File size: 53,250 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 |
# Author: Travis Oliphant 2001
# Author: Nathan Woods 2013 (nquad &c)
import sys
import warnings
from functools import partial
from . import _quadpack
import numpy as np
__all__ = ["quad", "dblquad", "tplquad", "nquad", "IntegrationWarning"]
class IntegrationWarning(UserWarning):
"""
Warning on issues during integration.
"""
pass
def quad(func, a, b, args=(), full_output=0, epsabs=1.49e-8, epsrel=1.49e-8,
limit=50, points=None, weight=None, wvar=None, wopts=None, maxp1=50,
limlst=50, complex_func=False):
"""
Compute a definite integral.
Integrate func from `a` to `b` (possibly infinite interval) using a
technique from the Fortran library QUADPACK.
Parameters
----------
func : {function, scipy.LowLevelCallable}
A Python function or method to integrate. If `func` takes many
arguments, it is integrated along the axis corresponding to the
first argument.
If the user desires improved integration performance, then `f` may
be a `scipy.LowLevelCallable` with one of the signatures::
double func(double x)
double func(double x, void *user_data)
double func(int n, double *xx)
double func(int n, double *xx, void *user_data)
The ``user_data`` is the data contained in the `scipy.LowLevelCallable`.
In the call forms with ``xx``, ``n`` is the length of the ``xx``
array which contains ``xx[0] == x`` and the rest of the items are
numbers contained in the ``args`` argument of quad.
In addition, certain ctypes call signatures are supported for
backward compatibility, but those should not be used in new code.
a : float
Lower limit of integration (use -numpy.inf for -infinity).
b : float
Upper limit of integration (use numpy.inf for +infinity).
args : tuple, optional
Extra arguments to pass to `func`.
full_output : int, optional
Non-zero to return a dictionary of integration information.
If non-zero, warning messages are also suppressed and the
message is appended to the output tuple.
complex_func : bool, optional
Indicate if the function's (`func`) return type is real
(``complex_func=False``: default) or complex (``complex_func=True``).
In both cases, the function's argument is real.
If full_output is also non-zero, the `infodict`, `message`, and
`explain` for the real and complex components are returned in
a dictionary with keys "real output" and "imag output".
Returns
-------
y : float
The integral of func from `a` to `b`.
abserr : float
An estimate of the absolute error in the result.
infodict : dict
A dictionary containing additional information.
message
A convergence message.
explain
Appended only with 'cos' or 'sin' weighting and infinite
integration limits, it contains an explanation of the codes in
infodict['ierlst']
Other Parameters
----------------
epsabs : float or int, optional
Absolute error tolerance. Default is 1.49e-8. `quad` tries to obtain
an accuracy of ``abs(i-result) <= max(epsabs, epsrel*abs(i))``
where ``i`` = integral of `func` from `a` to `b`, and ``result`` is the
numerical approximation. See `epsrel` below.
epsrel : float or int, optional
Relative error tolerance. Default is 1.49e-8.
If ``epsabs <= 0``, `epsrel` must be greater than both 5e-29
and ``50 * (machine epsilon)``. See `epsabs` above.
limit : float or int, optional
An upper bound on the number of subintervals used in the adaptive
algorithm.
points : (sequence of floats,ints), optional
A sequence of break points in the bounded integration interval
where local difficulties of the integrand may occur (e.g.,
singularities, discontinuities). The sequence does not have
to be sorted. Note that this option cannot be used in conjunction
with ``weight``.
weight : float or int, optional
String indicating weighting function. Full explanation for this
and the remaining arguments can be found below.
wvar : optional
Variables for use with weighting functions.
wopts : optional
Optional input for reusing Chebyshev moments.
maxp1 : float or int, optional
An upper bound on the number of Chebyshev moments.
limlst : int, optional
Upper bound on the number of cycles (>=3) for use with a sinusoidal
weighting and an infinite end-point.
See Also
--------
dblquad : double integral
tplquad : triple integral
nquad : n-dimensional integrals (uses `quad` recursively)
fixed_quad : fixed-order Gaussian quadrature
simpson : integrator for sampled data
romb : integrator for sampled data
scipy.special : for coefficients and roots of orthogonal polynomials
Notes
-----
For valid results, the integral must converge; behavior for divergent
integrals is not guaranteed.
**Extra information for quad() inputs and outputs**
If full_output is non-zero, then the third output argument
(infodict) is a dictionary with entries as tabulated below. For
infinite limits, the range is transformed to (0,1) and the
optional outputs are given with respect to this transformed range.
Let M be the input argument limit and let K be infodict['last'].
The entries are:
'neval'
The number of function evaluations.
'last'
The number, K, of subintervals produced in the subdivision process.
'alist'
A rank-1 array of length M, the first K elements of which are the
left end points of the subintervals in the partition of the
integration range.
'blist'
A rank-1 array of length M, the first K elements of which are the
right end points of the subintervals.
'rlist'
A rank-1 array of length M, the first K elements of which are the
integral approximations on the subintervals.
'elist'
A rank-1 array of length M, the first K elements of which are the
moduli of the absolute error estimates on the subintervals.
'iord'
A rank-1 integer array of length M, the first L elements of
which are pointers to the error estimates over the subintervals
with ``L=K`` if ``K<=M/2+2`` or ``L=M+1-K`` otherwise. Let I be the
sequence ``infodict['iord']`` and let E be the sequence
``infodict['elist']``. Then ``E[I[1]], ..., E[I[L]]`` forms a
decreasing sequence.
If the input argument points is provided (i.e., it is not None),
the following additional outputs are placed in the output
dictionary. Assume the points sequence is of length P.
'pts'
A rank-1 array of length P+2 containing the integration limits
and the break points of the intervals in ascending order.
This is an array giving the subintervals over which integration
will occur.
'level'
A rank-1 integer array of length M (=limit), containing the
subdivision levels of the subintervals, i.e., if (aa,bb) is a
subinterval of ``(pts[1], pts[2])`` where ``pts[0]`` and ``pts[2]``
are adjacent elements of ``infodict['pts']``, then (aa,bb) has level l
if ``|bb-aa| = |pts[2]-pts[1]| * 2**(-l)``.
'ndin'
A rank-1 integer array of length P+2. After the first integration
over the intervals (pts[1], pts[2]), the error estimates over some
of the intervals may have been increased artificially in order to
put their subdivision forward. This array has ones in slots
corresponding to the subintervals for which this happens.
**Weighting the integrand**
The input variables, *weight* and *wvar*, are used to weight the
integrand by a select list of functions. Different integration
methods are used to compute the integral with these weighting
functions, and these do not support specifying break points. The
possible values of weight and the corresponding weighting functions are.
========== =================================== =====================
``weight`` Weight function used ``wvar``
========== =================================== =====================
'cos' cos(w*x) wvar = w
'sin' sin(w*x) wvar = w
'alg' g(x) = ((x-a)**alpha)*((b-x)**beta) wvar = (alpha, beta)
'alg-loga' g(x)*log(x-a) wvar = (alpha, beta)
'alg-logb' g(x)*log(b-x) wvar = (alpha, beta)
'alg-log' g(x)*log(x-a)*log(b-x) wvar = (alpha, beta)
'cauchy' 1/(x-c) wvar = c
========== =================================== =====================
wvar holds the parameter w, (alpha, beta), or c depending on the weight
selected. In these expressions, a and b are the integration limits.
For the 'cos' and 'sin' weighting, additional inputs and outputs are
available.
For finite integration limits, the integration is performed using a
Clenshaw-Curtis method which uses Chebyshev moments. For repeated
calculations, these moments are saved in the output dictionary:
'momcom'
The maximum level of Chebyshev moments that have been computed,
i.e., if ``M_c`` is ``infodict['momcom']`` then the moments have been
computed for intervals of length ``|b-a| * 2**(-l)``,
``l=0,1,...,M_c``.
'nnlog'
A rank-1 integer array of length M(=limit), containing the
subdivision levels of the subintervals, i.e., an element of this
array is equal to l if the corresponding subinterval is
``|b-a|* 2**(-l)``.
'chebmo'
A rank-2 array of shape (25, maxp1) containing the computed
Chebyshev moments. These can be passed on to an integration
over the same interval by passing this array as the second
element of the sequence wopts and passing infodict['momcom'] as
the first element.
If one of the integration limits is infinite, then a Fourier integral is
computed (assuming w neq 0). If full_output is 1 and a numerical error
is encountered, besides the error message attached to the output tuple,
a dictionary is also appended to the output tuple which translates the
error codes in the array ``info['ierlst']`` to English messages. The
output information dictionary contains the following entries instead of
'last', 'alist', 'blist', 'rlist', and 'elist':
'lst'
The number of subintervals needed for the integration (call it ``K_f``).
'rslst'
A rank-1 array of length M_f=limlst, whose first ``K_f`` elements
contain the integral contribution over the interval
``(a+(k-1)c, a+kc)`` where ``c = (2*floor(|w|) + 1) * pi / |w|``
and ``k=1,2,...,K_f``.
'erlst'
A rank-1 array of length ``M_f`` containing the error estimate
corresponding to the interval in the same position in
``infodict['rslist']``.
'ierlst'
A rank-1 integer array of length ``M_f`` containing an error flag
corresponding to the interval in the same position in
``infodict['rslist']``. See the explanation dictionary (last entry
in the output tuple) for the meaning of the codes.
**Details of QUADPACK level routines**
`quad` calls routines from the FORTRAN library QUADPACK. This section
provides details on the conditions for each routine to be called and a
short description of each routine. The routine called depends on
`weight`, `points` and the integration limits `a` and `b`.
================ ============== ========== =====================
QUADPACK routine `weight` `points` infinite bounds
================ ============== ========== =====================
qagse None No No
qagie None No Yes
qagpe None Yes No
qawoe 'sin', 'cos' No No
qawfe 'sin', 'cos' No either `a` or `b`
qawse 'alg*' No No
qawce 'cauchy' No No
================ ============== ========== =====================
The following provides a short description from [1]_ for each
routine.
qagse
is an integrator based on globally adaptive interval
subdivision in connection with extrapolation, which will
eliminate the effects of integrand singularities of
several types.
qagie
handles integration over infinite intervals. The infinite range is
mapped onto a finite interval and subsequently the same strategy as
in ``QAGS`` is applied.
qagpe
serves the same purposes as QAGS, but also allows the
user to provide explicit information about the location
and type of trouble-spots i.e. the abscissae of internal
singularities, discontinuities and other difficulties of
the integrand function.
qawoe
is an integrator for the evaluation of
:math:`\\int^b_a \\cos(\\omega x)f(x)dx` or
:math:`\\int^b_a \\sin(\\omega x)f(x)dx`
over a finite interval [a,b], where :math:`\\omega` and :math:`f`
are specified by the user. The rule evaluation component is based
on the modified Clenshaw-Curtis technique
An adaptive subdivision scheme is used in connection
with an extrapolation procedure, which is a modification
of that in ``QAGS`` and allows the algorithm to deal with
singularities in :math:`f(x)`.
qawfe
calculates the Fourier transform
:math:`\\int^\\infty_a \\cos(\\omega x)f(x)dx` or
:math:`\\int^\\infty_a \\sin(\\omega x)f(x)dx`
for user-provided :math:`\\omega` and :math:`f`. The procedure of
``QAWO`` is applied on successive finite intervals, and convergence
acceleration by means of the :math:`\\varepsilon`-algorithm is applied
to the series of integral approximations.
qawse
approximate :math:`\\int^b_a w(x)f(x)dx`, with :math:`a < b` where
:math:`w(x) = (x-a)^{\\alpha}(b-x)^{\\beta}v(x)` with
:math:`\\alpha,\\beta > -1`, where :math:`v(x)` may be one of the
following functions: :math:`1`, :math:`\\log(x-a)`, :math:`\\log(b-x)`,
:math:`\\log(x-a)\\log(b-x)`.
The user specifies :math:`\\alpha`, :math:`\\beta` and the type of the
function :math:`v`. A globally adaptive subdivision strategy is
applied, with modified Clenshaw-Curtis integration on those
subintervals which contain `a` or `b`.
qawce
compute :math:`\\int^b_a f(x) / (x-c)dx` where the integral must be
interpreted as a Cauchy principal value integral, for user specified
:math:`c` and :math:`f`. The strategy is globally adaptive. Modified
Clenshaw-Curtis integration is used on those intervals containing the
point :math:`x = c`.
**Integration of Complex Function of a Real Variable**
A complex valued function, :math:`f`, of a real variable can be written as
:math:`f = g + ih`. Similarly, the integral of :math:`f` can be
written as
.. math::
\\int_a^b f(x) dx = \\int_a^b g(x) dx + i\\int_a^b h(x) dx
assuming that the integrals of :math:`g` and :math:`h` exist
over the interval :math:`[a,b]` [2]_. Therefore, ``quad`` integrates
complex-valued functions by integrating the real and imaginary components
separately.
References
----------
.. [1] Piessens, Robert; de Doncker-Kapenga, Elise;
Überhuber, Christoph W.; Kahaner, David (1983).
QUADPACK: A subroutine package for automatic integration.
Springer-Verlag.
ISBN 978-3-540-12553-2.
.. [2] McCullough, Thomas; Phillips, Keith (1973).
Foundations of Analysis in the Complex Plane.
Holt Rinehart Winston.
ISBN 0-03-086370-8
Examples
--------
Calculate :math:`\\int^4_0 x^2 dx` and compare with an analytic result
>>> from scipy import integrate
>>> import numpy as np
>>> x2 = lambda x: x**2
>>> integrate.quad(x2, 0, 4)
(21.333333333333332, 2.3684757858670003e-13)
>>> print(4**3 / 3.) # analytical result
21.3333333333
Calculate :math:`\\int^\\infty_0 e^{-x} dx`
>>> invexp = lambda x: np.exp(-x)
>>> integrate.quad(invexp, 0, np.inf)
(1.0, 5.842605999138044e-11)
Calculate :math:`\\int^1_0 a x \\,dx` for :math:`a = 1, 3`
>>> f = lambda x, a: a*x
>>> y, err = integrate.quad(f, 0, 1, args=(1,))
>>> y
0.5
>>> y, err = integrate.quad(f, 0, 1, args=(3,))
>>> y
1.5
Calculate :math:`\\int^1_0 x^2 + y^2 dx` with ctypes, holding
y parameter as 1::
testlib.c =>
double func(int n, double args[n]){
return args[0]*args[0] + args[1]*args[1];}
compile to library testlib.*
::
from scipy import integrate
import ctypes
lib = ctypes.CDLL('/home/.../testlib.*') #use absolute path
lib.func.restype = ctypes.c_double
lib.func.argtypes = (ctypes.c_int,ctypes.c_double)
integrate.quad(lib.func,0,1,(1))
#(1.3333333333333333, 1.4802973661668752e-14)
print((1.0**3/3.0 + 1.0) - (0.0**3/3.0 + 0.0)) #Analytic result
# 1.3333333333333333
Be aware that pulse shapes and other sharp features as compared to the
size of the integration interval may not be integrated correctly using
this method. A simplified example of this limitation is integrating a
y-axis reflected step function with many zero values within the integrals
bounds.
>>> y = lambda x: 1 if x<=0 else 0
>>> integrate.quad(y, -1, 1)
(1.0, 1.1102230246251565e-14)
>>> integrate.quad(y, -1, 100)
(1.0000000002199108, 1.0189464580163188e-08)
>>> integrate.quad(y, -1, 10000)
(0.0, 0.0)
"""
if not isinstance(args, tuple):
args = (args,)
# check the limits of integration: \int_a^b, expect a < b
flip, a, b = b < a, min(a, b), max(a, b)
if complex_func:
def imfunc(x, *args):
return func(x, *args).imag
def refunc(x, *args):
return func(x, *args).real
re_retval = quad(refunc, a, b, args, full_output, epsabs,
epsrel, limit, points, weight, wvar, wopts,
maxp1, limlst, complex_func=False)
im_retval = quad(imfunc, a, b, args, full_output, epsabs,
epsrel, limit, points, weight, wvar, wopts,
maxp1, limlst, complex_func=False)
integral = re_retval[0] + 1j*im_retval[0]
error_estimate = re_retval[1] + 1j*im_retval[1]
retval = integral, error_estimate
if full_output:
msgexp = {}
msgexp["real"] = re_retval[2:]
msgexp["imag"] = im_retval[2:]
retval = retval + (msgexp,)
return retval
if weight is None:
retval = _quad(func, a, b, args, full_output, epsabs, epsrel, limit,
points)
else:
if points is not None:
msg = ("Break points cannot be specified when using weighted integrand.\n"
"Continuing, ignoring specified points.")
warnings.warn(msg, IntegrationWarning, stacklevel=2)
retval = _quad_weight(func, a, b, args, full_output, epsabs, epsrel,
limlst, limit, maxp1, weight, wvar, wopts)
if flip:
retval = (-retval[0],) + retval[1:]
ier = retval[-1]
if ier == 0:
return retval[:-1]
msgs = {80: "A Python error occurred possibly while calling the function.",
1: f"The maximum number of subdivisions ({limit}) has been achieved.\n "
f"If increasing the limit yields no improvement it is advised to "
f"analyze \n the integrand in order to determine the difficulties. "
f"If the position of a \n local difficulty can be determined "
f"(singularity, discontinuity) one will \n probably gain from "
f"splitting up the interval and calling the integrator \n on the "
f"subranges. Perhaps a special-purpose integrator should be used.",
2: "The occurrence of roundoff error is detected, which prevents \n "
"the requested tolerance from being achieved. "
"The error may be \n underestimated.",
3: "Extremely bad integrand behavior occurs at some points of the\n "
"integration interval.",
4: "The algorithm does not converge. Roundoff error is detected\n "
"in the extrapolation table. It is assumed that the requested "
"tolerance\n cannot be achieved, and that the returned result "
"(if full_output = 1) is \n the best which can be obtained.",
5: "The integral is probably divergent, or slowly convergent.",
6: "The input is invalid.",
7: "Abnormal termination of the routine. The estimates for result\n "
"and error are less reliable. It is assumed that the requested "
"accuracy\n has not been achieved.",
'unknown': "Unknown error."}
if weight in ['cos','sin'] and (b == np.inf or a == -np.inf):
msgs[1] = (
"The maximum number of cycles allowed has been achieved., e.e.\n of "
"subintervals (a+(k-1)c, a+kc) where c = (2*int(abs(omega)+1))\n "
"*pi/abs(omega), for k = 1, 2, ..., lst. "
"One can allow more cycles by increasing the value of limlst. "
"Look at info['ierlst'] with full_output=1."
)
msgs[4] = (
"The extrapolation table constructed for convergence acceleration\n of "
"the series formed by the integral contributions over the cycles, \n does "
"not converge to within the requested accuracy. "
"Look at \n info['ierlst'] with full_output=1."
)
msgs[7] = (
"Bad integrand behavior occurs within one or more of the cycles.\n "
"Location and type of the difficulty involved can be determined from \n "
"the vector info['ierlist'] obtained with full_output=1."
)
explain = {1: "The maximum number of subdivisions (= limit) has been \n "
"achieved on this cycle.",
2: "The occurrence of roundoff error is detected and prevents\n "
"the tolerance imposed on this cycle from being achieved.",
3: "Extremely bad integrand behavior occurs at some points of\n "
"this cycle.",
4: "The integral over this cycle does not converge (to within the "
"required accuracy) due to roundoff in the extrapolation "
"procedure invoked on this cycle. It is assumed that the result "
"on this interval is the best which can be obtained.",
5: "The integral over this cycle is probably divergent or "
"slowly convergent."}
try:
msg = msgs[ier]
except KeyError:
msg = msgs['unknown']
if ier in [1,2,3,4,5,7]:
if full_output:
if weight in ['cos', 'sin'] and (b == np.inf or a == -np.inf):
return retval[:-1] + (msg, explain)
else:
return retval[:-1] + (msg,)
else:
warnings.warn(msg, IntegrationWarning, stacklevel=2)
return retval[:-1]
elif ier == 6: # Forensic decision tree when QUADPACK throws ier=6
if epsabs <= 0: # Small error tolerance - applies to all methods
if epsrel < max(50 * sys.float_info.epsilon, 5e-29):
msg = ("If 'epsabs'<=0, 'epsrel' must be greater than both"
" 5e-29 and 50*(machine epsilon).")
elif weight in ['sin', 'cos'] and (abs(a) + abs(b) == np.inf):
msg = ("Sine or cosine weighted integrals with infinite domain"
" must have 'epsabs'>0.")
elif weight is None:
if points is None: # QAGSE/QAGIE
msg = ("Invalid 'limit' argument. There must be"
" at least one subinterval")
else: # QAGPE
if not (min(a, b) <= min(points) <= max(points) <= max(a, b)):
msg = ("All break points in 'points' must lie within the"
" integration limits.")
elif len(points) >= limit:
msg = (f"Number of break points ({len(points):d}) "
f"must be less than subinterval limit ({limit:d})")
else:
if maxp1 < 1:
msg = "Chebyshev moment limit maxp1 must be >=1."
elif weight in ('cos', 'sin') and abs(a+b) == np.inf: # QAWFE
msg = "Cycle limit limlst must be >=3."
elif weight.startswith('alg'): # QAWSE
if min(wvar) < -1:
msg = "wvar parameters (alpha, beta) must both be >= -1."
if b < a:
msg = "Integration limits a, b must satistfy a<b."
elif weight == 'cauchy' and wvar in (a, b):
msg = ("Parameter 'wvar' must not equal"
" integration limits 'a' or 'b'.")
raise ValueError(msg)
def _quad(func,a,b,args,full_output,epsabs,epsrel,limit,points):
infbounds = 0
if (b != np.inf and a != -np.inf):
pass # standard integration
elif (b == np.inf and a != -np.inf):
infbounds = 1
bound = a
elif (b == np.inf and a == -np.inf):
infbounds = 2
bound = 0 # ignored
elif (b != np.inf and a == -np.inf):
infbounds = -1
bound = b
else:
raise RuntimeError("Infinity comparisons don't work for you.")
if points is None:
if infbounds == 0:
return _quadpack._qagse(func,a,b,args,full_output,epsabs,epsrel,limit)
else:
return _quadpack._qagie(func, bound, infbounds, args, full_output,
epsabs, epsrel, limit)
else:
if infbounds != 0:
raise ValueError("Infinity inputs cannot be used with break points.")
else:
#Duplicates force function evaluation at singular points
the_points = np.unique(points)
the_points = the_points[a < the_points]
the_points = the_points[the_points < b]
the_points = np.concatenate((the_points, (0., 0.)))
return _quadpack._qagpe(func, a, b, the_points, args, full_output,
epsabs, epsrel, limit)
def _quad_weight(func, a, b, args, full_output, epsabs, epsrel,
limlst, limit, maxp1,weight, wvar, wopts):
if weight not in ['cos','sin','alg','alg-loga','alg-logb','alg-log','cauchy']:
raise ValueError(f"{weight} not a recognized weighting function.")
strdict = {'cos':1,'sin':2,'alg':1,'alg-loga':2,'alg-logb':3,'alg-log':4}
if weight in ['cos','sin']:
integr = strdict[weight]
if (b != np.inf and a != -np.inf): # finite limits
if wopts is None: # no precomputed Chebyshev moments
return _quadpack._qawoe(func, a, b, wvar, integr, args, full_output,
epsabs, epsrel, limit, maxp1,1)
else: # precomputed Chebyshev moments
momcom = wopts[0]
chebcom = wopts[1]
return _quadpack._qawoe(func, a, b, wvar, integr, args,
full_output,epsabs, epsrel, limit, maxp1, 2,
momcom, chebcom)
elif (b == np.inf and a != -np.inf):
return _quadpack._qawfe(func, a, wvar, integr, args, full_output,
epsabs, limlst, limit, maxp1)
elif (b != np.inf and a == -np.inf): # remap function and interval
if weight == 'cos':
def thefunc(x,*myargs):
y = -x
func = myargs[0]
myargs = (y,) + myargs[1:]
return func(*myargs)
else:
def thefunc(x,*myargs):
y = -x
func = myargs[0]
myargs = (y,) + myargs[1:]
return -func(*myargs)
args = (func,) + args
return _quadpack._qawfe(thefunc, -b, wvar, integr, args,
full_output, epsabs, limlst, limit, maxp1)
else:
raise ValueError("Cannot integrate with this weight from -Inf to +Inf.")
else:
if a in [-np.inf, np.inf] or b in [-np.inf, np.inf]:
message = "Cannot integrate with this weight over an infinite interval."
raise ValueError(message)
if weight.startswith('alg'):
integr = strdict[weight]
return _quadpack._qawse(func, a, b, wvar, integr, args,
full_output, epsabs, epsrel, limit)
else: # weight == 'cauchy'
return _quadpack._qawce(func, a, b, wvar, args, full_output,
epsabs, epsrel, limit)
def dblquad(func, a, b, gfun, hfun, args=(), epsabs=1.49e-8, epsrel=1.49e-8):
"""
Compute a double integral.
Return the double (definite) integral of ``func(y, x)`` from ``x = a..b``
and ``y = gfun(x)..hfun(x)``.
Parameters
----------
func : callable
A Python function or method of at least two variables: y must be the
first argument and x the second argument.
a, b : float
The limits of integration in x: `a` < `b`
gfun : callable or float
The lower boundary curve in y which is a function taking a single
floating point argument (x) and returning a floating point result
or a float indicating a constant boundary curve.
hfun : callable or float
The upper boundary curve in y (same requirements as `gfun`).
args : sequence, optional
Extra arguments to pass to `func`.
epsabs : float, optional
Absolute tolerance passed directly to the inner 1-D quadrature
integration. Default is 1.49e-8. ``dblquad`` tries to obtain
an accuracy of ``abs(i-result) <= max(epsabs, epsrel*abs(i))``
where ``i`` = inner integral of ``func(y, x)`` from ``gfun(x)``
to ``hfun(x)``, and ``result`` is the numerical approximation.
See `epsrel` below.
epsrel : float, optional
Relative tolerance of the inner 1-D integrals. Default is 1.49e-8.
If ``epsabs <= 0``, `epsrel` must be greater than both 5e-29
and ``50 * (machine epsilon)``. See `epsabs` above.
Returns
-------
y : float
The resultant integral.
abserr : float
An estimate of the error.
See Also
--------
quad : single integral
tplquad : triple integral
nquad : N-dimensional integrals
fixed_quad : fixed-order Gaussian quadrature
simpson : integrator for sampled data
romb : integrator for sampled data
scipy.special : for coefficients and roots of orthogonal polynomials
Notes
-----
For valid results, the integral must converge; behavior for divergent
integrals is not guaranteed.
**Details of QUADPACK level routines**
`quad` calls routines from the FORTRAN library QUADPACK. This section
provides details on the conditions for each routine to be called and a
short description of each routine. For each level of integration, ``qagse``
is used for finite limits or ``qagie`` is used if either limit (or both!)
are infinite. The following provides a short description from [1]_ for each
routine.
qagse
is an integrator based on globally adaptive interval
subdivision in connection with extrapolation, which will
eliminate the effects of integrand singularities of
several types.
qagie
handles integration over infinite intervals. The infinite range is
mapped onto a finite interval and subsequently the same strategy as
in ``QAGS`` is applied.
References
----------
.. [1] Piessens, Robert; de Doncker-Kapenga, Elise;
Überhuber, Christoph W.; Kahaner, David (1983).
QUADPACK: A subroutine package for automatic integration.
Springer-Verlag.
ISBN 978-3-540-12553-2.
Examples
--------
Compute the double integral of ``x * y**2`` over the box
``x`` ranging from 0 to 2 and ``y`` ranging from 0 to 1.
That is, :math:`\\int^{x=2}_{x=0} \\int^{y=1}_{y=0} x y^2 \\,dy \\,dx`.
>>> import numpy as np
>>> from scipy import integrate
>>> f = lambda y, x: x*y**2
>>> integrate.dblquad(f, 0, 2, 0, 1)
(0.6666666666666667, 7.401486830834377e-15)
Calculate :math:`\\int^{x=\\pi/4}_{x=0} \\int^{y=\\cos(x)}_{y=\\sin(x)} 1
\\,dy \\,dx`.
>>> f = lambda y, x: 1
>>> integrate.dblquad(f, 0, np.pi/4, np.sin, np.cos)
(0.41421356237309503, 1.1083280054755938e-14)
Calculate :math:`\\int^{x=1}_{x=0} \\int^{y=2-x}_{y=x} a x y \\,dy \\,dx`
for :math:`a=1, 3`.
>>> f = lambda y, x, a: a*x*y
>>> integrate.dblquad(f, 0, 1, lambda x: x, lambda x: 2-x, args=(1,))
(0.33333333333333337, 5.551115123125783e-15)
>>> integrate.dblquad(f, 0, 1, lambda x: x, lambda x: 2-x, args=(3,))
(0.9999999999999999, 1.6653345369377348e-14)
Compute the two-dimensional Gaussian Integral, which is the integral of the
Gaussian function :math:`f(x,y) = e^{-(x^{2} + y^{2})}`, over
:math:`(-\\infty,+\\infty)`. That is, compute the integral
:math:`\\iint^{+\\infty}_{-\\infty} e^{-(x^{2} + y^{2})} \\,dy\\,dx`.
>>> f = lambda x, y: np.exp(-(x ** 2 + y ** 2))
>>> integrate.dblquad(f, -np.inf, np.inf, -np.inf, np.inf)
(3.141592653589777, 2.5173086737433208e-08)
"""
def temp_ranges(*args):
return [gfun(args[0]) if callable(gfun) else gfun,
hfun(args[0]) if callable(hfun) else hfun]
return nquad(func, [temp_ranges, [a, b]], args=args,
opts={"epsabs": epsabs, "epsrel": epsrel})
def tplquad(func, a, b, gfun, hfun, qfun, rfun, args=(), epsabs=1.49e-8,
epsrel=1.49e-8):
"""
Compute a triple (definite) integral.
Return the triple integral of ``func(z, y, x)`` from ``x = a..b``,
``y = gfun(x)..hfun(x)``, and ``z = qfun(x,y)..rfun(x,y)``.
Parameters
----------
func : function
A Python function or method of at least three variables in the
order (z, y, x).
a, b : float
The limits of integration in x: `a` < `b`
gfun : function or float
The lower boundary curve in y which is a function taking a single
floating point argument (x) and returning a floating point result
or a float indicating a constant boundary curve.
hfun : function or float
The upper boundary curve in y (same requirements as `gfun`).
qfun : function or float
The lower boundary surface in z. It must be a function that takes
two floats in the order (x, y) and returns a float or a float
indicating a constant boundary surface.
rfun : function or float
The upper boundary surface in z. (Same requirements as `qfun`.)
args : tuple, optional
Extra arguments to pass to `func`.
epsabs : float, optional
Absolute tolerance passed directly to the innermost 1-D quadrature
integration. Default is 1.49e-8.
epsrel : float, optional
Relative tolerance of the innermost 1-D integrals. Default is 1.49e-8.
Returns
-------
y : float
The resultant integral.
abserr : float
An estimate of the error.
See Also
--------
quad : Adaptive quadrature using QUADPACK
fixed_quad : Fixed-order Gaussian quadrature
dblquad : Double integrals
nquad : N-dimensional integrals
romb : Integrators for sampled data
simpson : Integrators for sampled data
scipy.special : For coefficients and roots of orthogonal polynomials
Notes
-----
For valid results, the integral must converge; behavior for divergent
integrals is not guaranteed.
**Details of QUADPACK level routines**
`quad` calls routines from the FORTRAN library QUADPACK. This section
provides details on the conditions for each routine to be called and a
short description of each routine. For each level of integration, ``qagse``
is used for finite limits or ``qagie`` is used, if either limit (or both!)
are infinite. The following provides a short description from [1]_ for each
routine.
qagse
is an integrator based on globally adaptive interval
subdivision in connection with extrapolation, which will
eliminate the effects of integrand singularities of
several types.
qagie
handles integration over infinite intervals. The infinite range is
mapped onto a finite interval and subsequently the same strategy as
in ``QAGS`` is applied.
References
----------
.. [1] Piessens, Robert; de Doncker-Kapenga, Elise;
Überhuber, Christoph W.; Kahaner, David (1983).
QUADPACK: A subroutine package for automatic integration.
Springer-Verlag.
ISBN 978-3-540-12553-2.
Examples
--------
Compute the triple integral of ``x * y * z``, over ``x`` ranging
from 1 to 2, ``y`` ranging from 2 to 3, ``z`` ranging from 0 to 1.
That is, :math:`\\int^{x=2}_{x=1} \\int^{y=3}_{y=2} \\int^{z=1}_{z=0} x y z
\\,dz \\,dy \\,dx`.
>>> import numpy as np
>>> from scipy import integrate
>>> f = lambda z, y, x: x*y*z
>>> integrate.tplquad(f, 1, 2, 2, 3, 0, 1)
(1.8749999999999998, 3.3246447942574074e-14)
Calculate :math:`\\int^{x=1}_{x=0} \\int^{y=1-2x}_{y=0}
\\int^{z=1-x-2y}_{z=0} x y z \\,dz \\,dy \\,dx`.
Note: `qfun`/`rfun` takes arguments in the order (x, y), even though ``f``
takes arguments in the order (z, y, x).
>>> f = lambda z, y, x: x*y*z
>>> integrate.tplquad(f, 0, 1, 0, lambda x: 1-2*x, 0, lambda x, y: 1-x-2*y)
(0.05416666666666668, 2.1774196738157757e-14)
Calculate :math:`\\int^{x=1}_{x=0} \\int^{y=1}_{y=0} \\int^{z=1}_{z=0}
a x y z \\,dz \\,dy \\,dx` for :math:`a=1, 3`.
>>> f = lambda z, y, x, a: a*x*y*z
>>> integrate.tplquad(f, 0, 1, 0, 1, 0, 1, args=(1,))
(0.125, 5.527033708952211e-15)
>>> integrate.tplquad(f, 0, 1, 0, 1, 0, 1, args=(3,))
(0.375, 1.6581101126856635e-14)
Compute the three-dimensional Gaussian Integral, which is the integral of
the Gaussian function :math:`f(x,y,z) = e^{-(x^{2} + y^{2} + z^{2})}`, over
:math:`(-\\infty,+\\infty)`. That is, compute the integral
:math:`\\iiint^{+\\infty}_{-\\infty} e^{-(x^{2} + y^{2} + z^{2})} \\,dz
\\,dy\\,dx`.
>>> f = lambda x, y, z: np.exp(-(x ** 2 + y ** 2 + z ** 2))
>>> integrate.tplquad(f, -np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf)
(5.568327996830833, 4.4619078828029765e-08)
"""
# f(z, y, x)
# qfun/rfun(x, y)
# gfun/hfun(x)
# nquad will hand (y, x, t0, ...) to ranges0
# nquad will hand (x, t0, ...) to ranges1
# Only qfun / rfun is different API...
def ranges0(*args):
return [qfun(args[1], args[0]) if callable(qfun) else qfun,
rfun(args[1], args[0]) if callable(rfun) else rfun]
def ranges1(*args):
return [gfun(args[0]) if callable(gfun) else gfun,
hfun(args[0]) if callable(hfun) else hfun]
ranges = [ranges0, ranges1, [a, b]]
return nquad(func, ranges, args=args,
opts={"epsabs": epsabs, "epsrel": epsrel})
def nquad(func, ranges, args=None, opts=None, full_output=False):
r"""
Integration over multiple variables.
Wraps `quad` to enable integration over multiple variables.
Various options allow improved integration of discontinuous functions, as
well as the use of weighted integration, and generally finer control of the
integration process.
Parameters
----------
func : {callable, scipy.LowLevelCallable}
The function to be integrated. Has arguments of ``x0, ... xn``,
``t0, ... tm``, where integration is carried out over ``x0, ... xn``,
which must be floats. Where ``t0, ... tm`` are extra arguments
passed in args.
Function signature should be ``func(x0, x1, ..., xn, t0, t1, ..., tm)``.
Integration is carried out in order. That is, integration over ``x0``
is the innermost integral, and ``xn`` is the outermost.
If the user desires improved integration performance, then `f` may
be a `scipy.LowLevelCallable` with one of the signatures::
double func(int n, double *xx)
double func(int n, double *xx, void *user_data)
where ``n`` is the number of variables and args. The ``xx`` array
contains the coordinates and extra arguments. ``user_data`` is the data
contained in the `scipy.LowLevelCallable`.
ranges : iterable object
Each element of ranges may be either a sequence of 2 numbers, or else
a callable that returns such a sequence. ``ranges[0]`` corresponds to
integration over x0, and so on. If an element of ranges is a callable,
then it will be called with all of the integration arguments available,
as well as any parametric arguments. e.g., if
``func = f(x0, x1, x2, t0, t1)``, then ``ranges[0]`` may be defined as
either ``(a, b)`` or else as ``(a, b) = range0(x1, x2, t0, t1)``.
args : iterable object, optional
Additional arguments ``t0, ... tn``, required by ``func``, ``ranges``,
and ``opts``.
opts : iterable object or dict, optional
Options to be passed to `quad`. May be empty, a dict, or
a sequence of dicts or functions that return a dict. If empty, the
default options from scipy.integrate.quad are used. If a dict, the same
options are used for all levels of integraion. If a sequence, then each
element of the sequence corresponds to a particular integration. e.g.,
``opts[0]`` corresponds to integration over ``x0``, and so on. If a
callable, the signature must be the same as for ``ranges``. The
available options together with their default values are:
- epsabs = 1.49e-08
- epsrel = 1.49e-08
- limit = 50
- points = None
- weight = None
- wvar = None
- wopts = None
For more information on these options, see `quad`.
full_output : bool, optional
Partial implementation of ``full_output`` from scipy.integrate.quad.
The number of integrand function evaluations ``neval`` can be obtained
by setting ``full_output=True`` when calling nquad.
Returns
-------
result : float
The result of the integration.
abserr : float
The maximum of the estimates of the absolute error in the various
integration results.
out_dict : dict, optional
A dict containing additional information on the integration.
See Also
--------
quad : 1-D numerical integration
dblquad, tplquad : double and triple integrals
fixed_quad : fixed-order Gaussian quadrature
Notes
-----
For valid results, the integral must converge; behavior for divergent
integrals is not guaranteed.
**Details of QUADPACK level routines**
`nquad` calls routines from the FORTRAN library QUADPACK. This section
provides details on the conditions for each routine to be called and a
short description of each routine. The routine called depends on
`weight`, `points` and the integration limits `a` and `b`.
================ ============== ========== =====================
QUADPACK routine `weight` `points` infinite bounds
================ ============== ========== =====================
qagse None No No
qagie None No Yes
qagpe None Yes No
qawoe 'sin', 'cos' No No
qawfe 'sin', 'cos' No either `a` or `b`
qawse 'alg*' No No
qawce 'cauchy' No No
================ ============== ========== =====================
The following provides a short description from [1]_ for each
routine.
qagse
is an integrator based on globally adaptive interval
subdivision in connection with extrapolation, which will
eliminate the effects of integrand singularities of
several types.
qagie
handles integration over infinite intervals. The infinite range is
mapped onto a finite interval and subsequently the same strategy as
in ``QAGS`` is applied.
qagpe
serves the same purposes as QAGS, but also allows the
user to provide explicit information about the location
and type of trouble-spots i.e. the abscissae of internal
singularities, discontinuities and other difficulties of
the integrand function.
qawoe
is an integrator for the evaluation of
:math:`\int^b_a \cos(\omega x)f(x)dx` or
:math:`\int^b_a \sin(\omega x)f(x)dx`
over a finite interval [a,b], where :math:`\omega` and :math:`f`
are specified by the user. The rule evaluation component is based
on the modified Clenshaw-Curtis technique
An adaptive subdivision scheme is used in connection
with an extrapolation procedure, which is a modification
of that in ``QAGS`` and allows the algorithm to deal with
singularities in :math:`f(x)`.
qawfe
calculates the Fourier transform
:math:`\int^\infty_a \cos(\omega x)f(x)dx` or
:math:`\int^\infty_a \sin(\omega x)f(x)dx`
for user-provided :math:`\omega` and :math:`f`. The procedure of
``QAWO`` is applied on successive finite intervals, and convergence
acceleration by means of the :math:`\varepsilon`-algorithm is applied
to the series of integral approximations.
qawse
approximate :math:`\int^b_a w(x)f(x)dx`, with :math:`a < b` where
:math:`w(x) = (x-a)^{\alpha}(b-x)^{\beta}v(x)` with
:math:`\alpha,\beta > -1`, where :math:`v(x)` may be one of the
following functions: :math:`1`, :math:`\log(x-a)`, :math:`\log(b-x)`,
:math:`\log(x-a)\log(b-x)`.
The user specifies :math:`\alpha`, :math:`\beta` and the type of the
function :math:`v`. A globally adaptive subdivision strategy is
applied, with modified Clenshaw-Curtis integration on those
subintervals which contain `a` or `b`.
qawce
compute :math:`\int^b_a f(x) / (x-c)dx` where the integral must be
interpreted as a Cauchy principal value integral, for user specified
:math:`c` and :math:`f`. The strategy is globally adaptive. Modified
Clenshaw-Curtis integration is used on those intervals containing the
point :math:`x = c`.
References
----------
.. [1] Piessens, Robert; de Doncker-Kapenga, Elise;
Überhuber, Christoph W.; Kahaner, David (1983).
QUADPACK: A subroutine package for automatic integration.
Springer-Verlag.
ISBN 978-3-540-12553-2.
Examples
--------
Calculate
.. math::
\int^{1}_{-0.15} \int^{0.8}_{0.13} \int^{1}_{-1} \int^{1}_{0}
f(x_0, x_1, x_2, x_3) \,dx_0 \,dx_1 \,dx_2 \,dx_3 ,
where
.. math::
f(x_0, x_1, x_2, x_3) = \begin{cases}
x_0^2+x_1 x_2-x_3^3+ \sin{x_0}+1 & (x_0-0.2 x_3-0.5-0.25 x_1 > 0) \\
x_0^2+x_1 x_2-x_3^3+ \sin{x_0}+0 & (x_0-0.2 x_3-0.5-0.25 x_1 \leq 0)
\end{cases} .
>>> import numpy as np
>>> from scipy import integrate
>>> func = lambda x0,x1,x2,x3 : x0**2 + x1*x2 - x3**3 + np.sin(x0) + (
... 1 if (x0-.2*x3-.5-.25*x1>0) else 0)
>>> def opts0(*args, **kwargs):
... return {'points':[0.2*args[2] + 0.5 + 0.25*args[0]]}
>>> integrate.nquad(func, [[0,1], [-1,1], [.13,.8], [-.15,1]],
... opts=[opts0,{},{},{}], full_output=True)
(1.5267454070738633, 2.9437360001402324e-14, {'neval': 388962})
Calculate
.. math::
\int^{t_0+t_1+1}_{t_0+t_1-1}
\int^{x_2+t_0^2 t_1^3+1}_{x_2+t_0^2 t_1^3-1}
\int^{t_0 x_1+t_1 x_2+1}_{t_0 x_1+t_1 x_2-1}
f(x_0,x_1, x_2,t_0,t_1)
\,dx_0 \,dx_1 \,dx_2,
where
.. math::
f(x_0, x_1, x_2, t_0, t_1) = \begin{cases}
x_0 x_2^2 + \sin{x_1}+2 & (x_0+t_1 x_1-t_0 > 0) \\
x_0 x_2^2 +\sin{x_1}+1 & (x_0+t_1 x_1-t_0 \leq 0)
\end{cases}
and :math:`(t_0, t_1) = (0, 1)` .
>>> def func2(x0, x1, x2, t0, t1):
... return x0*x2**2 + np.sin(x1) + 1 + (1 if x0+t1*x1-t0>0 else 0)
>>> def lim0(x1, x2, t0, t1):
... return [t0*x1 + t1*x2 - 1, t0*x1 + t1*x2 + 1]
>>> def lim1(x2, t0, t1):
... return [x2 + t0**2*t1**3 - 1, x2 + t0**2*t1**3 + 1]
>>> def lim2(t0, t1):
... return [t0 + t1 - 1, t0 + t1 + 1]
>>> def opts0(x1, x2, t0, t1):
... return {'points' : [t0 - t1*x1]}
>>> def opts1(x2, t0, t1):
... return {}
>>> def opts2(t0, t1):
... return {}
>>> integrate.nquad(func2, [lim0, lim1, lim2], args=(0,1),
... opts=[opts0, opts1, opts2])
(36.099919226771625, 1.8546948553373528e-07)
"""
depth = len(ranges)
ranges = [rng if callable(rng) else _RangeFunc(rng) for rng in ranges]
if args is None:
args = ()
if opts is None:
opts = [dict([])] * depth
if isinstance(opts, dict):
opts = [_OptFunc(opts)] * depth
else:
opts = [opt if callable(opt) else _OptFunc(opt) for opt in opts]
return _NQuad(func, ranges, opts, full_output).integrate(*args)
class _RangeFunc:
def __init__(self, range_):
self.range_ = range_
def __call__(self, *args):
"""Return stored value.
*args needed because range_ can be float or func, and is called with
variable number of parameters.
"""
return self.range_
class _OptFunc:
def __init__(self, opt):
self.opt = opt
def __call__(self, *args):
"""Return stored dict."""
return self.opt
class _NQuad:
def __init__(self, func, ranges, opts, full_output):
self.abserr = 0
self.func = func
self.ranges = ranges
self.opts = opts
self.maxdepth = len(ranges)
self.full_output = full_output
if self.full_output:
self.out_dict = {'neval': 0}
def integrate(self, *args, **kwargs):
depth = kwargs.pop('depth', 0)
if kwargs:
raise ValueError('unexpected kwargs')
# Get the integration range and options for this depth.
ind = -(depth + 1)
fn_range = self.ranges[ind]
low, high = fn_range(*args)
fn_opt = self.opts[ind]
opt = dict(fn_opt(*args))
if 'points' in opt:
opt['points'] = [x for x in opt['points'] if low <= x <= high]
if depth + 1 == self.maxdepth:
f = self.func
else:
f = partial(self.integrate, depth=depth+1)
quad_r = quad(f, low, high, args=args, full_output=self.full_output,
**opt)
value = quad_r[0]
abserr = quad_r[1]
if self.full_output:
infodict = quad_r[2]
# The 'neval' parameter in full_output returns the total
# number of times the integrand function was evaluated.
# Therefore, only the innermost integration loop counts.
if depth + 1 == self.maxdepth:
self.out_dict['neval'] += infodict['neval']
self.abserr = max(self.abserr, abserr)
if depth > 0:
return value
else:
# Final result of N-D integration with error
if self.full_output:
return value, self.abserr, self.out_dict
else:
return value, self.abserr
|