)

        if a != b:
            res = quad_vec(f2, -1, 1, **kwargs)
        else:
            res = quad_vec(f2, 1, 1, **kwargs)

        return (res[0]*sgn,) + res[1:]
    elif not (np.isfinite(a) and np.isfinite(b)):
        raise ValueError(f"invalid integration bounds a={a}, b={b}")

    norm_funcs = {
        None: _max_norm,
        'max': _max_norm,
        '2': np.linalg.norm
    }
    if callable(norm):
        norm_func = norm
    else:
        norm_func = norm_funcs[norm]

    parallel_count = 128
    min_intervals = 2

    try:
        _quadrature = {None: _quadrature_gk21,
                       'gk21': _quadrature_gk21,
                       'gk15': _quadrature_gk15,
                       'trapz': _quadrature_trapezoid,  # alias for backcompat
                       'trapezoid': _quadrature_trapezoid}[quadrature]
    except KeyError as e:
        raise ValueError(f"unknown quadrature {quadrature!r}") from e

    if quadrature == "trapz":
        msg = ("`quadrature='trapz'` is deprecated in favour of "
               "`quadrature='trapezoid' and will raise an error from SciPy 1.16.0 "
               "onwards.")
        warnings.warn(msg, DeprecationWarning, stacklevel=2)

    # Initial interval set
    if points is None:
        initial_intervals = [(a, b)]
    else:
        prev = a
        initial_intervals = []
        for p in sorted(points):
            p = float(p)
            if not (a < p < b) or p == prev:
                continue
            initial_intervals.append((prev, p))
            prev = p
        initial_intervals.append((prev, b))

    global_integral = None
    global_error = None
    rounding_error = None
    interval_cache = None
    intervals = []
    neval = 0

    for x1, x2 in initial_intervals:
        ig, err, rnd = _quadrature(x1, x2, f, norm_func)
        neval += _quadrature.num_eval

        if global_integral is None:
            if isinstance(ig, (float, complex)):
                # Specialize for scalars
                if norm_func in (_max_norm, np.linalg.norm):
                    norm_func = abs

            global_integral = ig
            global_error = float(err)
            rounding_error = float(rnd)

            cache_count = cache_size // _get_sizeof(ig)
            interval_cache = LRUDict(cache_count)
        else:
            global_integral += ig
            global_error += err
            rounding_error += rnd

        interval_cache[(x1, x2)] = copy.copy(ig)
        intervals.append((-err, x1, x2))

    heapq.heapify(intervals)

    CONVERGED = 0
    NOT_CONVERGED = 1
    ROUNDING_ERROR = 2
    NOT_A_NUMBER = 3

    status_msg = {
        CONVERGED: "Target precision reached.",
        NOT_CONVERGED: "Target precision not reached.",
        ROUNDING_ERROR: "Target precision could not be reached due to rounding error.",
        NOT_A_NUMBER: "Non-finite values encountered."
    }

    # Process intervals
    with MapWrapper(workers) as mapwrapper:
        ier = NOT_CONVERGED

        while intervals and len(intervals) < limit:
            # Select intervals with largest errors for subdivision
            tol = max(epsabs, epsrel*norm_func(global_integral))

            to_process = []
            err_sum = 0

            for j in range(parallel_count):
                if not intervals:
                    break

                if j > 0 and err_sum > global_error - tol/8:
                    # avoid unnecessary parallel splitting
                    break

                interval = heapq.heappop(intervals)

                neg_old_err, a, b = interval
                old_int = interval_cache.pop((a, b), None)
                to_process.append(
                    ((-neg_old_err, a, b, old_int), f, norm_func, _quadrature)
                )
                err_sum += -neg_old_err

            # Subdivide intervals
            for parts in mapwrapper(_subdivide_interval, to_process):
                dint, derr, dround_err, subint, dneval = parts
                neval += dneval
                global_integral += dint
                global_error += derr
                rounding_error += dround_err
                for x in subint:
                    x1, x2, ig, err = x
                    interval_cache[(x1, x2)] = ig
                    heapq.heappush(intervals, (-err, x1, x2))

            # Termination check
            if len(intervals) >= min_intervals:
                tol = max(epsabs, epsrel*norm_func(global_integral))
                if global_error < tol/8:
                    ier = CONVERGED
                    break
                if global_error < rounding_error:
                    ier = ROUNDING_ERROR
                    break

            if not (np.isfinite(global_error) and np.isfinite(rounding_error)):
                ier = NOT_A_NUMBER
                break

    res = global_integral
    err = global_error + rounding_error

    if full_output:
        res_arr = np.asarray(res)
        dummy = np.full(res_arr.shape, np.nan, dtype=res_arr.dtype)
        integrals = np.array([interval_cache.get((z[1], z[2]), dummy)
                                      for z in intervals], dtype=res_arr.dtype)
        errors = np.array([-z[0] for z in intervals])
        intervals = np.array([[z[1], z[2]] for z in intervals])

        info = _Bunch(neval=neval,
                      success=(ier == CONVERGED),
                      status=ier,
                      message=status_msg[ier],
                      intervals=intervals,
                      integrals=integrals,
                      errors=errors)
        return (res, err, info)
    else:
        return (res, err)


def _subdivide_interval(args):
    interval, f, norm_func, _quadrature = args
    old_err, a, b, old_int = interval

    c = 0.5 * (a + b)

    # Left-hand side
    if getattr(_quadrature, 'cache_size', 0) > 0:
        f = functools.lru_cache(_quadrature.cache_size)(f)

    s1, err1, round1 = _quadrature(a, c, f, norm_func)
    dneval = _quadrature.num_eval
    s2, err2, round2 = _quadrature(c, b, f, norm_func)
    dneval += _quadrature.num_eval
    if old_int is None:
        old_int, _, _ = _quadrature(a, b, f, norm_func)
        dneval += _quadrature.num_eval

    if getattr(_quadrature, 'cache_size', 0) > 0:
        dneval = f.cache_info().misses

    dint = s1 + s2 - old_int
    derr = err1 + err2 - old_err
    dround_err = round1 + round2

    subintervals = ((a, c, s1, err1), (c, b, s2, err2))
    return dint, derr, dround_err, subintervals, dneval


def _quadrature_trapezoid(x1, x2, f, norm_func):
    """
    Composite trapezoid quadrature
    """
    x3 = 0.5*(x1 + x2)
    f1 = f(x1)
    f2 = f(x2)
    f3 = f(x3)

    s2 = 0.25 * (x2 - x1) * (f1 + 2*f3 + f2)

    round_err = 0.25 * abs(x2 - x1) * (float(norm_func(f1))
                                       + 2*float(norm_func(f3))
                                       + float(norm_func(f2))) * 2e-16

    s1 = 0.5 * (x2 - x1) * (f1 + f2)
    err = 1/3 * float(norm_func(s1 - s2))
    return s2, err, round_err


_quadrature_trapezoid.cache_size = 3 * 3
_quadrature_trapezoid.num_eval = 3


def _quadrature_gk(a, b, f, norm_func, x, w, v):
    """
    Generic Gauss-Kronrod quadrature
    """

    fv = [0.0]*len(x)

    c = 0.5 * (a + b)
    h = 0.5 * (b - a)

    # Gauss-Kronrod
    s_k = 0.0
    s_k_abs = 0.0
    for i in range(len(x)):
        ff = f(c + h*x[i])
        fv[i] = ff

        vv = v[i]

        # \int f(x)
        s_k += vv * ff
        # \int |f(x)|
        s_k_abs += vv * abs(ff)

    # Gauss
    s_g = 0.0
    for i in range(len(w)):
        s_g += w[i] * fv[2*i + 1]

    # Quadrature of abs-deviation from average
    s_k_dabs = 0.0
    y0 = s_k / 2.0
    for i in range(len(x)):
        # \int |f(x) - y0|
        s_k_dabs += v[i] * abs(fv[i] - y0)

    # Use similar error estimation as quadpack
    err = float(norm_func((s_k - s_g) * h))
    dabs = float(norm_func(s_k_dabs * h))
    if dabs != 0 and err != 0:
        err = dabs * min(1.0, (200 * err / dabs)**1.5)

    eps = sys.float_info.epsilon
    round_err = float(norm_func(50 * eps * h * s_k_abs))

    if round_err > sys.float_info.min:
        err = max(err, round_err)

    return h * s_k, err, round_err


def _quadrature_gk21(a, b, f, norm_func):
    """
    Gauss-Kronrod 21 quadrature with error estimate
    """
    # Gauss-Kronrod points
    x = (0.995657163025808080735527280689003,
         0.973906528517171720077964012084452,
         0.930157491355708226001207180059508,
         0.865063366688984510732096688423493,
         0.780817726586416897063717578345042,
         0.679409568299024406234327365114874,
         0.562757134668604683339000099272694,
         0.433395394129247190799265943165784,
         0.294392862701460198131126603103866,
         0.148874338981631210884826001129720,
         0,
         -0.148874338981631210884826001129720,
         -0.294392862701460198131126603103866,
         -0.433395394129247190799265943165784,
         -0.562757134668604683339000099272694,
         -0.679409568299024406234327365114874,
         -0.780817726586416897063717578345042,
         -0.865063366688984510732096688423493,
         -0.930157491355708226001207180059508,
         -0.973906528517171720077964012084452,
         -0.995657163025808080735527280689003)

    # 10-point weights
    w = (0.066671344308688137593568809893332,
         0.149451349150580593145776339657697,
         0.219086362515982043995534934228163,
         0.269266719309996355091226921569469,
         0.295524224714752870173892994651338,
         0.295524224714752870173892994651338,
         0.269266719309996355091226921569469,
         0.219086362515982043995534934228163,
         0.149451349150580593145776339657697,
         0.066671344308688137593568809893332)

    # 21-point weights
    v = (0.011694638867371874278064396062192,
         0.032558162307964727478818972459390,
         0.054755896574351996031381300244580,
         0.075039674810919952767043140916190,
         0.093125454583697605535065465083366,
         0.109387158802297641899210590325805,
         0.123491976262065851077958109831074,
         0.134709217311473325928054001771707,
         0.142775938577060080797094273138717,
         0.147739104901338491374841515972068,
         0.149445554002916905664936468389821,
         0.147739104901338491374841515972068,
         0.142775938577060080797094273138717,
         0.134709217311473325928054001771707,
         0.123491976262065851077958109831074,
         0.109387158802297641899210590325805,
         0.093125454583697605535065465083366,
         0.075039674810919952767043140916190,
         0.054755896574351996031381300244580,
         0.032558162307964727478818972459390,
         0.011694638867371874278064396062192)

    return _quadrature_gk(a, b, f, norm_func, x, w, v)


_quadrature_gk21.num_eval = 21


def _quadrature_gk15(a, b, f, norm_func):
    """
    Gauss-Kronrod 15 quadrature with error estimate
    """
    # Gauss-Kronrod points
    x = (0.991455371120812639206854697526329,
         0.949107912342758524526189684047851,
         0.864864423359769072789712788640926,
         0.741531185599394439863864773280788,
         0.586087235467691130294144838258730,
         0.405845151377397166906606412076961,
         0.207784955007898467600689403773245,
         0.000000000000000000000000000000000,
         -0.207784955007898467600689403773245,
         -0.405845151377397166906606412076961,
         -0.586087235467691130294144838258730,
         -0.741531185599394439863864773280788,
         -0.864864423359769072789712788640926,
         -0.949107912342758524526189684047851,
         -0.991455371120812639206854697526329)

    # 7-point weights
    w = (0.129484966168869693270611432679082,
         0.279705391489276667901467771423780,
         0.381830050505118944950369775488975,
         0.417959183673469387755102040816327,
         0.381830050505118944950369775488975,
         0.279705391489276667901467771423780,
         0.129484966168869693270611432679082)

    # 15-point weights
    v = (0.022935322010529224963732008058970,
         0.063092092629978553290700663189204,
         0.104790010322250183839876322541518,
         0.140653259715525918745189590510238,
         0.169004726639267902826583426598550,
         0.190350578064785409913256402421014,
         0.204432940075298892414161999234649,
         0.209482141084727828012999174891714,
         0.204432940075298892414161999234649,
         0.190350578064785409913256402421014,
         0.169004726639267902826583426598550,
         0.140653259715525918745189590510238,
         0.104790010322250183839876322541518,
         0.063092092629978553290700663189204,
         0.022935322010529224963732008058970)

    return _quadrature_gk(a, b, f, norm_func, x, w, v)


_quadrature_gk15.num_eval = 15