File size: 53,250 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
# Author: Travis Oliphant 2001
# Author: Nathan Woods 2013 (nquad &c)
import sys
import warnings
from functools import partial

from . import _quadpack
import numpy as np

__all__ = ["quad", "dblquad", "tplquad", "nquad", "IntegrationWarning"]


class IntegrationWarning(UserWarning):
    """
    Warning on issues during integration.
    """
    pass


def quad(func, a, b, args=(), full_output=0, epsabs=1.49e-8, epsrel=1.49e-8,
         limit=50, points=None, weight=None, wvar=None, wopts=None, maxp1=50,
         limlst=50, complex_func=False):
    """
    Compute a definite integral.

    Integrate func from `a` to `b` (possibly infinite interval) using a
    technique from the Fortran library QUADPACK.

    Parameters
    ----------
    func : {function, scipy.LowLevelCallable}
        A Python function or method to integrate. If `func` takes many
        arguments, it is integrated along the axis corresponding to the
        first argument.

        If the user desires improved integration performance, then `f` may
        be a `scipy.LowLevelCallable` with one of the signatures::

            double func(double x)
            double func(double x, void *user_data)
            double func(int n, double *xx)
            double func(int n, double *xx, void *user_data)

        The ``user_data`` is the data contained in the `scipy.LowLevelCallable`.
        In the call forms with ``xx``,  ``n`` is the length of the ``xx``
        array which contains ``xx[0] == x`` and the rest of the items are
        numbers contained in the ``args`` argument of quad.

        In addition, certain ctypes call signatures are supported for
        backward compatibility, but those should not be used in new code.
    a : float
        Lower limit of integration (use -numpy.inf for -infinity).
    b : float
        Upper limit of integration (use numpy.inf for +infinity).
    args : tuple, optional
        Extra arguments to pass to `func`.
    full_output : int, optional
        Non-zero to return a dictionary of integration information.
        If non-zero, warning messages are also suppressed and the
        message is appended to the output tuple.
    complex_func : bool, optional
        Indicate if the function's (`func`) return type is real
        (``complex_func=False``: default) or complex (``complex_func=True``).
        In both cases, the function's argument is real.
        If full_output is also non-zero, the `infodict`, `message`, and
        `explain` for the real and complex components are returned in
        a dictionary with keys "real output" and "imag output".

    Returns
    -------
    y : float
        The integral of func from `a` to `b`.
    abserr : float
        An estimate of the absolute error in the result.
    infodict : dict
        A dictionary containing additional information.
    message
        A convergence message.
    explain
        Appended only with 'cos' or 'sin' weighting and infinite
        integration limits, it contains an explanation of the codes in
        infodict['ierlst']

    Other Parameters
    ----------------
    epsabs : float or int, optional
        Absolute error tolerance. Default is 1.49e-8. `quad` tries to obtain
        an accuracy of ``abs(i-result) <= max(epsabs, epsrel*abs(i))``
        where ``i`` = integral of `func` from `a` to `b`, and ``result`` is the
        numerical approximation. See `epsrel` below.
    epsrel : float or int, optional
        Relative error tolerance. Default is 1.49e-8.
        If ``epsabs <= 0``, `epsrel` must be greater than both 5e-29
        and ``50 * (machine epsilon)``. See `epsabs` above.
    limit : float or int, optional
        An upper bound on the number of subintervals used in the adaptive
        algorithm.
    points : (sequence of floats,ints), optional
        A sequence of break points in the bounded integration interval
        where local difficulties of the integrand may occur (e.g.,
        singularities, discontinuities). The sequence does not have
        to be sorted. Note that this option cannot be used in conjunction
        with ``weight``.
    weight : float or int, optional
        String indicating weighting function. Full explanation for this
        and the remaining arguments can be found below.
    wvar : optional
        Variables for use with weighting functions.
    wopts : optional
        Optional input for reusing Chebyshev moments.
    maxp1 : float or int, optional
        An upper bound on the number of Chebyshev moments.
    limlst : int, optional
        Upper bound on the number of cycles (>=3) for use with a sinusoidal
        weighting and an infinite end-point.

    See Also
    --------
    dblquad : double integral
    tplquad : triple integral
    nquad : n-dimensional integrals (uses `quad` recursively)
    fixed_quad : fixed-order Gaussian quadrature
    simpson : integrator for sampled data
    romb : integrator for sampled data
    scipy.special : for coefficients and roots of orthogonal polynomials

    Notes
    -----
    For valid results, the integral must converge; behavior for divergent
    integrals is not guaranteed.

    **Extra information for quad() inputs and outputs**

    If full_output is non-zero, then the third output argument
    (infodict) is a dictionary with entries as tabulated below. For
    infinite limits, the range is transformed to (0,1) and the
    optional outputs are given with respect to this transformed range.
    Let M be the input argument limit and let K be infodict['last'].
    The entries are:

    'neval'
        The number of function evaluations.
    'last'
        The number, K, of subintervals produced in the subdivision process.
    'alist'
        A rank-1 array of length M, the first K elements of which are the
        left end points of the subintervals in the partition of the
        integration range.
    'blist'
        A rank-1 array of length M, the first K elements of which are the
        right end points of the subintervals.
    'rlist'
        A rank-1 array of length M, the first K elements of which are the
        integral approximations on the subintervals.
    'elist'
        A rank-1 array of length M, the first K elements of which are the
        moduli of the absolute error estimates on the subintervals.
    'iord'
        A rank-1 integer array of length M, the first L elements of
        which are pointers to the error estimates over the subintervals
        with ``L=K`` if ``K<=M/2+2`` or ``L=M+1-K`` otherwise. Let I be the
        sequence ``infodict['iord']`` and let E be the sequence
        ``infodict['elist']``.  Then ``E[I[1]], ..., E[I[L]]`` forms a
        decreasing sequence.

    If the input argument points is provided (i.e., it is not None),
    the following additional outputs are placed in the output
    dictionary. Assume the points sequence is of length P.

    'pts'
        A rank-1 array of length P+2 containing the integration limits
        and the break points of the intervals in ascending order.
        This is an array giving the subintervals over which integration
        will occur.
    'level'
        A rank-1 integer array of length M (=limit), containing the
        subdivision levels of the subintervals, i.e., if (aa,bb) is a
        subinterval of ``(pts[1], pts[2])`` where ``pts[0]`` and ``pts[2]``
        are adjacent elements of ``infodict['pts']``, then (aa,bb) has level l
        if ``|bb-aa| = |pts[2]-pts[1]| * 2**(-l)``.
    'ndin'
        A rank-1 integer array of length P+2. After the first integration
        over the intervals (pts[1], pts[2]), the error estimates over some
        of the intervals may have been increased artificially in order to
        put their subdivision forward. This array has ones in slots
        corresponding to the subintervals for which this happens.

    **Weighting the integrand**

    The input variables, *weight* and *wvar*, are used to weight the
    integrand by a select list of functions. Different integration
    methods are used to compute the integral with these weighting
    functions, and these do not support specifying break points. The
    possible values of weight and the corresponding weighting functions are.

    ==========  ===================================   =====================
    ``weight``  Weight function used                  ``wvar``
    ==========  ===================================   =====================
    'cos'       cos(w*x)                              wvar = w
    'sin'       sin(w*x)                              wvar = w
    'alg'       g(x) = ((x-a)**alpha)*((b-x)**beta)   wvar = (alpha, beta)
    'alg-loga'  g(x)*log(x-a)                         wvar = (alpha, beta)
    'alg-logb'  g(x)*log(b-x)                         wvar = (alpha, beta)
    'alg-log'   g(x)*log(x-a)*log(b-x)                wvar = (alpha, beta)
    'cauchy'    1/(x-c)                               wvar = c
    ==========  ===================================   =====================

    wvar holds the parameter w, (alpha, beta), or c depending on the weight
    selected. In these expressions, a and b are the integration limits.

    For the 'cos' and 'sin' weighting, additional inputs and outputs are
    available.

    For finite integration limits, the integration is performed using a
    Clenshaw-Curtis method which uses Chebyshev moments. For repeated
    calculations, these moments are saved in the output dictionary:

    'momcom'
        The maximum level of Chebyshev moments that have been computed,
        i.e., if ``M_c`` is ``infodict['momcom']`` then the moments have been
        computed for intervals of length ``|b-a| * 2**(-l)``,
        ``l=0,1,...,M_c``.
    'nnlog'
        A rank-1 integer array of length M(=limit), containing the
        subdivision levels of the subintervals, i.e., an element of this
        array is equal to l if the corresponding subinterval is
        ``|b-a|* 2**(-l)``.
    'chebmo'
        A rank-2 array of shape (25, maxp1) containing the computed
        Chebyshev moments. These can be passed on to an integration
        over the same interval by passing this array as the second
        element of the sequence wopts and passing infodict['momcom'] as
        the first element.

    If one of the integration limits is infinite, then a Fourier integral is
    computed (assuming w neq 0). If full_output is 1 and a numerical error
    is encountered, besides the error message attached to the output tuple,
    a dictionary is also appended to the output tuple which translates the
    error codes in the array ``info['ierlst']`` to English messages. The
    output information dictionary contains the following entries instead of
    'last', 'alist', 'blist', 'rlist', and 'elist':

    'lst'
        The number of subintervals needed for the integration (call it ``K_f``).
    'rslst'
        A rank-1 array of length M_f=limlst, whose first ``K_f`` elements
        contain the integral contribution over the interval
        ``(a+(k-1)c, a+kc)`` where ``c = (2*floor(|w|) + 1) * pi / |w|``
        and ``k=1,2,...,K_f``.
    'erlst'
        A rank-1 array of length ``M_f`` containing the error estimate
        corresponding to the interval in the same position in
        ``infodict['rslist']``.
    'ierlst'
        A rank-1 integer array of length ``M_f`` containing an error flag
        corresponding to the interval in the same position in
        ``infodict['rslist']``.  See the explanation dictionary (last entry
        in the output tuple) for the meaning of the codes.


    **Details of QUADPACK level routines**

    `quad` calls routines from the FORTRAN library QUADPACK. This section
    provides details on the conditions for each routine to be called and a
    short description of each routine. The routine called depends on
    `weight`, `points` and the integration limits `a` and `b`.

    ================  ==============  ==========  =====================
    QUADPACK routine  `weight`        `points`    infinite bounds
    ================  ==============  ==========  =====================
    qagse             None            No          No
    qagie             None            No          Yes
    qagpe             None            Yes         No
    qawoe             'sin', 'cos'    No          No
    qawfe             'sin', 'cos'    No          either `a` or `b`
    qawse             'alg*'          No          No
    qawce             'cauchy'        No          No
    ================  ==============  ==========  =====================

    The following provides a short description from [1]_ for each
    routine.

    qagse
        is an integrator based on globally adaptive interval
        subdivision in connection with extrapolation, which will
        eliminate the effects of integrand singularities of
        several types.
    qagie
        handles integration over infinite intervals. The infinite range is
        mapped onto a finite interval and subsequently the same strategy as
        in ``QAGS`` is applied.
    qagpe
        serves the same purposes as QAGS, but also allows the
        user to provide explicit information about the location
        and type of trouble-spots i.e. the abscissae of internal
        singularities, discontinuities and other difficulties of
        the integrand function.
    qawoe
        is an integrator for the evaluation of
        :math:`\\int^b_a \\cos(\\omega x)f(x)dx` or
        :math:`\\int^b_a \\sin(\\omega x)f(x)dx`
        over a finite interval [a,b], where :math:`\\omega` and :math:`f`
        are specified by the user. The rule evaluation component is based
        on the modified Clenshaw-Curtis technique

        An adaptive subdivision scheme is used in connection
        with an extrapolation procedure, which is a modification
        of that in ``QAGS`` and allows the algorithm to deal with
        singularities in :math:`f(x)`.
    qawfe
        calculates the Fourier transform
        :math:`\\int^\\infty_a \\cos(\\omega x)f(x)dx` or
        :math:`\\int^\\infty_a \\sin(\\omega x)f(x)dx`
        for user-provided :math:`\\omega` and :math:`f`. The procedure of
        ``QAWO`` is applied on successive finite intervals, and convergence
        acceleration by means of the :math:`\\varepsilon`-algorithm is applied
        to the series of integral approximations.
    qawse
        approximate :math:`\\int^b_a w(x)f(x)dx`, with :math:`a < b` where
        :math:`w(x) = (x-a)^{\\alpha}(b-x)^{\\beta}v(x)` with
        :math:`\\alpha,\\beta > -1`, where :math:`v(x)` may be one of the
        following functions: :math:`1`, :math:`\\log(x-a)`, :math:`\\log(b-x)`,
        :math:`\\log(x-a)\\log(b-x)`.

        The user specifies :math:`\\alpha`, :math:`\\beta` and the type of the
        function :math:`v`. A globally adaptive subdivision strategy is
        applied, with modified Clenshaw-Curtis integration on those
        subintervals which contain `a` or `b`.
    qawce
        compute :math:`\\int^b_a f(x) / (x-c)dx` where the integral must be
        interpreted as a Cauchy principal value integral, for user specified
        :math:`c` and :math:`f`. The strategy is globally adaptive. Modified
        Clenshaw-Curtis integration is used on those intervals containing the
        point :math:`x = c`.

    **Integration of Complex Function of a Real Variable**

    A complex valued function, :math:`f`, of a real variable can be written as
    :math:`f = g + ih`.  Similarly, the integral of :math:`f` can be
    written as

    .. math::
        \\int_a^b f(x) dx = \\int_a^b g(x) dx + i\\int_a^b h(x) dx

    assuming that the integrals of :math:`g` and :math:`h` exist
    over the interval :math:`[a,b]` [2]_. Therefore, ``quad`` integrates
    complex-valued functions by integrating the real and imaginary components
    separately.


    References
    ----------

    .. [1] Piessens, Robert; de Doncker-Kapenga, Elise;
           Überhuber, Christoph W.; Kahaner, David (1983).
           QUADPACK: A subroutine package for automatic integration.
           Springer-Verlag.
           ISBN 978-3-540-12553-2.

    .. [2] McCullough, Thomas; Phillips, Keith (1973).
           Foundations of Analysis in the Complex Plane.
           Holt Rinehart Winston.
           ISBN 0-03-086370-8

    Examples
    --------
    Calculate :math:`\\int^4_0 x^2 dx` and compare with an analytic result

    >>> from scipy import integrate
    >>> import numpy as np
    >>> x2 = lambda x: x**2
    >>> integrate.quad(x2, 0, 4)
    (21.333333333333332, 2.3684757858670003e-13)
    >>> print(4**3 / 3.)  # analytical result
    21.3333333333

    Calculate :math:`\\int^\\infty_0 e^{-x} dx`

    >>> invexp = lambda x: np.exp(-x)
    >>> integrate.quad(invexp, 0, np.inf)
    (1.0, 5.842605999138044e-11)

    Calculate :math:`\\int^1_0 a x \\,dx` for :math:`a = 1, 3`

    >>> f = lambda x, a: a*x
    >>> y, err = integrate.quad(f, 0, 1, args=(1,))
    >>> y
    0.5
    >>> y, err = integrate.quad(f, 0, 1, args=(3,))
    >>> y
    1.5

    Calculate :math:`\\int^1_0 x^2 + y^2 dx` with ctypes, holding
    y parameter as 1::

        testlib.c =>
            double func(int n, double args[n]){
                return args[0]*args[0] + args[1]*args[1];}
        compile to library testlib.*

    ::

       from scipy import integrate
       import ctypes
       lib = ctypes.CDLL('/home/.../testlib.*') #use absolute path
       lib.func.restype = ctypes.c_double
       lib.func.argtypes = (ctypes.c_int,ctypes.c_double)
       integrate.quad(lib.func,0,1,(1))
       #(1.3333333333333333, 1.4802973661668752e-14)
       print((1.0**3/3.0 + 1.0) - (0.0**3/3.0 + 0.0)) #Analytic result
       # 1.3333333333333333

    Be aware that pulse shapes and other sharp features as compared to the
    size of the integration interval may not be integrated correctly using
    this method. A simplified example of this limitation is integrating a
    y-axis reflected step function with many zero values within the integrals
    bounds.

    >>> y = lambda x: 1 if x<=0 else 0
    >>> integrate.quad(y, -1, 1)
    (1.0, 1.1102230246251565e-14)
    >>> integrate.quad(y, -1, 100)
    (1.0000000002199108, 1.0189464580163188e-08)
    >>> integrate.quad(y, -1, 10000)
    (0.0, 0.0)

    """
    if not isinstance(args, tuple):
        args = (args,)

    # check the limits of integration: \int_a^b, expect a < b
    flip, a, b = b < a, min(a, b), max(a, b)

    if complex_func:
        def imfunc(x, *args):
            return func(x, *args).imag

        def refunc(x, *args):
            return func(x, *args).real

        re_retval = quad(refunc, a, b, args, full_output, epsabs,
                         epsrel, limit, points, weight, wvar, wopts,
                         maxp1, limlst, complex_func=False)
        im_retval = quad(imfunc, a, b, args, full_output, epsabs,
                         epsrel, limit, points, weight, wvar, wopts,
                         maxp1, limlst, complex_func=False)
        integral = re_retval[0] + 1j*im_retval[0]
        error_estimate = re_retval[1] + 1j*im_retval[1]
        retval = integral, error_estimate
        if full_output:
            msgexp = {}
            msgexp["real"] = re_retval[2:]
            msgexp["imag"] = im_retval[2:]
            retval = retval + (msgexp,)

        return retval

    if weight is None:
        retval = _quad(func, a, b, args, full_output, epsabs, epsrel, limit,
                       points)
    else:
        if points is not None:
            msg = ("Break points cannot be specified when using weighted integrand.\n"
                   "Continuing, ignoring specified points.")
            warnings.warn(msg, IntegrationWarning, stacklevel=2)
        retval = _quad_weight(func, a, b, args, full_output, epsabs, epsrel,
                              limlst, limit, maxp1, weight, wvar, wopts)

    if flip:
        retval = (-retval[0],) + retval[1:]

    ier = retval[-1]
    if ier == 0:
        return retval[:-1]

    msgs = {80: "A Python error occurred possibly while calling the function.",
             1: f"The maximum number of subdivisions ({limit}) has been achieved.\n  "
                f"If increasing the limit yields no improvement it is advised to "
                f"analyze \n  the integrand in order to determine the difficulties.  "
                f"If the position of a \n  local difficulty can be determined "
                f"(singularity, discontinuity) one will \n  probably gain from "
                f"splitting up the interval and calling the integrator \n  on the "
                f"subranges.  Perhaps a special-purpose integrator should be used.",
             2: "The occurrence of roundoff error is detected, which prevents \n  "
                "the requested tolerance from being achieved.  "
                "The error may be \n  underestimated.",
             3: "Extremely bad integrand behavior occurs at some points of the\n  "
                "integration interval.",
             4: "The algorithm does not converge.  Roundoff error is detected\n  "
                "in the extrapolation table.  It is assumed that the requested "
                "tolerance\n  cannot be achieved, and that the returned result "
                "(if full_output = 1) is \n  the best which can be obtained.",
             5: "The integral is probably divergent, or slowly convergent.",
             6: "The input is invalid.",
             7: "Abnormal termination of the routine.  The estimates for result\n  "
                "and error are less reliable.  It is assumed that the requested "
                "accuracy\n  has not been achieved.",
            'unknown': "Unknown error."}

    if weight in ['cos','sin'] and (b == np.inf or a == -np.inf):
        msgs[1] = (
            "The maximum number of cycles allowed has been achieved., e.e.\n  of "
            "subintervals (a+(k-1)c, a+kc) where c = (2*int(abs(omega)+1))\n  "
            "*pi/abs(omega), for k = 1, 2, ..., lst.  "
            "One can allow more cycles by increasing the value of limlst.  "
            "Look at info['ierlst'] with full_output=1."
        )
        msgs[4] = (
            "The extrapolation table constructed for convergence acceleration\n  of "
            "the series formed by the integral contributions over the cycles, \n  does "
            "not converge to within the requested accuracy.  "
            "Look at \n  info['ierlst'] with full_output=1."
        )
        msgs[7] = (
            "Bad integrand behavior occurs within one or more of the cycles.\n  "
            "Location and type of the difficulty involved can be determined from \n  "
            "the vector info['ierlist'] obtained with full_output=1."
        )
        explain = {1: "The maximum number of subdivisions (= limit) has been \n  "
                      "achieved on this cycle.",
                   2: "The occurrence of roundoff error is detected and prevents\n  "
                      "the tolerance imposed on this cycle from being achieved.",
                   3: "Extremely bad integrand behavior occurs at some points of\n  "
                      "this cycle.",
                   4: "The integral over this cycle does not converge (to within the "
                      "required accuracy) due to roundoff in the extrapolation "
                      "procedure invoked on this cycle.  It is assumed that the result "
                      "on this interval is the best which can be obtained.",
                   5: "The integral over this cycle is probably divergent or "
                      "slowly convergent."}

    try:
        msg = msgs[ier]
    except KeyError:
        msg = msgs['unknown']

    if ier in [1,2,3,4,5,7]:
        if full_output:
            if weight in ['cos', 'sin'] and (b == np.inf or a == -np.inf):
                return retval[:-1] + (msg, explain)
            else:
                return retval[:-1] + (msg,)
        else:
            warnings.warn(msg, IntegrationWarning, stacklevel=2)
            return retval[:-1]

    elif ier == 6:  # Forensic decision tree when QUADPACK throws ier=6
        if epsabs <= 0:  # Small error tolerance - applies to all methods
            if epsrel < max(50 * sys.float_info.epsilon, 5e-29):
                msg = ("If 'epsabs'<=0, 'epsrel' must be greater than both"
                       " 5e-29 and 50*(machine epsilon).")
            elif weight in ['sin', 'cos'] and (abs(a) + abs(b) == np.inf):
                msg = ("Sine or cosine weighted integrals with infinite domain"
                       " must have 'epsabs'>0.")

        elif weight is None:
            if points is None:  # QAGSE/QAGIE
                msg = ("Invalid 'limit' argument. There must be"
                       " at least one subinterval")
            else:  # QAGPE
                if not (min(a, b) <= min(points) <= max(points) <= max(a, b)):
                    msg = ("All break points in 'points' must lie within the"
                           " integration limits.")
                elif len(points) >= limit:
                    msg = (f"Number of break points ({len(points):d}) "
                           f"must be less than subinterval limit ({limit:d})")

        else:
            if maxp1 < 1:
                msg = "Chebyshev moment limit maxp1 must be >=1."

            elif weight in ('cos', 'sin') and abs(a+b) == np.inf:  # QAWFE
                msg = "Cycle limit limlst must be >=3."

            elif weight.startswith('alg'):  # QAWSE
                if min(wvar) < -1:
                    msg = "wvar parameters (alpha, beta) must both be >= -1."
                if b < a:
                    msg = "Integration limits a, b must satistfy a<b."

            elif weight == 'cauchy' and wvar in (a, b):
                msg = ("Parameter 'wvar' must not equal"
                       " integration limits 'a' or 'b'.")

    raise ValueError(msg)


def _quad(func,a,b,args,full_output,epsabs,epsrel,limit,points):
    infbounds = 0
    if (b != np.inf and a != -np.inf):
        pass   # standard integration
    elif (b == np.inf and a != -np.inf):
        infbounds = 1
        bound = a
    elif (b == np.inf and a == -np.inf):
        infbounds = 2
        bound = 0     # ignored
    elif (b != np.inf and a == -np.inf):
        infbounds = -1
        bound = b
    else:
        raise RuntimeError("Infinity comparisons don't work for you.")

    if points is None:
        if infbounds == 0:
            return _quadpack._qagse(func,a,b,args,full_output,epsabs,epsrel,limit)
        else:
            return _quadpack._qagie(func, bound, infbounds, args, full_output, 
                                    epsabs, epsrel, limit)
    else:
        if infbounds != 0:
            raise ValueError("Infinity inputs cannot be used with break points.")
        else:
            #Duplicates force function evaluation at singular points
            the_points = np.unique(points)
            the_points = the_points[a < the_points]
            the_points = the_points[the_points < b]
            the_points = np.concatenate((the_points, (0., 0.)))
            return _quadpack._qagpe(func, a, b, the_points, args, full_output,
                                    epsabs, epsrel, limit)


def _quad_weight(func, a, b, args, full_output, epsabs, epsrel,
                 limlst, limit, maxp1,weight, wvar, wopts):
    if weight not in ['cos','sin','alg','alg-loga','alg-logb','alg-log','cauchy']:
        raise ValueError(f"{weight} not a recognized weighting function.")

    strdict = {'cos':1,'sin':2,'alg':1,'alg-loga':2,'alg-logb':3,'alg-log':4}

    if weight in ['cos','sin']:
        integr = strdict[weight]
        if (b != np.inf and a != -np.inf):  # finite limits
            if wopts is None:         # no precomputed Chebyshev moments
                return _quadpack._qawoe(func, a, b, wvar, integr, args, full_output,
                                        epsabs, epsrel, limit, maxp1,1)
            else:                     # precomputed Chebyshev moments
                momcom = wopts[0]
                chebcom = wopts[1]
                return _quadpack._qawoe(func, a, b, wvar, integr, args,
                                        full_output,epsabs, epsrel, limit, maxp1, 2,
                                        momcom, chebcom)

        elif (b == np.inf and a != -np.inf):
            return _quadpack._qawfe(func, a, wvar, integr, args, full_output,
                                    epsabs, limlst, limit, maxp1)
        elif (b != np.inf and a == -np.inf):  # remap function and interval
            if weight == 'cos':
                def thefunc(x,*myargs):
                    y = -x
                    func = myargs[0]
                    myargs = (y,) + myargs[1:]
                    return func(*myargs)
            else:
                def thefunc(x,*myargs):
                    y = -x
                    func = myargs[0]
                    myargs = (y,) + myargs[1:]
                    return -func(*myargs)
            args = (func,) + args
            return _quadpack._qawfe(thefunc, -b, wvar, integr, args,
                                    full_output, epsabs, limlst, limit, maxp1)
        else:
            raise ValueError("Cannot integrate with this weight from -Inf to +Inf.")
    else:
        if a in [-np.inf, np.inf] or b in [-np.inf, np.inf]:
            message = "Cannot integrate with this weight over an infinite interval."
            raise ValueError(message)

        if weight.startswith('alg'):
            integr = strdict[weight]
            return _quadpack._qawse(func, a, b, wvar, integr, args,
                                    full_output, epsabs, epsrel, limit)
        else:  # weight == 'cauchy'
            return _quadpack._qawce(func, a, b, wvar, args, full_output,
                                    epsabs, epsrel, limit)


def dblquad(func, a, b, gfun, hfun, args=(), epsabs=1.49e-8, epsrel=1.49e-8):
    """
    Compute a double integral.

    Return the double (definite) integral of ``func(y, x)`` from ``x = a..b``
    and ``y = gfun(x)..hfun(x)``.

    Parameters
    ----------
    func : callable
        A Python function or method of at least two variables: y must be the
        first argument and x the second argument.
    a, b : float
        The limits of integration in x: `a` < `b`
    gfun : callable or float
        The lower boundary curve in y which is a function taking a single
        floating point argument (x) and returning a floating point result
        or a float indicating a constant boundary curve.
    hfun : callable or float
        The upper boundary curve in y (same requirements as `gfun`).
    args : sequence, optional
        Extra arguments to pass to `func`.
    epsabs : float, optional
        Absolute tolerance passed directly to the inner 1-D quadrature
        integration. Default is 1.49e-8. ``dblquad`` tries to obtain
        an accuracy of ``abs(i-result) <= max(epsabs, epsrel*abs(i))``
        where ``i`` = inner integral of ``func(y, x)`` from ``gfun(x)``
        to ``hfun(x)``, and ``result`` is the numerical approximation.
        See `epsrel` below.
    epsrel : float, optional
        Relative tolerance of the inner 1-D integrals. Default is 1.49e-8.
        If ``epsabs <= 0``, `epsrel` must be greater than both 5e-29
        and ``50 * (machine epsilon)``. See `epsabs` above.

    Returns
    -------
    y : float
        The resultant integral.
    abserr : float
        An estimate of the error.

    See Also
    --------
    quad : single integral
    tplquad : triple integral
    nquad : N-dimensional integrals
    fixed_quad : fixed-order Gaussian quadrature
    simpson : integrator for sampled data
    romb : integrator for sampled data
    scipy.special : for coefficients and roots of orthogonal polynomials


    Notes
    -----
    For valid results, the integral must converge; behavior for divergent
    integrals is not guaranteed.

    **Details of QUADPACK level routines**

    `quad` calls routines from the FORTRAN library QUADPACK. This section
    provides details on the conditions for each routine to be called and a
    short description of each routine. For each level of integration, ``qagse``
    is used for finite limits or ``qagie`` is used if either limit (or both!)
    are infinite. The following provides a short description from [1]_ for each
    routine.

    qagse
        is an integrator based on globally adaptive interval
        subdivision in connection with extrapolation, which will
        eliminate the effects of integrand singularities of
        several types.
    qagie
        handles integration over infinite intervals. The infinite range is
        mapped onto a finite interval and subsequently the same strategy as
        in ``QAGS`` is applied.

    References
    ----------

    .. [1] Piessens, Robert; de Doncker-Kapenga, Elise;
           Überhuber, Christoph W.; Kahaner, David (1983).
           QUADPACK: A subroutine package for automatic integration.
           Springer-Verlag.
           ISBN 978-3-540-12553-2.

    Examples
    --------
    Compute the double integral of ``x * y**2`` over the box
    ``x`` ranging from 0 to 2 and ``y`` ranging from 0 to 1.
    That is, :math:`\\int^{x=2}_{x=0} \\int^{y=1}_{y=0} x y^2 \\,dy \\,dx`.

    >>> import numpy as np
    >>> from scipy import integrate
    >>> f = lambda y, x: x*y**2
    >>> integrate.dblquad(f, 0, 2, 0, 1)
        (0.6666666666666667, 7.401486830834377e-15)

    Calculate :math:`\\int^{x=\\pi/4}_{x=0} \\int^{y=\\cos(x)}_{y=\\sin(x)} 1
    \\,dy \\,dx`.

    >>> f = lambda y, x: 1
    >>> integrate.dblquad(f, 0, np.pi/4, np.sin, np.cos)
        (0.41421356237309503, 1.1083280054755938e-14)

    Calculate :math:`\\int^{x=1}_{x=0} \\int^{y=2-x}_{y=x} a x y \\,dy \\,dx`
    for :math:`a=1, 3`.

    >>> f = lambda y, x, a: a*x*y
    >>> integrate.dblquad(f, 0, 1, lambda x: x, lambda x: 2-x, args=(1,))
        (0.33333333333333337, 5.551115123125783e-15)
    >>> integrate.dblquad(f, 0, 1, lambda x: x, lambda x: 2-x, args=(3,))
        (0.9999999999999999, 1.6653345369377348e-14)

    Compute the two-dimensional Gaussian Integral, which is the integral of the
    Gaussian function :math:`f(x,y) = e^{-(x^{2} + y^{2})}`, over
    :math:`(-\\infty,+\\infty)`. That is, compute the integral
    :math:`\\iint^{+\\infty}_{-\\infty} e^{-(x^{2} + y^{2})} \\,dy\\,dx`.

    >>> f = lambda x, y: np.exp(-(x ** 2 + y ** 2))
    >>> integrate.dblquad(f, -np.inf, np.inf, -np.inf, np.inf)
        (3.141592653589777, 2.5173086737433208e-08)

    """

    def temp_ranges(*args):
        return [gfun(args[0]) if callable(gfun) else gfun,
                hfun(args[0]) if callable(hfun) else hfun]

    return nquad(func, [temp_ranges, [a, b]], args=args,
            opts={"epsabs": epsabs, "epsrel": epsrel})


def tplquad(func, a, b, gfun, hfun, qfun, rfun, args=(), epsabs=1.49e-8,
            epsrel=1.49e-8):
    """
    Compute a triple (definite) integral.

    Return the triple integral of ``func(z, y, x)`` from ``x = a..b``,
    ``y = gfun(x)..hfun(x)``, and ``z = qfun(x,y)..rfun(x,y)``.

    Parameters
    ----------
    func : function
        A Python function or method of at least three variables in the
        order (z, y, x).
    a, b : float
        The limits of integration in x: `a` < `b`
    gfun : function or float
        The lower boundary curve in y which is a function taking a single
        floating point argument (x) and returning a floating point result
        or a float indicating a constant boundary curve.
    hfun : function or float
        The upper boundary curve in y (same requirements as `gfun`).
    qfun : function or float
        The lower boundary surface in z.  It must be a function that takes
        two floats in the order (x, y) and returns a float or a float
        indicating a constant boundary surface.
    rfun : function or float
        The upper boundary surface in z. (Same requirements as `qfun`.)
    args : tuple, optional
        Extra arguments to pass to `func`.
    epsabs : float, optional
        Absolute tolerance passed directly to the innermost 1-D quadrature
        integration. Default is 1.49e-8.
    epsrel : float, optional
        Relative tolerance of the innermost 1-D integrals. Default is 1.49e-8.

    Returns
    -------
    y : float
        The resultant integral.
    abserr : float
        An estimate of the error.

    See Also
    --------
    quad : Adaptive quadrature using QUADPACK
    fixed_quad : Fixed-order Gaussian quadrature
    dblquad : Double integrals
    nquad : N-dimensional integrals
    romb : Integrators for sampled data
    simpson : Integrators for sampled data
    scipy.special : For coefficients and roots of orthogonal polynomials

    Notes
    -----
    For valid results, the integral must converge; behavior for divergent
    integrals is not guaranteed.

    **Details of QUADPACK level routines**

    `quad` calls routines from the FORTRAN library QUADPACK. This section
    provides details on the conditions for each routine to be called and a
    short description of each routine. For each level of integration, ``qagse``
    is used for finite limits or ``qagie`` is used, if either limit (or both!)
    are infinite. The following provides a short description from [1]_ for each
    routine.

    qagse
        is an integrator based on globally adaptive interval
        subdivision in connection with extrapolation, which will
        eliminate the effects of integrand singularities of
        several types.
    qagie
        handles integration over infinite intervals. The infinite range is
        mapped onto a finite interval and subsequently the same strategy as
        in ``QAGS`` is applied.

    References
    ----------

    .. [1] Piessens, Robert; de Doncker-Kapenga, Elise;
           Überhuber, Christoph W.; Kahaner, David (1983).
           QUADPACK: A subroutine package for automatic integration.
           Springer-Verlag.
           ISBN 978-3-540-12553-2.

    Examples
    --------
    Compute the triple integral of ``x * y * z``, over ``x`` ranging
    from 1 to 2, ``y`` ranging from 2 to 3, ``z`` ranging from 0 to 1.
    That is, :math:`\\int^{x=2}_{x=1} \\int^{y=3}_{y=2} \\int^{z=1}_{z=0} x y z
    \\,dz \\,dy \\,dx`.

    >>> import numpy as np
    >>> from scipy import integrate
    >>> f = lambda z, y, x: x*y*z
    >>> integrate.tplquad(f, 1, 2, 2, 3, 0, 1)
    (1.8749999999999998, 3.3246447942574074e-14)

    Calculate :math:`\\int^{x=1}_{x=0} \\int^{y=1-2x}_{y=0}
    \\int^{z=1-x-2y}_{z=0} x y z \\,dz \\,dy \\,dx`.
    Note: `qfun`/`rfun` takes arguments in the order (x, y), even though ``f``
    takes arguments in the order (z, y, x).

    >>> f = lambda z, y, x: x*y*z
    >>> integrate.tplquad(f, 0, 1, 0, lambda x: 1-2*x, 0, lambda x, y: 1-x-2*y)
    (0.05416666666666668, 2.1774196738157757e-14)

    Calculate :math:`\\int^{x=1}_{x=0} \\int^{y=1}_{y=0} \\int^{z=1}_{z=0}
    a x y z \\,dz \\,dy \\,dx` for :math:`a=1, 3`.

    >>> f = lambda z, y, x, a: a*x*y*z
    >>> integrate.tplquad(f, 0, 1, 0, 1, 0, 1, args=(1,))
        (0.125, 5.527033708952211e-15)
    >>> integrate.tplquad(f, 0, 1, 0, 1, 0, 1, args=(3,))
        (0.375, 1.6581101126856635e-14)

    Compute the three-dimensional Gaussian Integral, which is the integral of
    the Gaussian function :math:`f(x,y,z) = e^{-(x^{2} + y^{2} + z^{2})}`, over
    :math:`(-\\infty,+\\infty)`. That is, compute the integral
    :math:`\\iiint^{+\\infty}_{-\\infty} e^{-(x^{2} + y^{2} + z^{2})} \\,dz
    \\,dy\\,dx`.

    >>> f = lambda x, y, z: np.exp(-(x ** 2 + y ** 2 + z ** 2))
    >>> integrate.tplquad(f, -np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf)
        (5.568327996830833, 4.4619078828029765e-08)

    """
    # f(z, y, x)
    # qfun/rfun(x, y)
    # gfun/hfun(x)
    # nquad will hand (y, x, t0, ...) to ranges0
    # nquad will hand (x, t0, ...) to ranges1
    # Only qfun / rfun is different API...

    def ranges0(*args):
        return [qfun(args[1], args[0]) if callable(qfun) else qfun,
                rfun(args[1], args[0]) if callable(rfun) else rfun]

    def ranges1(*args):
        return [gfun(args[0]) if callable(gfun) else gfun,
                hfun(args[0]) if callable(hfun) else hfun]

    ranges = [ranges0, ranges1, [a, b]]
    return nquad(func, ranges, args=args,
            opts={"epsabs": epsabs, "epsrel": epsrel})


def nquad(func, ranges, args=None, opts=None, full_output=False):
    r"""
    Integration over multiple variables.

    Wraps `quad` to enable integration over multiple variables.
    Various options allow improved integration of discontinuous functions, as
    well as the use of weighted integration, and generally finer control of the
    integration process.

    Parameters
    ----------
    func : {callable, scipy.LowLevelCallable}
        The function to be integrated. Has arguments of ``x0, ... xn``,
        ``t0, ... tm``, where integration is carried out over ``x0, ... xn``,
        which must be floats.  Where ``t0, ... tm`` are extra arguments
        passed in args.
        Function signature should be ``func(x0, x1, ..., xn, t0, t1, ..., tm)``.
        Integration is carried out in order.  That is, integration over ``x0``
        is the innermost integral, and ``xn`` is the outermost.

        If the user desires improved integration performance, then `f` may
        be a `scipy.LowLevelCallable` with one of the signatures::

            double func(int n, double *xx)
            double func(int n, double *xx, void *user_data)

        where ``n`` is the number of variables and args.  The ``xx`` array
        contains the coordinates and extra arguments. ``user_data`` is the data
        contained in the `scipy.LowLevelCallable`.
    ranges : iterable object
        Each element of ranges may be either a sequence  of 2 numbers, or else
        a callable that returns such a sequence. ``ranges[0]`` corresponds to
        integration over x0, and so on. If an element of ranges is a callable,
        then it will be called with all of the integration arguments available,
        as well as any parametric arguments. e.g., if
        ``func = f(x0, x1, x2, t0, t1)``, then ``ranges[0]`` may be defined as
        either ``(a, b)`` or else as ``(a, b) = range0(x1, x2, t0, t1)``.
    args : iterable object, optional
        Additional arguments ``t0, ... tn``, required by ``func``, ``ranges``,
        and ``opts``.
    opts : iterable object or dict, optional
        Options to be passed to `quad`. May be empty, a dict, or
        a sequence of dicts or functions that return a dict. If empty, the
        default options from scipy.integrate.quad are used. If a dict, the same
        options are used for all levels of integraion. If a sequence, then each
        element of the sequence corresponds to a particular integration. e.g.,
        ``opts[0]`` corresponds to integration over ``x0``, and so on. If a
        callable, the signature must be the same as for ``ranges``. The
        available options together with their default values are:

          - epsabs = 1.49e-08
          - epsrel = 1.49e-08
          - limit  = 50
          - points = None
          - weight = None
          - wvar   = None
          - wopts  = None

        For more information on these options, see `quad`.

    full_output : bool, optional
        Partial implementation of ``full_output`` from scipy.integrate.quad.
        The number of integrand function evaluations ``neval`` can be obtained
        by setting ``full_output=True`` when calling nquad.

    Returns
    -------
    result : float
        The result of the integration.
    abserr : float
        The maximum of the estimates of the absolute error in the various
        integration results.
    out_dict : dict, optional
        A dict containing additional information on the integration.

    See Also
    --------
    quad : 1-D numerical integration
    dblquad, tplquad : double and triple integrals
    fixed_quad : fixed-order Gaussian quadrature

    Notes
    -----
    For valid results, the integral must converge; behavior for divergent
    integrals is not guaranteed.

    **Details of QUADPACK level routines**

    `nquad` calls routines from the FORTRAN library QUADPACK. This section
    provides details on the conditions for each routine to be called and a
    short description of each routine. The routine called depends on
    `weight`, `points` and the integration limits `a` and `b`.

    ================  ==============  ==========  =====================
    QUADPACK routine  `weight`        `points`    infinite bounds
    ================  ==============  ==========  =====================
    qagse             None            No          No
    qagie             None            No          Yes
    qagpe             None            Yes         No
    qawoe             'sin', 'cos'    No          No
    qawfe             'sin', 'cos'    No          either `a` or `b`
    qawse             'alg*'          No          No
    qawce             'cauchy'        No          No
    ================  ==============  ==========  =====================

    The following provides a short description from [1]_ for each
    routine.

    qagse
        is an integrator based on globally adaptive interval
        subdivision in connection with extrapolation, which will
        eliminate the effects of integrand singularities of
        several types.
    qagie
        handles integration over infinite intervals. The infinite range is
        mapped onto a finite interval and subsequently the same strategy as
        in ``QAGS`` is applied.
    qagpe
        serves the same purposes as QAGS, but also allows the
        user to provide explicit information about the location
        and type of trouble-spots i.e. the abscissae of internal
        singularities, discontinuities and other difficulties of
        the integrand function.
    qawoe
        is an integrator for the evaluation of
        :math:`\int^b_a \cos(\omega x)f(x)dx` or
        :math:`\int^b_a \sin(\omega x)f(x)dx`
        over a finite interval [a,b], where :math:`\omega` and :math:`f`
        are specified by the user. The rule evaluation component is based
        on the modified Clenshaw-Curtis technique

        An adaptive subdivision scheme is used in connection
        with an extrapolation procedure, which is a modification
        of that in ``QAGS`` and allows the algorithm to deal with
        singularities in :math:`f(x)`.
    qawfe
        calculates the Fourier transform
        :math:`\int^\infty_a \cos(\omega x)f(x)dx` or
        :math:`\int^\infty_a \sin(\omega x)f(x)dx`
        for user-provided :math:`\omega` and :math:`f`. The procedure of
        ``QAWO`` is applied on successive finite intervals, and convergence
        acceleration by means of the :math:`\varepsilon`-algorithm is applied
        to the series of integral approximations.
    qawse
        approximate :math:`\int^b_a w(x)f(x)dx`, with :math:`a < b` where
        :math:`w(x) = (x-a)^{\alpha}(b-x)^{\beta}v(x)` with
        :math:`\alpha,\beta > -1`, where :math:`v(x)` may be one of the
        following functions: :math:`1`, :math:`\log(x-a)`, :math:`\log(b-x)`,
        :math:`\log(x-a)\log(b-x)`.

        The user specifies :math:`\alpha`, :math:`\beta` and the type of the
        function :math:`v`. A globally adaptive subdivision strategy is
        applied, with modified Clenshaw-Curtis integration on those
        subintervals which contain `a` or `b`.
    qawce
        compute :math:`\int^b_a f(x) / (x-c)dx` where the integral must be
        interpreted as a Cauchy principal value integral, for user specified
        :math:`c` and :math:`f`. The strategy is globally adaptive. Modified
        Clenshaw-Curtis integration is used on those intervals containing the
        point :math:`x = c`.

    References
    ----------

    .. [1] Piessens, Robert; de Doncker-Kapenga, Elise;
           Überhuber, Christoph W.; Kahaner, David (1983).
           QUADPACK: A subroutine package for automatic integration.
           Springer-Verlag.
           ISBN 978-3-540-12553-2.

    Examples
    --------
    Calculate

    .. math::

        \int^{1}_{-0.15} \int^{0.8}_{0.13} \int^{1}_{-1} \int^{1}_{0}
        f(x_0, x_1, x_2, x_3) \,dx_0 \,dx_1 \,dx_2 \,dx_3 ,

    where

    .. math::

        f(x_0, x_1, x_2, x_3) = \begin{cases}
          x_0^2+x_1 x_2-x_3^3+ \sin{x_0}+1 & (x_0-0.2 x_3-0.5-0.25 x_1 > 0) \\
          x_0^2+x_1 x_2-x_3^3+ \sin{x_0}+0 & (x_0-0.2 x_3-0.5-0.25 x_1 \leq 0)
        \end{cases} .

    >>> import numpy as np
    >>> from scipy import integrate
    >>> func = lambda x0,x1,x2,x3 : x0**2 + x1*x2 - x3**3 + np.sin(x0) + (
    ...                                 1 if (x0-.2*x3-.5-.25*x1>0) else 0)
    >>> def opts0(*args, **kwargs):
    ...     return {'points':[0.2*args[2] + 0.5 + 0.25*args[0]]}
    >>> integrate.nquad(func, [[0,1], [-1,1], [.13,.8], [-.15,1]],
    ...                 opts=[opts0,{},{},{}], full_output=True)
    (1.5267454070738633, 2.9437360001402324e-14, {'neval': 388962})

    Calculate

    .. math::

        \int^{t_0+t_1+1}_{t_0+t_1-1}
        \int^{x_2+t_0^2 t_1^3+1}_{x_2+t_0^2 t_1^3-1}
        \int^{t_0 x_1+t_1 x_2+1}_{t_0 x_1+t_1 x_2-1}
        f(x_0,x_1, x_2,t_0,t_1)
        \,dx_0 \,dx_1 \,dx_2,

    where

    .. math::

        f(x_0, x_1, x_2, t_0, t_1) = \begin{cases}
          x_0 x_2^2 + \sin{x_1}+2 & (x_0+t_1 x_1-t_0 > 0) \\
          x_0 x_2^2 +\sin{x_1}+1 & (x_0+t_1 x_1-t_0 \leq 0)
        \end{cases}

    and :math:`(t_0, t_1) = (0, 1)` .

    >>> def func2(x0, x1, x2, t0, t1):
    ...     return x0*x2**2 + np.sin(x1) + 1 + (1 if x0+t1*x1-t0>0 else 0)
    >>> def lim0(x1, x2, t0, t1):
    ...     return [t0*x1 + t1*x2 - 1, t0*x1 + t1*x2 + 1]
    >>> def lim1(x2, t0, t1):
    ...     return [x2 + t0**2*t1**3 - 1, x2 + t0**2*t1**3 + 1]
    >>> def lim2(t0, t1):
    ...     return [t0 + t1 - 1, t0 + t1 + 1]
    >>> def opts0(x1, x2, t0, t1):
    ...     return {'points' : [t0 - t1*x1]}
    >>> def opts1(x2, t0, t1):
    ...     return {}
    >>> def opts2(t0, t1):
    ...     return {}
    >>> integrate.nquad(func2, [lim0, lim1, lim2], args=(0,1),
    ...                 opts=[opts0, opts1, opts2])
    (36.099919226771625, 1.8546948553373528e-07)

    """
    depth = len(ranges)
    ranges = [rng if callable(rng) else _RangeFunc(rng) for rng in ranges]
    if args is None:
        args = ()
    if opts is None:
        opts = [dict([])] * depth

    if isinstance(opts, dict):
        opts = [_OptFunc(opts)] * depth
    else:
        opts = [opt if callable(opt) else _OptFunc(opt) for opt in opts]
    return _NQuad(func, ranges, opts, full_output).integrate(*args)


class _RangeFunc:
    def __init__(self, range_):
        self.range_ = range_

    def __call__(self, *args):
        """Return stored value.

        *args needed because range_ can be float or func, and is called with
        variable number of parameters.
        """
        return self.range_


class _OptFunc:
    def __init__(self, opt):
        self.opt = opt

    def __call__(self, *args):
        """Return stored dict."""
        return self.opt


class _NQuad:
    def __init__(self, func, ranges, opts, full_output):
        self.abserr = 0
        self.func = func
        self.ranges = ranges
        self.opts = opts
        self.maxdepth = len(ranges)
        self.full_output = full_output
        if self.full_output:
            self.out_dict = {'neval': 0}

    def integrate(self, *args, **kwargs):
        depth = kwargs.pop('depth', 0)
        if kwargs:
            raise ValueError('unexpected kwargs')

        # Get the integration range and options for this depth.
        ind = -(depth + 1)
        fn_range = self.ranges[ind]
        low, high = fn_range(*args)
        fn_opt = self.opts[ind]
        opt = dict(fn_opt(*args))

        if 'points' in opt:
            opt['points'] = [x for x in opt['points'] if low <= x <= high]
        if depth + 1 == self.maxdepth:
            f = self.func
        else:
            f = partial(self.integrate, depth=depth+1)
        quad_r = quad(f, low, high, args=args, full_output=self.full_output,
                      **opt)
        value = quad_r[0]
        abserr = quad_r[1]
        if self.full_output:
            infodict = quad_r[2]
            # The 'neval' parameter in full_output returns the total
            # number of times the integrand function was evaluated.
            # Therefore, only the innermost integration loop counts.
            if depth + 1 == self.maxdepth:
                self.out_dict['neval'] += infodict['neval']
        self.abserr = max(self.abserr, abserr)
        if depth > 0:
            return value
        else:
            # Final result of N-D integration with error
            if self.full_output:
                return value, self.abserr, self.out_dict
            else:
                return value, self.abserr