File size: 82,693 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
import operator
from math import prod

import numpy as np
from scipy._lib._util import normalize_axis_index
from scipy.linalg import (get_lapack_funcs, LinAlgError,
                          cholesky_banded, cho_solve_banded,
                          solve, solve_banded)
from scipy.optimize import minimize_scalar
from . import _dierckx
from . import _fitpack_impl
from scipy.sparse import csr_array
from scipy.special import poch
from itertools import combinations


__all__ = ["BSpline", "make_interp_spline", "make_lsq_spline",
           "make_smoothing_spline"]


def _get_dtype(dtype):
    """Return np.complex128 for complex dtypes, np.float64 otherwise."""
    if np.issubdtype(dtype, np.complexfloating):
        return np.complex128
    else:
        return np.float64


def _as_float_array(x, check_finite=False):
    """Convert the input into a C contiguous float array.

    NB: Upcasts half- and single-precision floats to double precision.
    """
    x = np.ascontiguousarray(x)
    dtyp = _get_dtype(x.dtype)
    x = x.astype(dtyp, copy=False)
    if check_finite and not np.isfinite(x).all():
        raise ValueError("Array must not contain infs or nans.")
    return x


def _dual_poly(j, k, t, y):
    """
    Dual polynomial of the B-spline B_{j,k,t} -
    polynomial which is associated with B_{j,k,t}:
    $p_{j,k}(y) = (y - t_{j+1})(y - t_{j+2})...(y - t_{j+k})$
    """
    if k == 0:
        return 1
    return np.prod([(y - t[j + i]) for i in range(1, k + 1)])


def _diff_dual_poly(j, k, y, d, t):
    """
    d-th derivative of the dual polynomial $p_{j,k}(y)$
    """
    if d == 0:
        return _dual_poly(j, k, t, y)
    if d == k:
        return poch(1, k)
    comb = list(combinations(range(j + 1, j + k + 1), d))
    res = 0
    for i in range(len(comb) * len(comb[0])):
        res += np.prod([(y - t[j + p]) for p in range(1, k + 1)
                        if (j + p) not in comb[i//d]])
    return res


class BSpline:
    r"""Univariate spline in the B-spline basis.

    .. math::

        S(x) = \sum_{j=0}^{n-1} c_j  B_{j, k; t}(x)

    where :math:`B_{j, k; t}` are B-spline basis functions of degree `k`
    and knots `t`.

    Parameters
    ----------
    t : ndarray, shape (n+k+1,)
        knots
    c : ndarray, shape (>=n, ...)
        spline coefficients
    k : int
        B-spline degree
    extrapolate : bool or 'periodic', optional
        whether to extrapolate beyond the base interval, ``t[k] .. t[n]``,
        or to return nans.
        If True, extrapolates the first and last polynomial pieces of b-spline
        functions active on the base interval.
        If 'periodic', periodic extrapolation is used.
        Default is True.
    axis : int, optional
        Interpolation axis. Default is zero.

    Attributes
    ----------
    t : ndarray
        knot vector
    c : ndarray
        spline coefficients
    k : int
        spline degree
    extrapolate : bool
        If True, extrapolates the first and last polynomial pieces of b-spline
        functions active on the base interval.
    axis : int
        Interpolation axis.
    tck : tuple
        A read-only equivalent of ``(self.t, self.c, self.k)``

    Methods
    -------
    __call__
    basis_element
    derivative
    antiderivative
    integrate
    insert_knot
    construct_fast
    design_matrix
    from_power_basis

    Notes
    -----
    B-spline basis elements are defined via

    .. math::

        B_{i, 0}(x) = 1, \textrm{if $t_i \le x < t_{i+1}$, otherwise $0$,}

        B_{i, k}(x) = \frac{x - t_i}{t_{i+k} - t_i} B_{i, k-1}(x)
                 + \frac{t_{i+k+1} - x}{t_{i+k+1} - t_{i+1}} B_{i+1, k-1}(x)

    **Implementation details**

    - At least ``k+1`` coefficients are required for a spline of degree `k`,
      so that ``n >= k+1``. Additional coefficients, ``c[j]`` with
      ``j > n``, are ignored.

    - B-spline basis elements of degree `k` form a partition of unity on the
      *base interval*, ``t[k] <= x <= t[n]``.


    Examples
    --------

    Translating the recursive definition of B-splines into Python code, we have:

    >>> def B(x, k, i, t):
    ...    if k == 0:
    ...       return 1.0 if t[i] <= x < t[i+1] else 0.0
    ...    if t[i+k] == t[i]:
    ...       c1 = 0.0
    ...    else:
    ...       c1 = (x - t[i])/(t[i+k] - t[i]) * B(x, k-1, i, t)
    ...    if t[i+k+1] == t[i+1]:
    ...       c2 = 0.0
    ...    else:
    ...       c2 = (t[i+k+1] - x)/(t[i+k+1] - t[i+1]) * B(x, k-1, i+1, t)
    ...    return c1 + c2

    >>> def bspline(x, t, c, k):
    ...    n = len(t) - k - 1
    ...    assert (n >= k+1) and (len(c) >= n)
    ...    return sum(c[i] * B(x, k, i, t) for i in range(n))

    Note that this is an inefficient (if straightforward) way to
    evaluate B-splines --- this spline class does it in an equivalent,
    but much more efficient way.

    Here we construct a quadratic spline function on the base interval
    ``2 <= x <= 4`` and compare with the naive way of evaluating the spline:

    >>> from scipy.interpolate import BSpline
    >>> k = 2
    >>> t = [0, 1, 2, 3, 4, 5, 6]
    >>> c = [-1, 2, 0, -1]
    >>> spl = BSpline(t, c, k)
    >>> spl(2.5)
    array(1.375)
    >>> bspline(2.5, t, c, k)
    1.375

    Note that outside of the base interval results differ. This is because
    `BSpline` extrapolates the first and last polynomial pieces of B-spline
    functions active on the base interval.

    >>> import matplotlib.pyplot as plt
    >>> import numpy as np
    >>> fig, ax = plt.subplots()
    >>> xx = np.linspace(1.5, 4.5, 50)
    >>> ax.plot(xx, [bspline(x, t, c ,k) for x in xx], 'r-', lw=3, label='naive')
    >>> ax.plot(xx, spl(xx), 'b-', lw=4, alpha=0.7, label='BSpline')
    >>> ax.grid(True)
    >>> ax.legend(loc='best')
    >>> plt.show()


    References
    ----------
    .. [1] Tom Lyche and Knut Morken, Spline methods,
        http://www.uio.no/studier/emner/matnat/ifi/INF-MAT5340/v05/undervisningsmateriale/
    .. [2] Carl de Boor, A practical guide to splines, Springer, 2001.

    """

    def __init__(self, t, c, k, extrapolate=True, axis=0):
        super().__init__()

        self.k = operator.index(k)
        self.c = np.asarray(c)
        self.t = np.ascontiguousarray(t, dtype=np.float64)

        if extrapolate == 'periodic':
            self.extrapolate = extrapolate
        else:
            self.extrapolate = bool(extrapolate)

        n = self.t.shape[0] - self.k - 1

        axis = normalize_axis_index(axis, self.c.ndim)

        # Note that the normalized axis is stored in the object.
        self.axis = axis
        if axis != 0:
            # roll the interpolation axis to be the first one in self.c
            # More specifically, the target shape for self.c is (n, ...),
            # and axis !=0 means that we have c.shape (..., n, ...)
            #                                               ^
            #                                              axis
            self.c = np.moveaxis(self.c, axis, 0)

        if k < 0:
            raise ValueError("Spline order cannot be negative.")
        if self.t.ndim != 1:
            raise ValueError("Knot vector must be one-dimensional.")
        if n < self.k + 1:
            raise ValueError("Need at least %d knots for degree %d" %
                             (2*k + 2, k))
        if (np.diff(self.t) < 0).any():
            raise ValueError("Knots must be in a non-decreasing order.")
        if len(np.unique(self.t[k:n+1])) < 2:
            raise ValueError("Need at least two internal knots.")
        if not np.isfinite(self.t).all():
            raise ValueError("Knots should not have nans or infs.")
        if self.c.ndim < 1:
            raise ValueError("Coefficients must be at least 1-dimensional.")
        if self.c.shape[0] < n:
            raise ValueError("Knots, coefficients and degree are inconsistent.")

        dt = _get_dtype(self.c.dtype)
        self.c = np.ascontiguousarray(self.c, dtype=dt)

    @classmethod
    def construct_fast(cls, t, c, k, extrapolate=True, axis=0):
        """Construct a spline without making checks.

        Accepts same parameters as the regular constructor. Input arrays
        `t` and `c` must of correct shape and dtype.
        """
        self = object.__new__(cls)
        self.t, self.c, self.k = t, c, k
        self.extrapolate = extrapolate
        self.axis = axis
        return self

    @property
    def tck(self):
        """Equivalent to ``(self.t, self.c, self.k)`` (read-only).
        """
        return self.t, self.c, self.k

    @classmethod
    def basis_element(cls, t, extrapolate=True):
        """Return a B-spline basis element ``B(x | t[0], ..., t[k+1])``.

        Parameters
        ----------
        t : ndarray, shape (k+2,)
            internal knots
        extrapolate : bool or 'periodic', optional
            whether to extrapolate beyond the base interval, ``t[0] .. t[k+1]``,
            or to return nans.
            If 'periodic', periodic extrapolation is used.
            Default is True.

        Returns
        -------
        basis_element : callable
            A callable representing a B-spline basis element for the knot
            vector `t`.

        Notes
        -----
        The degree of the B-spline, `k`, is inferred from the length of `t` as
        ``len(t)-2``. The knot vector is constructed by appending and prepending
        ``k+1`` elements to internal knots `t`.

        Examples
        --------

        Construct a cubic B-spline:

        >>> import numpy as np
        >>> from scipy.interpolate import BSpline
        >>> b = BSpline.basis_element([0, 1, 2, 3, 4])
        >>> k = b.k
        >>> b.t[k:-k]
        array([ 0.,  1.,  2.,  3.,  4.])
        >>> k
        3

        Construct a quadratic B-spline on ``[0, 1, 1, 2]``, and compare
        to its explicit form:

        >>> t = [0, 1, 1, 2]
        >>> b = BSpline.basis_element(t)
        >>> def f(x):
        ...     return np.where(x < 1, x*x, (2. - x)**2)

        >>> import matplotlib.pyplot as plt
        >>> fig, ax = plt.subplots()
        >>> x = np.linspace(0, 2, 51)
        >>> ax.plot(x, b(x), 'g', lw=3)
        >>> ax.plot(x, f(x), 'r', lw=8, alpha=0.4)
        >>> ax.grid(True)
        >>> plt.show()

        """
        k = len(t) - 2
        t = _as_float_array(t)
        t = np.r_[(t[0]-1,) * k, t, (t[-1]+1,) * k]
        c = np.zeros_like(t)
        c[k] = 1.
        return cls.construct_fast(t, c, k, extrapolate)

    @classmethod
    def design_matrix(cls, x, t, k, extrapolate=False):
        """
        Returns a design matrix as a CSR format sparse array.

        Parameters
        ----------
        x : array_like, shape (n,)
            Points to evaluate the spline at.
        t : array_like, shape (nt,)
            Sorted 1D array of knots.
        k : int
            B-spline degree.
        extrapolate : bool or 'periodic', optional
            Whether to extrapolate based on the first and last intervals
            or raise an error. If 'periodic', periodic extrapolation is used.
            Default is False.

            .. versionadded:: 1.10.0

        Returns
        -------
        design_matrix : `csr_array` object
            Sparse matrix in CSR format where each row contains all the basis
            elements of the input row (first row = basis elements of x[0],
            ..., last row = basis elements x[-1]).

        Examples
        --------
        Construct a design matrix for a B-spline

        >>> from scipy.interpolate import make_interp_spline, BSpline
        >>> import numpy as np
        >>> x = np.linspace(0, np.pi * 2, 4)
        >>> y = np.sin(x)
        >>> k = 3
        >>> bspl = make_interp_spline(x, y, k=k)
        >>> design_matrix = bspl.design_matrix(x, bspl.t, k)
        >>> design_matrix.toarray()
        [[1.        , 0.        , 0.        , 0.        ],
        [0.2962963 , 0.44444444, 0.22222222, 0.03703704],
        [0.03703704, 0.22222222, 0.44444444, 0.2962963 ],
        [0.        , 0.        , 0.        , 1.        ]]

        Construct a design matrix for some vector of knots

        >>> k = 2
        >>> t = [-1, 0, 1, 2, 3, 4, 5, 6]
        >>> x = [1, 2, 3, 4]
        >>> design_matrix = BSpline.design_matrix(x, t, k).toarray()
        >>> design_matrix
        [[0.5, 0.5, 0. , 0. , 0. ],
        [0. , 0.5, 0.5, 0. , 0. ],
        [0. , 0. , 0.5, 0.5, 0. ],
        [0. , 0. , 0. , 0.5, 0.5]]

        This result is equivalent to the one created in the sparse format

        >>> c = np.eye(len(t) - k - 1)
        >>> design_matrix_gh = BSpline(t, c, k)(x)
        >>> np.allclose(design_matrix, design_matrix_gh, atol=1e-14)
        True

        Notes
        -----
        .. versionadded:: 1.8.0

        In each row of the design matrix all the basis elements are evaluated
        at the certain point (first row - x[0], ..., last row - x[-1]).

        `nt` is a length of the vector of knots: as far as there are
        `nt - k - 1` basis elements, `nt` should be not less than `2 * k + 2`
        to have at least `k + 1` basis element.

        Out of bounds `x` raises a ValueError.
        """
        x = _as_float_array(x, True)
        t = _as_float_array(t, True)

        if extrapolate != 'periodic':
            extrapolate = bool(extrapolate)

        if k < 0:
            raise ValueError("Spline order cannot be negative.")
        if t.ndim != 1 or np.any(t[1:] < t[:-1]):
            raise ValueError(f"Expect t to be a 1-D sorted array_like, but "
                             f"got t={t}.")
        # There are `nt - k - 1` basis elements in a BSpline built on the
        # vector of knots with length `nt`, so to have at least `k + 1` basis
        # elements we need to have at least `2 * k + 2` elements in the vector
        # of knots.
        if len(t) < 2 * k + 2:
            raise ValueError(f"Length t is not enough for k={k}.")

        if extrapolate == 'periodic':
            # With periodic extrapolation we map x to the segment
            # [t[k], t[n]].
            n = t.size - k - 1
            x = t[k] + (x - t[k]) % (t[n] - t[k])
            extrapolate = False
        elif not extrapolate and (
            (min(x) < t[k]) or (max(x) > t[t.shape[0] - k - 1])
        ):
            # Checks from `find_interval` function
            raise ValueError(f'Out of bounds w/ x = {x}.')

        # Compute number of non-zeros of final CSR array in order to determine
        # the dtype of indices and indptr of the CSR array.
        n = x.shape[0]
        nnz = n * (k + 1)
        if nnz < np.iinfo(np.int32).max:
            int_dtype = np.int32
        else:
            int_dtype = np.int64

        # Get the non-zero elements of the design matrix and per-row `offsets`:
        # In row `i`, k+1 nonzero elements are consecutive, and start from `offset[i]`
        data, offsets, _ = _dierckx.data_matrix(x, t, k, np.ones_like(x), extrapolate)
        data = data.ravel()

        if offsets.dtype != int_dtype:
            offsets = offsets.astype(int_dtype)

        # Convert from per-row offsets to the CSR indices/indptr format
        indices = np.repeat(offsets, k+1).reshape(-1, k+1)
        indices = indices + np.arange(k+1, dtype=int_dtype)
        indices = indices.ravel()

        indptr = np.arange(0, (n + 1) * (k + 1), k + 1, dtype=int_dtype)

        return csr_array(
            (data, indices, indptr),
            shape=(x.shape[0], t.shape[0] - k - 1)
        )

    def __call__(self, x, nu=0, extrapolate=None):
        """
        Evaluate a spline function.

        Parameters
        ----------
        x : array_like
            points to evaluate the spline at.
        nu : int, optional
            derivative to evaluate (default is 0).
        extrapolate : bool or 'periodic', optional
            whether to extrapolate based on the first and last intervals
            or return nans. If 'periodic', periodic extrapolation is used.
            Default is `self.extrapolate`.

        Returns
        -------
        y : array_like
            Shape is determined by replacing the interpolation axis
            in the coefficient array with the shape of `x`.

        """
        if extrapolate is None:
            extrapolate = self.extrapolate
        x = np.asarray(x)
        x_shape, x_ndim = x.shape, x.ndim
        x = np.ascontiguousarray(x.ravel(), dtype=np.float64)

        # With periodic extrapolation we map x to the segment
        # [self.t[k], self.t[n]].
        if extrapolate == 'periodic':
            n = self.t.size - self.k - 1
            x = self.t[self.k] + (x - self.t[self.k]) % (self.t[n] -
                                                         self.t[self.k])
            extrapolate = False

        out = np.empty((len(x), prod(self.c.shape[1:])), dtype=self.c.dtype)
        self._ensure_c_contiguous()

        # if self.c is complex, so is `out`; cython code in _bspl.pyx expectes
        # floats though, so make a view---this expands the last axis, and
        # the view is C contiguous if the original is.
        # if c.dtype is complex of shape (n,), c.view(float).shape == (2*n,)
        # if c.dtype is complex of shape (n, m), c.view(float).shape == (n, 2*m)

        cc = self.c.view(float)
        if self.c.ndim == 1 and self.c.dtype.kind == 'c':
            cc = cc.reshape(self.c.shape[0], 2)

        _dierckx.evaluate_spline(self.t, cc.reshape(cc.shape[0], -1),
                              self.k, x, nu, extrapolate, out.view(float))

        out = out.reshape(x_shape + self.c.shape[1:])
        if self.axis != 0:
            # transpose to move the calculated values to the interpolation axis
            l = list(range(out.ndim))
            l = l[x_ndim:x_ndim+self.axis] + l[:x_ndim] + l[x_ndim+self.axis:]
            out = out.transpose(l)
        return out

    def _ensure_c_contiguous(self):
        """
        c and t may be modified by the user. The Cython code expects
        that they are C contiguous.

        """
        if not self.t.flags.c_contiguous:
            self.t = self.t.copy()
        if not self.c.flags.c_contiguous:
            self.c = self.c.copy()

    def derivative(self, nu=1):
        """Return a B-spline representing the derivative.

        Parameters
        ----------
        nu : int, optional
            Derivative order.
            Default is 1.

        Returns
        -------
        b : BSpline object
            A new instance representing the derivative.

        See Also
        --------
        splder, splantider

        """
        c = self.c.copy()
        # pad the c array if needed
        ct = len(self.t) - len(c)
        if ct > 0:
            c = np.r_[c, np.zeros((ct,) + c.shape[1:])]
        tck = _fitpack_impl.splder((self.t, c, self.k), nu)
        return self.construct_fast(*tck, extrapolate=self.extrapolate,
                                   axis=self.axis)

    def antiderivative(self, nu=1):
        """Return a B-spline representing the antiderivative.

        Parameters
        ----------
        nu : int, optional
            Antiderivative order. Default is 1.

        Returns
        -------
        b : BSpline object
            A new instance representing the antiderivative.

        Notes
        -----
        If antiderivative is computed and ``self.extrapolate='periodic'``,
        it will be set to False for the returned instance. This is done because
        the antiderivative is no longer periodic and its correct evaluation
        outside of the initially given x interval is difficult.

        See Also
        --------
        splder, splantider

        """
        c = self.c.copy()
        # pad the c array if needed
        ct = len(self.t) - len(c)
        if ct > 0:
            c = np.r_[c, np.zeros((ct,) + c.shape[1:])]
        tck = _fitpack_impl.splantider((self.t, c, self.k), nu)

        if self.extrapolate == 'periodic':
            extrapolate = False
        else:
            extrapolate = self.extrapolate

        return self.construct_fast(*tck, extrapolate=extrapolate,
                                   axis=self.axis)

    def integrate(self, a, b, extrapolate=None):
        """Compute a definite integral of the spline.

        Parameters
        ----------
        a : float
            Lower limit of integration.
        b : float
            Upper limit of integration.
        extrapolate : bool or 'periodic', optional
            whether to extrapolate beyond the base interval,
            ``t[k] .. t[-k-1]``, or take the spline to be zero outside of the
            base interval. If 'periodic', periodic extrapolation is used.
            If None (default), use `self.extrapolate`.

        Returns
        -------
        I : array_like
            Definite integral of the spline over the interval ``[a, b]``.

        Examples
        --------
        Construct the linear spline ``x if x < 1 else 2 - x`` on the base
        interval :math:`[0, 2]`, and integrate it

        >>> from scipy.interpolate import BSpline
        >>> b = BSpline.basis_element([0, 1, 2])
        >>> b.integrate(0, 1)
        array(0.5)

        If the integration limits are outside of the base interval, the result
        is controlled by the `extrapolate` parameter

        >>> b.integrate(-1, 1)
        array(0.0)
        >>> b.integrate(-1, 1, extrapolate=False)
        array(0.5)

        >>> import matplotlib.pyplot as plt
        >>> fig, ax = plt.subplots()
        >>> ax.grid(True)
        >>> ax.axvline(0, c='r', lw=5, alpha=0.5)  # base interval
        >>> ax.axvline(2, c='r', lw=5, alpha=0.5)
        >>> xx = [-1, 1, 2]
        >>> ax.plot(xx, b(xx))
        >>> plt.show()

        """
        if extrapolate is None:
            extrapolate = self.extrapolate

        # Prepare self.t and self.c.
        self._ensure_c_contiguous()

        # Swap integration bounds if needed.
        sign = 1
        if b < a:
            a, b = b, a
            sign = -1
        n = self.t.size - self.k - 1

        if extrapolate != "periodic" and not extrapolate:
            # Shrink the integration interval, if needed.
            a = max(a, self.t[self.k])
            b = min(b, self.t[n])

            if self.c.ndim == 1:
                # Fast path: use FITPACK's routine
                # (cf _fitpack_impl.splint).
                integral = _fitpack_impl.splint(a, b, self.tck)
                return np.asarray(integral * sign)

        out = np.empty((2, prod(self.c.shape[1:])), dtype=self.c.dtype)

        # Compute the antiderivative.
        c = self.c
        ct = len(self.t) - len(c)
        if ct > 0:
            c = np.r_[c, np.zeros((ct,) + c.shape[1:])]
        ta, ca, ka = _fitpack_impl.splantider((self.t, c, self.k), 1)

        if extrapolate == 'periodic':
            # Split the integral into the part over period (can be several
            # of them) and the remaining part.

            ts, te = self.t[self.k], self.t[n]
            period = te - ts
            interval = b - a
            n_periods, left = divmod(interval, period)

            if n_periods > 0:
                # Evaluate the difference of antiderivatives.
                x = np.asarray([ts, te], dtype=np.float64)
                _dierckx.evaluate_spline(ta, ca.reshape(ca.shape[0], -1),
                                      ka, x, 0, False, out)
                integral = out[1] - out[0]
                integral *= n_periods
            else:
                integral = np.zeros((1, prod(self.c.shape[1:])),
                                    dtype=self.c.dtype)

            # Map a to [ts, te], b is always a + left.
            a = ts + (a - ts) % period
            b = a + left

            # If b <= te then we need to integrate over [a, b], otherwise
            # over [a, te] and from xs to what is remained.
            if b <= te:
                x = np.asarray([a, b], dtype=np.float64)
                _dierckx.evaluate_spline(ta, ca.reshape(ca.shape[0], -1),
                                      ka, x, 0, False, out)
                integral += out[1] - out[0]
            else:
                x = np.asarray([a, te], dtype=np.float64)
                _dierckx.evaluate_spline(ta, ca.reshape(ca.shape[0], -1),
                                      ka, x, 0, False, out)
                integral += out[1] - out[0]

                x = np.asarray([ts, ts + b - te], dtype=np.float64)
                _dierckx.evaluate_spline(ta, ca.reshape(ca.shape[0], -1),
                                      ka, x, 0, False, out)
                integral += out[1] - out[0]
        else:
            # Evaluate the difference of antiderivatives.
            x = np.asarray([a, b], dtype=np.float64)
            _dierckx.evaluate_spline(ta, ca.reshape(ca.shape[0], -1),
                                  ka, x, 0, extrapolate, out)
            integral = out[1] - out[0]

        integral *= sign
        return integral.reshape(ca.shape[1:])

    @classmethod
    def from_power_basis(cls, pp, bc_type='not-a-knot'):
        r"""
        Construct a polynomial in the B-spline basis
        from a piecewise polynomial in the power basis.

        For now, accepts ``CubicSpline`` instances only.

        Parameters
        ----------
        pp : CubicSpline
            A piecewise polynomial in the power basis, as created
            by ``CubicSpline``
        bc_type : string, optional
            Boundary condition type as in ``CubicSpline``: one of the
            ``not-a-knot``, ``natural``, ``clamped``, or ``periodic``.
            Necessary for construction an instance of ``BSpline`` class.
            Default is ``not-a-knot``.

        Returns
        -------
        b : BSpline object
            A new instance representing the initial polynomial
            in the B-spline basis.

        Notes
        -----
        .. versionadded:: 1.8.0

        Accepts only ``CubicSpline`` instances for now.

        The algorithm follows from differentiation
        the Marsden's identity [1]: each of coefficients of spline
        interpolation function in the B-spline basis is computed as follows:

        .. math::

            c_j = \sum_{m=0}^{k} \frac{(k-m)!}{k!}
                       c_{m,i} (-1)^{k-m} D^m p_{j,k}(x_i)

        :math:`c_{m, i}` - a coefficient of CubicSpline,
        :math:`D^m p_{j, k}(x_i)` - an m-th defivative of a dual polynomial
        in :math:`x_i`.

        ``k`` always equals 3 for now.

        First ``n - 2`` coefficients are computed in :math:`x_i = x_j`, e.g.

        .. math::

            c_1 = \sum_{m=0}^{k} \frac{(k-1)!}{k!} c_{m,1} D^m p_{j,3}(x_1)

        Last ``nod + 2`` coefficients are computed in ``x[-2]``,
        ``nod`` - number of derivatives at the ends.

        For example, consider :math:`x = [0, 1, 2, 3, 4]`,
        :math:`y = [1, 1, 1, 1, 1]` and bc_type = ``natural``

        The coefficients of CubicSpline in the power basis:

        :math:`[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0], [1, 1, 1, 1, 1]]`

        The knot vector: :math:`t = [0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4]`

        In this case

        .. math::

            c_j = \frac{0!}{k!} c_{3, i} k! = c_{3, i} = 1,~j = 0, ..., 6

        References
        ----------
        .. [1] Tom Lyche and Knut Morken, Spline Methods, 2005, Section 3.1.2

        """
        from ._cubic import CubicSpline
        if not isinstance(pp, CubicSpline):
            raise NotImplementedError(f"Only CubicSpline objects are accepted "
                                      f"for now. Got {type(pp)} instead.")
        x = pp.x
        coef = pp.c
        k = pp.c.shape[0] - 1
        n = x.shape[0]

        if bc_type == 'not-a-knot':
            t = _not_a_knot(x, k)
        elif bc_type == 'natural' or bc_type == 'clamped':
            t = _augknt(x, k)
        elif bc_type == 'periodic':
            t = _periodic_knots(x, k)
        else:
            raise TypeError(f'Unknown boundary condition: {bc_type}')

        nod = t.shape[0] - (n + k + 1)  # number of derivatives at the ends
        c = np.zeros(n + nod, dtype=pp.c.dtype)
        for m in range(k + 1):
            for i in range(n - 2):
                c[i] += poch(k + 1, -m) * coef[m, i]\
                        * np.power(-1, k - m)\
                        * _diff_dual_poly(i, k, x[i], m, t)
            for j in range(n - 2, n + nod):
                c[j] += poch(k + 1, -m) * coef[m, n - 2]\
                        * np.power(-1, k - m)\
                        * _diff_dual_poly(j, k, x[n - 2], m, t)
        return cls.construct_fast(t, c, k, pp.extrapolate, pp.axis)

    def insert_knot(self, x, m=1):
        """Insert a new knot at `x` of multiplicity `m`.

        Given the knots and coefficients of a B-spline representation, create a
        new B-spline with a knot inserted `m` times at point `x`.

        Parameters
        ----------
        x : float
            The position of the new knot
        m : int, optional
            The number of times to insert the given knot (its multiplicity).
            Default is 1.

        Returns
        -------
        spl : BSpline object
            A new BSpline object with the new knot inserted.

        Notes
        -----
        Based on algorithms from [1]_ and [2]_.

        In case of a periodic spline (``self.extrapolate == "periodic"``)
        there must be either at least k interior knots t(j) satisfying
        ``t(k+1)<t(j)<=x`` or at least k interior knots t(j) satisfying
        ``x<=t(j)<t(n-k)``.

        This routine is functionally equivalent to `scipy.interpolate.insert`.

        .. versionadded:: 1.13

        References
        ----------
        .. [1] W. Boehm, "Inserting new knots into b-spline curves.",
            Computer Aided Design, 12, p.199-201, 1980.
            :doi:`10.1016/0010-4485(80)90154-2`.
        .. [2] P. Dierckx, "Curve and surface fitting with splines, Monographs on
            Numerical Analysis", Oxford University Press, 1993.

        See Also
        --------
        scipy.interpolate.insert

        Examples
        --------
        You can insert knots into a B-spline:

        >>> import numpy as np
        >>> from scipy.interpolate import BSpline, make_interp_spline
        >>> x = np.linspace(0, 10, 5)
        >>> y = np.sin(x)
        >>> spl = make_interp_spline(x, y, k=3)
        >>> spl.t
        array([ 0.,  0.,  0.,  0.,  5., 10., 10., 10., 10.])

        Insert a single knot

        >>> spl_1 = spl.insert_knot(3)
        >>> spl_1.t
        array([ 0.,  0.,  0.,  0.,  3.,  5., 10., 10., 10., 10.])

        Insert a multiple knot

        >>> spl_2 = spl.insert_knot(8, m=3)
        >>> spl_2.t
        array([ 0.,  0.,  0.,  0.,  5.,  8.,  8.,  8., 10., 10., 10., 10.])

        """
        if x < self.t[self.k] or x > self.t[-self.k-1]:
            raise ValueError(f"Cannot insert a knot at {x}.")
        if m <= 0:
            raise ValueError(f"`m` must be positive, got {m = }.")

        tt = self.t.copy()
        cc = self.c.copy()

        for _ in range(m):
            tt, cc = _insert(x, tt, cc, self.k, self.extrapolate == "periodic")
        return self.construct_fast(tt, cc, self.k, self.extrapolate, self.axis)


def _insert(xval, t, c, k, periodic=False):
    """Insert a single knot at `xval`."""
    #
    # This is a port of the FORTRAN `insert` routine by P. Dierckx,
    # https://github.com/scipy/scipy/blob/maintenance/1.11.x/scipy/interpolate/fitpack/insert.f
    # which carries the following comment:
    #
    # subroutine insert inserts a new knot x into a spline function s(x)
    # of degree k and calculates the b-spline representation of s(x) with
    # respect to the new set of knots. in addition, if iopt.ne.0, s(x)
    # will be considered as a periodic spline with period per=t(n-k)-t(k+1)
    # satisfying the boundary constraints
    #      t(i+n-2*k-1) = t(i)+per  ,i=1,2,...,2*k+1
    #      c(i+n-2*k-1) = c(i)      ,i=1,2,...,k
    # in that case, the knots and b-spline coefficients returned will also
    # satisfy these boundary constraints, i.e.
    #      tt(i+nn-2*k-1) = tt(i)+per  ,i=1,2,...,2*k+1
    #      cc(i+nn-2*k-1) = cc(i)      ,i=1,2,...,k
    interval = _dierckx.find_interval(t, k, float(xval), k, False)
    if interval < 0:
        # extrapolated values are guarded for in BSpline.insert_knot
        raise ValueError(f"Cannot insert the knot at {xval}.")

    # super edge case: a knot with multiplicity > k+1
    # see https://github.com/scipy/scipy/commit/037204c3e91
    if t[interval] == t[interval + k + 1]:
        interval -= 1

    if periodic:
        if (interval + 1 <= 2*k) and (interval + 1 >= t.shape[0] - 2*k):
            # in case of a periodic spline (iopt.ne.0) there must be
            # either at least k interior knots t(j) satisfying t(k+1)<t(j)<=x
            # or at least k interior knots t(j) satisfying x<=t(j)<t(n-k)
            raise ValueError("Not enough internal knots.")

    # knots
    tt = np.r_[t[:interval+1], xval, t[interval+1:]]

    newshape = (c.shape[0] + 1,) + c.shape[1:]
    cc = np.zeros(newshape, dtype=c.dtype)

    # coefficients
    cc[interval+1:, ...] = c[interval:, ...]

    for i in range(interval, interval-k, -1):
        fac = (xval - tt[i]) / (tt[i+k+1] - tt[i])
        cc[i, ...] = fac*c[i, ...] + (1. - fac)*c[i-1, ...]

    cc[:interval - k+1, ...] = c[:interval - k+1, ...]

    if periodic:
        # c   incorporate the boundary conditions for a periodic spline.
        n = tt.shape[0]
        nk = n - k - 1
        n2k = n - 2*k - 1
        T = tt[nk] - tt[k]   # period

        if interval >= nk - k:
            # adjust the left-hand boundary knots & coefs
            tt[:k] = tt[nk - k:nk] - T
            cc[:k, ...] = cc[n2k:n2k + k, ...]

        if interval <= 2*k-1:
            # adjust the right-hand boundary knots & coefs
            tt[n-k:] = tt[k+1:k+1+k] + T
            cc[n2k:n2k + k, ...] = cc[:k, ...]

    return tt, cc


#################################
#  Interpolating spline helpers #
#################################

def _not_a_knot(x, k):
    """Given data x, construct the knot vector w/ not-a-knot BC.
    cf de Boor, XIII(12).

    For even k, it's a bit ad hoc: Greville sites + omit 2nd and 2nd-to-last
    data points, a la not-a-knot.
    This seems to match what Dierckx does, too:
    https://github.com/scipy/scipy/blob/maintenance/1.11.x/scipy/interpolate/fitpack/fpcurf.f#L63-L80
    """
    x = np.asarray(x)
    if k % 2 == 1:
        k2 = (k + 1) // 2
        t = x.copy()
    else:
        k2 = k // 2
        t = (x[1:] + x[:-1]) / 2

    t = t[k2:-k2]
    t = np.r_[(x[0],)*(k+1), t, (x[-1],)*(k+1)]
    return t


def _augknt(x, k):
    """Construct a knot vector appropriate for the order-k interpolation."""
    return np.r_[(x[0],)*k, x, (x[-1],)*k]


def _convert_string_aliases(deriv, target_shape):
    if isinstance(deriv, str):
        if deriv == "clamped":
            deriv = [(1, np.zeros(target_shape))]
        elif deriv == "natural":
            deriv = [(2, np.zeros(target_shape))]
        else:
            raise ValueError(f"Unknown boundary condition : {deriv}")
    return deriv


def _process_deriv_spec(deriv):
    if deriv is not None:
        try:
            ords, vals = zip(*deriv)
        except TypeError as e:
            msg = ("Derivatives, `bc_type`, should be specified as a pair of "
                   "iterables of pairs of (order, value).")
            raise ValueError(msg) from e
    else:
        ords, vals = [], []
    return np.atleast_1d(ords, vals)


def _woodbury_algorithm(A, ur, ll, b, k):
    '''
    Solve a cyclic banded linear system with upper right
    and lower blocks of size ``(k-1) / 2`` using
    the Woodbury formula

    Parameters
    ----------
    A : 2-D array, shape(k, n)
        Matrix of diagonals of original matrix (see
        ``solve_banded`` documentation).
    ur : 2-D array, shape(bs, bs)
        Upper right block matrix.
    ll : 2-D array, shape(bs, bs)
        Lower left block matrix.
    b : 1-D array, shape(n,)
        Vector of constant terms of the system of linear equations.
    k : int
        B-spline degree.

    Returns
    -------
    c : 1-D array, shape(n,)
        Solution of the original system of linear equations.

    Notes
    -----
    This algorithm works only for systems with banded matrix A plus
    a correction term U @ V.T, where the matrix U @ V.T gives upper right
    and lower left block of A
    The system is solved with the following steps:
        1.  New systems of linear equations are constructed:
            A @ z_i = u_i,
            u_i - column vector of U,
            i = 1, ..., k - 1
        2.  Matrix Z is formed from vectors z_i:
            Z = [ z_1 | z_2 | ... | z_{k - 1} ]
        3.  Matrix H = (1 + V.T @ Z)^{-1}
        4.  The system A' @ y = b is solved
        5.  x = y - Z @ (H @ V.T @ y)
    Also, ``n`` should be greater than ``k``, otherwise corner block
    elements will intersect with diagonals.

    Examples
    --------
    Consider the case of n = 8, k = 5 (size of blocks - 2 x 2).
    The matrix of a system:       U:          V:
      x  x  x  *  *  a  b         a b 0 0     0 0 1 0
      x  x  x  x  *  *  c         0 c 0 0     0 0 0 1
      x  x  x  x  x  *  *         0 0 0 0     0 0 0 0
      *  x  x  x  x  x  *         0 0 0 0     0 0 0 0
      *  *  x  x  x  x  x         0 0 0 0     0 0 0 0
      d  *  *  x  x  x  x         0 0 d 0     1 0 0 0
      e  f  *  *  x  x  x         0 0 e f     0 1 0 0

    References
    ----------
    .. [1] William H. Press, Saul A. Teukolsky, William T. Vetterling
           and Brian P. Flannery, Numerical Recipes, 2007, Section 2.7.3

    '''
    k_mod = k - k % 2
    bs = int((k - 1) / 2) + (k + 1) % 2

    n = A.shape[1] + 1
    U = np.zeros((n - 1, k_mod))
    VT = np.zeros((k_mod, n - 1))  # V transpose

    # upper right block
    U[:bs, :bs] = ur
    VT[np.arange(bs), np.arange(bs) - bs] = 1

    # lower left block
    U[-bs:, -bs:] = ll
    VT[np.arange(bs) - bs, np.arange(bs)] = 1

    Z = solve_banded((bs, bs), A, U)

    H = solve(np.identity(k_mod) + VT @ Z, np.identity(k_mod))

    y = solve_banded((bs, bs), A, b)
    c = y - Z @ (H @ (VT @ y))

    return c


def _periodic_knots(x, k):
    '''
    returns vector of nodes on circle
    '''
    xc = np.copy(x)
    n = len(xc)
    if k % 2 == 0:
        dx = np.diff(xc)
        xc[1: -1] -= dx[:-1] / 2
    dx = np.diff(xc)
    t = np.zeros(n + 2 * k)
    t[k: -k] = xc
    for i in range(0, k):
        # filling first `k` elements in descending order
        t[k - i - 1] = t[k - i] - dx[-(i % (n - 1)) - 1]
        # filling last `k` elements in ascending order
        t[-k + i] = t[-k + i - 1] + dx[i % (n - 1)]
    return t


def _make_interp_per_full_matr(x, y, t, k):
    '''
    Returns a solution of a system for B-spline interpolation with periodic
    boundary conditions. First ``k - 1`` rows of matrix are conditions of
    periodicity (continuity of ``k - 1`` derivatives at the boundary points).
    Last ``n`` rows are interpolation conditions.
    RHS is ``k - 1`` zeros and ``n`` ordinates in this case.

    Parameters
    ----------
    x : 1-D array, shape (n,)
        Values of x - coordinate of a given set of points.
    y : 1-D array, shape (n,)
        Values of y - coordinate of a given set of points.
    t : 1-D array, shape(n+2*k,)
        Vector of knots.
    k : int
        The maximum degree of spline

    Returns
    -------
    c : 1-D array, shape (n+k-1,)
        B-spline coefficients

    Notes
    -----
    ``t`` is supposed to be taken on circle.

    '''

    x, y, t = map(np.asarray, (x, y, t))

    n = x.size
    # LHS: the colocation matrix + derivatives at edges
    matr = np.zeros((n + k - 1, n + k - 1))

    # derivatives at x[0] and x[-1]:
    for i in range(k - 1):
        bb = _dierckx.evaluate_all_bspl(t, k, x[0], k, i + 1)
        matr[i, : k + 1] += bb
        bb = _dierckx.evaluate_all_bspl(t, k, x[-1], n + k - 1, i + 1)[:-1]
        matr[i, -k:] -= bb

    # colocation matrix
    for i in range(n):
        xval = x[i]
        # find interval
        if xval == t[k]:
            left = k
        else:
            left = np.searchsorted(t, xval) - 1

        # fill a row
        bb = _dierckx.evaluate_all_bspl(t, k, xval, left)
        matr[i + k - 1, left-k:left+1] = bb

    # RHS
    b = np.r_[[0] * (k - 1), y]

    c = solve(matr, b)
    return c


def _handle_lhs_derivatives(t, k, xval, ab, kl, ku, deriv_ords, offset=0):
    """ Fill in the entries of the colocation matrix corresponding to known
    derivatives at `xval`.

    The colocation matrix is in the banded storage, as prepared by _coloc.
    No error checking.

    Parameters
    ----------
    t : ndarray, shape (nt + k + 1,)
        knots
    k : integer
        B-spline order
    xval : float
        The value at which to evaluate the derivatives at.
    ab : ndarray, shape(2*kl + ku + 1, nt), Fortran order
        B-spline colocation matrix.
        This argument is modified *in-place*.
    kl : integer
        Number of lower diagonals of ab.
    ku : integer
        Number of upper diagonals of ab.
    deriv_ords : 1D ndarray
        Orders of derivatives known at xval
    offset : integer, optional
        Skip this many rows of the matrix ab.

    """
    # find where `xval` is in the knot vector, `t`
    left = _dierckx.find_interval(t, k, float(xval), k, False)

    # compute and fill in the derivatives @ xval
    for row in range(deriv_ords.shape[0]):
        nu = deriv_ords[row]
        wrk = _dierckx.evaluate_all_bspl(t, k, xval, left, nu)

        # if A were a full matrix, it would be just
        # ``A[row + offset, left-k:left+1] = bb``.
        for a in range(k+1):
            clmn = left - k + a
            ab[kl + ku + offset + row - clmn, clmn] = wrk[a]


def _make_periodic_spline(x, y, t, k, axis):
    '''
    Compute the (coefficients of) interpolating B-spline with periodic
    boundary conditions.

    Parameters
    ----------
    x : array_like, shape (n,)
        Abscissas.
    y : array_like, shape (n,)
        Ordinates.
    k : int
        B-spline degree.
    t : array_like, shape (n + 2 * k,).
        Knots taken on a circle, ``k`` on the left and ``k`` on the right
        of the vector ``x``.

    Returns
    -------
    b : a BSpline object of the degree ``k`` and with knots ``t``.

    Notes
    -----
    The original system is formed by ``n + k - 1`` equations where the first
    ``k - 1`` of them stand for the ``k - 1`` derivatives continuity on the
    edges while the other equations correspond to an interpolating case
    (matching all the input points). Due to a special form of knot vector, it
    can be proved that in the original system the first and last ``k``
    coefficients of a spline function are the same, respectively. It follows
    from the fact that all ``k - 1`` derivatives are equal term by term at ends
    and that the matrix of the original system of linear equations is
    non-degenerate. So, we can reduce the number of equations to ``n - 1``
    (first ``k - 1`` equations could be reduced). Another trick of this
    implementation is cyclic shift of values of B-splines due to equality of
    ``k`` unknown coefficients. With this we can receive matrix of the system
    with upper right and lower left blocks, and ``k`` diagonals.  It allows
    to use Woodbury formula to optimize the computations.

    '''
    n = y.shape[0]

    extradim = prod(y.shape[1:])
    y_new = y.reshape(n, extradim)
    c = np.zeros((n + k - 1, extradim))

    # n <= k case is solved with full matrix
    if n <= k:
        for i in range(extradim):
            c[:, i] = _make_interp_per_full_matr(x, y_new[:, i], t, k)
        c = np.ascontiguousarray(c.reshape((n + k - 1,) + y.shape[1:]))
        return BSpline.construct_fast(t, c, k, extrapolate='periodic', axis=axis)

    nt = len(t) - k - 1

    # size of block elements
    kul = int(k / 2)

    # kl = ku = k
    ab = np.zeros((3 * k + 1, nt), dtype=np.float64, order='F')

    # upper right and lower left blocks
    ur = np.zeros((kul, kul))
    ll = np.zeros_like(ur)

    # `offset` is made to shift all the non-zero elements to the end of the
    # matrix
    # NB: 1. drop the last element of `x` because `x[0] = x[-1] + T` & `y[0] == y[-1]`
    #     2. pass ab.T to _coloc to make it C-ordered; below it'll be fed to banded
    #        LAPACK, which needs F-ordered arrays
    _dierckx._coloc(x[:-1], t, k, ab.T, k)

    # remove zeros before the matrix
    ab = ab[-k - (k + 1) % 2:, :]

    # The least elements in rows (except repetitions) are diagonals
    # of block matrices. Upper right matrix is an upper triangular
    # matrix while lower left is a lower triangular one.
    for i in range(kul):
        ur += np.diag(ab[-i - 1, i: kul], k=i)
        ll += np.diag(ab[i, -kul - (k % 2): n - 1 + 2 * kul - i], k=-i)

    # remove elements that occur in the last point
    # (first and last points are equivalent)
    A = ab[:, kul: -k + kul]

    for i in range(extradim):
        cc = _woodbury_algorithm(A, ur, ll, y_new[:, i][:-1], k)
        c[:, i] = np.concatenate((cc[-kul:], cc, cc[:kul + k % 2]))
    c = np.ascontiguousarray(c.reshape((n + k - 1,) + y.shape[1:]))
    return BSpline.construct_fast(t, c, k, extrapolate='periodic', axis=axis)


def make_interp_spline(x, y, k=3, t=None, bc_type=None, axis=0,
                       check_finite=True):
    """Compute the (coefficients of) interpolating B-spline.

    Parameters
    ----------
    x : array_like, shape (n,)
        Abscissas.
    y : array_like, shape (n, ...)
        Ordinates.
    k : int, optional
        B-spline degree. Default is cubic, ``k = 3``.
    t : array_like, shape (nt + k + 1,), optional.
        Knots.
        The number of knots needs to agree with the number of data points and
        the number of derivatives at the edges. Specifically, ``nt - n`` must
        equal ``len(deriv_l) + len(deriv_r)``.
    bc_type : 2-tuple or None
        Boundary conditions.
        Default is None, which means choosing the boundary conditions
        automatically. Otherwise, it must be a length-two tuple where the first
        element (``deriv_l``) sets the boundary conditions at ``x[0]`` and
        the second element (``deriv_r``) sets the boundary conditions at
        ``x[-1]``. Each of these must be an iterable of pairs
        ``(order, value)`` which gives the values of derivatives of specified
        orders at the given edge of the interpolation interval.
        Alternatively, the following string aliases are recognized:

        * ``"clamped"``: The first derivatives at the ends are zero. This is
           equivalent to ``bc_type=([(1, 0.0)], [(1, 0.0)])``.
        * ``"natural"``: The second derivatives at ends are zero. This is
          equivalent to ``bc_type=([(2, 0.0)], [(2, 0.0)])``.
        * ``"not-a-knot"`` (default): The first and second segments are the
          same polynomial. This is equivalent to having ``bc_type=None``.
        * ``"periodic"``: The values and the first ``k-1`` derivatives at the
          ends are equivalent.

    axis : int, optional
        Interpolation axis. Default is 0.
    check_finite : bool, optional
        Whether to check that the input arrays contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
        Default is True.

    Returns
    -------
    b : a BSpline object of the degree ``k`` and with knots ``t``.

    See Also
    --------
    BSpline : base class representing the B-spline objects
    CubicSpline : a cubic spline in the polynomial basis
    make_lsq_spline : a similar factory function for spline fitting
    UnivariateSpline : a wrapper over FITPACK spline fitting routines
    splrep : a wrapper over FITPACK spline fitting routines

    Examples
    --------

    Use cubic interpolation on Chebyshev nodes:

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> def cheb_nodes(N):
    ...     jj = 2.*np.arange(N) + 1
    ...     x = np.cos(np.pi * jj / 2 / N)[::-1]
    ...     return x

    >>> x = cheb_nodes(20)
    >>> y = np.sqrt(1 - x**2)

    >>> from scipy.interpolate import BSpline, make_interp_spline
    >>> b = make_interp_spline(x, y)
    >>> np.allclose(b(x), y)
    True

    Note that the default is a cubic spline with a not-a-knot boundary condition

    >>> b.k
    3

    Here we use a 'natural' spline, with zero 2nd derivatives at edges:

    >>> l, r = [(2, 0.0)], [(2, 0.0)]
    >>> b_n = make_interp_spline(x, y, bc_type=(l, r))  # or, bc_type="natural"
    >>> np.allclose(b_n(x), y)
    True
    >>> x0, x1 = x[0], x[-1]
    >>> np.allclose([b_n(x0, 2), b_n(x1, 2)], [0, 0])
    True

    Interpolation of parametric curves is also supported. As an example, we
    compute a discretization of a snail curve in polar coordinates

    >>> phi = np.linspace(0, 2.*np.pi, 40)
    >>> r = 0.3 + np.cos(phi)
    >>> x, y = r*np.cos(phi), r*np.sin(phi)  # convert to Cartesian coordinates

    Build an interpolating curve, parameterizing it by the angle

    >>> spl = make_interp_spline(phi, np.c_[x, y])

    Evaluate the interpolant on a finer grid (note that we transpose the result
    to unpack it into a pair of x- and y-arrays)

    >>> phi_new = np.linspace(0, 2.*np.pi, 100)
    >>> x_new, y_new = spl(phi_new).T

    Plot the result

    >>> plt.plot(x, y, 'o')
    >>> plt.plot(x_new, y_new, '-')
    >>> plt.show()

    Build a B-spline curve with 2 dimensional y

    >>> x = np.linspace(0, 2*np.pi, 10)
    >>> y = np.array([np.sin(x), np.cos(x)])

    Periodic condition is satisfied because y coordinates of points on the ends
    are equivalent

    >>> ax = plt.axes(projection='3d')
    >>> xx = np.linspace(0, 2*np.pi, 100)
    >>> bspl = make_interp_spline(x, y, k=5, bc_type='periodic', axis=1)
    >>> ax.plot3D(xx, *bspl(xx))
    >>> ax.scatter3D(x, *y, color='red')
    >>> plt.show()

    """
    # convert string aliases for the boundary conditions
    if bc_type is None or bc_type == 'not-a-knot' or bc_type == 'periodic':
        deriv_l, deriv_r = None, None
    elif isinstance(bc_type, str):
        deriv_l, deriv_r = bc_type, bc_type
    else:
        try:
            deriv_l, deriv_r = bc_type
        except TypeError as e:
            raise ValueError(f"Unknown boundary condition: {bc_type}") from e

    y = np.asarray(y)

    axis = normalize_axis_index(axis, y.ndim)

    x = _as_float_array(x, check_finite)
    y = _as_float_array(y, check_finite)

    y = np.moveaxis(y, axis, 0)    # now internally interp axis is zero

    # sanity check the input
    if bc_type == 'periodic' and not np.allclose(y[0], y[-1], atol=1e-15):
        raise ValueError("First and last points does not match while "
                         "periodic case expected")
    if x.size != y.shape[0]:
        raise ValueError(f'Shapes of x {x.shape} and y {y.shape} are incompatible')
    if np.any(x[1:] == x[:-1]):
        raise ValueError("Expect x to not have duplicates")
    if x.ndim != 1 or np.any(x[1:] < x[:-1]):
        raise ValueError("Expect x to be a 1D strictly increasing sequence.")

    # special-case k=0 right away
    if k == 0:
        if any(_ is not None for _ in (t, deriv_l, deriv_r)):
            raise ValueError("Too much info for k=0: t and bc_type can only "
                             "be None.")
        t = np.r_[x, x[-1]]
        c = np.asarray(y)
        c = np.ascontiguousarray(c, dtype=_get_dtype(c.dtype))
        return BSpline.construct_fast(t, c, k, axis=axis)

    # special-case k=1 (e.g., Lyche and Morken, Eq.(2.16))
    if k == 1 and t is None:
        if not (deriv_l is None and deriv_r is None):
            raise ValueError("Too much info for k=1: bc_type can only be None.")
        t = np.r_[x[0], x, x[-1]]
        c = np.asarray(y)
        c = np.ascontiguousarray(c, dtype=_get_dtype(c.dtype))
        return BSpline.construct_fast(t, c, k, axis=axis)

    k = operator.index(k)

    if bc_type == 'periodic' and t is not None:
        raise NotImplementedError("For periodic case t is constructed "
                                  "automatically and can not be passed "
                                  "manually")

    # come up with a sensible knot vector, if needed
    if t is None:
        if deriv_l is None and deriv_r is None:
            if bc_type == 'periodic':
                t = _periodic_knots(x, k)
            else:
                t = _not_a_knot(x, k)
        else:
            t = _augknt(x, k)

    t = _as_float_array(t, check_finite)

    if k < 0:
        raise ValueError("Expect non-negative k.")
    if t.ndim != 1 or np.any(t[1:] < t[:-1]):
        raise ValueError("Expect t to be a 1-D sorted array_like.")
    if t.size < x.size + k + 1:
        raise ValueError('Got %d knots, need at least %d.' %
                         (t.size, x.size + k + 1))
    if (x[0] < t[k]) or (x[-1] > t[-k]):
        raise ValueError(f'Out of bounds w/ x = {x}.')

    if bc_type == 'periodic':
        return _make_periodic_spline(x, y, t, k, axis)

    # Here : deriv_l, r = [(nu, value), ...]
    deriv_l = _convert_string_aliases(deriv_l, y.shape[1:])
    deriv_l_ords, deriv_l_vals = _process_deriv_spec(deriv_l)
    nleft = deriv_l_ords.shape[0]

    deriv_r = _convert_string_aliases(deriv_r, y.shape[1:])
    deriv_r_ords, deriv_r_vals = _process_deriv_spec(deriv_r)
    nright = deriv_r_ords.shape[0]

    if not all(0 <= i <= k for i in deriv_l_ords):
        raise ValueError(f"Bad boundary conditions at {x[0]}.")

    if not all(0 <= i <= k for i in deriv_r_ords):
        raise ValueError(f"Bad boundary conditions at {x[-1]}.")

    # have `n` conditions for `nt` coefficients; need nt-n derivatives
    n = x.size
    nt = t.size - k - 1

    if nt - n != nleft + nright:
        raise ValueError("The number of derivatives at boundaries does not "
                         f"match: expected {nt-n}, got {nleft}+{nright}")

    # bail out if the `y` array is zero-sized
    if y.size == 0:
        c = np.zeros((nt,) + y.shape[1:], dtype=float)
        return BSpline.construct_fast(t, c, k, axis=axis)

    # set up the LHS: the colocation matrix + derivatives at boundaries
    # NB: ab is in F order for banded LAPACK; _coloc needs C-ordered arrays,
    #     this pass ab.T into _coloc
    kl = ku = k
    ab = np.zeros((2*kl + ku + 1, nt), dtype=np.float64, order='F')
    _dierckx._coloc(x, t, k, ab.T, nleft)
    if nleft > 0:
        _handle_lhs_derivatives(t, k, x[0], ab, kl, ku, deriv_l_ords)
    if nright > 0:
        _handle_lhs_derivatives(t, k, x[-1], ab, kl, ku, deriv_r_ords,
                                offset=nt-nright)

    # set up the RHS: values to interpolate (+ derivative values, if any)
    extradim = prod(y.shape[1:])
    rhs = np.empty((nt, extradim), dtype=y.dtype)
    if nleft > 0:
        rhs[:nleft] = deriv_l_vals.reshape(-1, extradim)
    rhs[nleft:nt - nright] = y.reshape(-1, extradim)
    if nright > 0:
        rhs[nt - nright:] = deriv_r_vals.reshape(-1, extradim)

    # solve Ab @ x = rhs; this is the relevant part of linalg.solve_banded
    if check_finite:
        ab, rhs = map(np.asarray_chkfinite, (ab, rhs))
    gbsv, = get_lapack_funcs(('gbsv',), (ab, rhs))
    lu, piv, c, info = gbsv(kl, ku, ab, rhs,
                            overwrite_ab=True, overwrite_b=True)

    if info > 0:
        raise LinAlgError("Colocation matrix is singular.")
    elif info < 0:
        raise ValueError('illegal value in %d-th argument of internal gbsv' % -info)

    c = np.ascontiguousarray(c.reshape((nt,) + y.shape[1:]))
    return BSpline.construct_fast(t, c, k, axis=axis)


def make_lsq_spline(x, y, t, k=3, w=None, axis=0, check_finite=True, *, method="qr"):
    r"""Compute the (coefficients of) an LSQ (Least SQuared) based
    fitting B-spline.

    The result is a linear combination

    .. math::

            S(x) = \sum_j c_j B_j(x; t)

    of the B-spline basis elements, :math:`B_j(x; t)`, which minimizes

    .. math::

        \sum_{j} \left( w_j \times (S(x_j) - y_j) \right)^2

    Parameters
    ----------
    x : array_like, shape (m,)
        Abscissas.
    y : array_like, shape (m, ...)
        Ordinates.
    t : array_like, shape (n + k + 1,).
        Knots.
        Knots and data points must satisfy Schoenberg-Whitney conditions.
    k : int, optional
        B-spline degree. Default is cubic, ``k = 3``.
    w : array_like, shape (m,), optional
        Weights for spline fitting. Must be positive. If ``None``,
        then weights are all equal.
        Default is ``None``.
    axis : int, optional
        Interpolation axis. Default is zero.
    check_finite : bool, optional
        Whether to check that the input arrays contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
        Default is True.
    method : str, optional
        Method for solving the linear LSQ problem. Allowed values are "norm-eq"
        (Explicitly construct and solve the normal system of equations), and
        "qr" (Use the QR factorization of the design matrix).
        Default is "qr".

    Returns
    -------
    b : a BSpline object of the degree ``k`` with knots ``t``.

    See Also
    --------
    BSpline : base class representing the B-spline objects
    make_interp_spline : a similar factory function for interpolating splines
    LSQUnivariateSpline : a FITPACK-based spline fitting routine
    splrep : a FITPACK-based fitting routine

    Notes
    -----
    The number of data points must be larger than the spline degree ``k``.

    Knots ``t`` must satisfy the Schoenberg-Whitney conditions,
    i.e., there must be a subset of data points ``x[j]`` such that
    ``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``.

    Examples
    --------
    Generate some noisy data:

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> rng = np.random.default_rng()
    >>> x = np.linspace(-3, 3, 50)
    >>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)

    Now fit a smoothing cubic spline with a pre-defined internal knots.
    Here we make the knot vector (k+1)-regular by adding boundary knots:

    >>> from scipy.interpolate import make_lsq_spline, BSpline
    >>> t = [-1, 0, 1]
    >>> k = 3
    >>> t = np.r_[(x[0],)*(k+1),
    ...           t,
    ...           (x[-1],)*(k+1)]
    >>> spl = make_lsq_spline(x, y, t, k)

    For comparison, we also construct an interpolating spline for the same
    set of data:

    >>> from scipy.interpolate import make_interp_spline
    >>> spl_i = make_interp_spline(x, y)

    Plot both:

    >>> xs = np.linspace(-3, 3, 100)
    >>> plt.plot(x, y, 'ro', ms=5)
    >>> plt.plot(xs, spl(xs), 'g-', lw=3, label='LSQ spline')
    >>> plt.plot(xs, spl_i(xs), 'b-', lw=3, alpha=0.7, label='interp spline')
    >>> plt.legend(loc='best')
    >>> plt.show()

    **NaN handling**: If the input arrays contain ``nan`` values, the result is
    not useful since the underlying spline fitting routines cannot deal with
    ``nan``. A workaround is to use zero weights for not-a-number data points:

    >>> y[8] = np.nan
    >>> w = np.isnan(y)
    >>> y[w] = 0.
    >>> tck = make_lsq_spline(x, y, t, w=~w)

    Notice the need to replace a ``nan`` by a numerical value (precise value
    does not matter as long as the corresponding weight is zero.)

    """
    x = _as_float_array(x, check_finite)
    y = _as_float_array(y, check_finite)
    t = _as_float_array(t, check_finite)
    if w is not None:
        w = _as_float_array(w, check_finite)
    else:
        w = np.ones_like(x)
    k = operator.index(k)

    axis = normalize_axis_index(axis, y.ndim)

    y = np.moveaxis(y, axis, 0)    # now internally interp axis is zero

    if x.ndim != 1:
        raise ValueError("Expect x to be a 1-D sequence.")
    if x.shape[0] < k+1:
        raise ValueError("Need more x points.")
    if k < 0:
        raise ValueError("Expect non-negative k.")
    if t.ndim != 1 or np.any(t[1:] - t[:-1] < 0):
        raise ValueError("Expect t to be a 1D strictly increasing sequence.")
    if x.size != y.shape[0]:
        raise ValueError(f'Shapes of x {x.shape} and y {y.shape} are incompatible')
    if k > 0 and np.any((x < t[k]) | (x > t[-k])):
        raise ValueError(f'Out of bounds w/ x = {x}.')
    if x.size != w.size:
        raise ValueError(f'Shapes of x {x.shape} and w {w.shape} are incompatible')
    if method == "norm-eq" and np.any(x[1:] - x[:-1] <= 0):
        raise ValueError("Expect x to be a 1D strictly increasing sequence.")
    if method == "qr" and any(x[1:] - x[:-1] < 0):
        raise ValueError("Expect x to be a 1D non-decreasing sequence.")

    # number of coefficients
    n = t.size - k - 1

    # complex y: view as float, preserve the length
    was_complex =  y.dtype.kind == 'c'
    yy = y.view(float)
    if was_complex and y.ndim == 1:
        yy = yy.reshape(y.shape[0], 2)

    # multiple r.h.s
    extradim = prod(yy.shape[1:])
    yy = yy.reshape(-1, extradim)

    # complex y: view as float, preserve the length
    was_complex =  y.dtype.kind == 'c'
    yy = y.view(float)
    if was_complex and y.ndim == 1:
        yy = yy.reshape(y.shape[0], 2)

    # multiple r.h.s
    extradim = prod(yy.shape[1:])
    yy = yy.reshape(-1, extradim)

    if method == "norm-eq":
        # construct A.T @ A and rhs with A the colocation matrix, and
        # rhs = A.T @ y for solving the LSQ problem  ``A.T @ A @ c = A.T @ y``
        lower = True
        ab = np.zeros((k+1, n), dtype=np.float64, order='F')
        rhs = np.zeros((n, extradim), dtype=np.float64)
        _dierckx._norm_eq_lsq(x, t, k,
                              yy,
                              w,
                              ab.T, rhs)

        # undo complex -> float and flattening the trailing dims
        if was_complex:
            rhs = rhs.view(complex)

        rhs = rhs.reshape((n,) + y.shape[1:])

        # have observation matrix & rhs, can solve the LSQ problem
        cho_decomp = cholesky_banded(ab, overwrite_ab=True, lower=lower,
                                     check_finite=check_finite)
        c = cho_solve_banded((cho_decomp, lower), rhs, overwrite_b=True,
                             check_finite=check_finite)
    elif method == "qr":
        _, _, c = _lsq_solve_qr(x, yy, t, k, w)

        if was_complex:
            c = c.view(complex)

    else:
        raise ValueError(f"Unknown {method =}.")


    # restore the shape of `c` for both single and multiple r.h.s.
    c = c.reshape((n,) + y.shape[1:])
    c = np.ascontiguousarray(c)
    return BSpline.construct_fast(t, c, k, axis=axis)


######################
# LSQ spline helpers #
######################

def _lsq_solve_qr(x, y, t, k, w):
    """Solve for the LSQ spline coeffs given x, y and knots.

    `y` is always 2D: for 1D data, the shape is ``(m, 1)``.
    `w` is always 1D: one weight value per `x` value.

    """
    assert y.ndim == 2

    y_w = y * w[:, None]
    A, offset, nc = _dierckx.data_matrix(x, t, k, w)
    _dierckx.qr_reduce(A, offset, nc, y_w)         # modifies arguments in-place
    c = _dierckx.fpback(A, nc, y_w)

    return A, y_w, c


#############################
#  Smoothing spline helpers #
#############################

def _compute_optimal_gcv_parameter(X, wE, y, w):
    """
    Returns an optimal regularization parameter from the GCV criteria [1].

    Parameters
    ----------
    X : array, shape (5, n)
        5 bands of the design matrix ``X`` stored in LAPACK banded storage.
    wE : array, shape (5, n)
        5 bands of the penalty matrix :math:`W^{-1} E` stored in LAPACK banded
        storage.
    y : array, shape (n,)
        Ordinates.
    w : array, shape (n,)
        Vector of weights.

    Returns
    -------
    lam : float
        An optimal from the GCV criteria point of view regularization
        parameter.

    Notes
    -----
    No checks are performed.

    References
    ----------
    .. [1] G. Wahba, "Estimating the smoothing parameter" in Spline models
        for observational data, Philadelphia, Pennsylvania: Society for
        Industrial and Applied Mathematics, 1990, pp. 45-65.
        :doi:`10.1137/1.9781611970128`

    """

    def compute_banded_symmetric_XT_W_Y(X, w, Y):
        """
        Assuming that the product :math:`X^T W Y` is symmetric and both ``X``
        and ``Y`` are 5-banded, compute the unique bands of the product.

        Parameters
        ----------
        X : array, shape (5, n)
            5 bands of the matrix ``X`` stored in LAPACK banded storage.
        w : array, shape (n,)
            Array of weights
        Y : array, shape (5, n)
            5 bands of the matrix ``Y`` stored in LAPACK banded storage.

        Returns
        -------
        res : array, shape (4, n)
            The result of the product :math:`X^T Y` stored in the banded way.

        Notes
        -----
        As far as the matrices ``X`` and ``Y`` are 5-banded, their product
        :math:`X^T W Y` is 7-banded. It is also symmetric, so we can store only
        unique diagonals.

        """
        # compute W Y
        W_Y = np.copy(Y)

        W_Y[2] *= w
        for i in range(2):
            W_Y[i, 2 - i:] *= w[:-2 + i]
            W_Y[3 + i, :-1 - i] *= w[1 + i:]

        n = X.shape[1]
        res = np.zeros((4, n))
        for i in range(n):
            for j in range(min(n-i, 4)):
                res[-j-1, i + j] = sum(X[j:, i] * W_Y[:5-j, i + j])
        return res

    def compute_b_inv(A):
        """
        Inverse 3 central bands of matrix :math:`A=U^T D^{-1} U` assuming that
        ``U`` is a unit upper triangular banded matrix using an algorithm
        proposed in [1].

        Parameters
        ----------
        A : array, shape (4, n)
            Matrix to inverse, stored in LAPACK banded storage.

        Returns
        -------
        B : array, shape (4, n)
            3 unique bands of the symmetric matrix that is an inverse to ``A``.
            The first row is filled with zeros.

        Notes
        -----
        The algorithm is based on the cholesky decomposition and, therefore,
        in case matrix ``A`` is close to not positive defined, the function
        raises LinalgError.

        Both matrices ``A`` and ``B`` are stored in LAPACK banded storage.

        References
        ----------
        .. [1] M. F. Hutchinson and F. R. de Hoog, "Smoothing noisy data with
            spline functions," Numerische Mathematik, vol. 47, no. 1,
            pp. 99-106, 1985.
            :doi:`10.1007/BF01389878`

        """

        def find_b_inv_elem(i, j, U, D, B):
            rng = min(3, n - i - 1)
            rng_sum = 0.
            if j == 0:
                # use 2-nd formula from [1]
                for k in range(1, rng + 1):
                    rng_sum -= U[-k - 1, i + k] * B[-k - 1, i + k]
                rng_sum += D[i]
                B[-1, i] = rng_sum
            else:
                # use 1-st formula from [1]
                for k in range(1, rng + 1):
                    diag = abs(k - j)
                    ind = i + min(k, j)
                    rng_sum -= U[-k - 1, i + k] * B[-diag - 1, ind + diag]
                B[-j - 1, i + j] = rng_sum

        U = cholesky_banded(A)
        for i in range(2, 5):
            U[-i, i-1:] /= U[-1, :-i+1]
        D = 1. / (U[-1])**2
        U[-1] /= U[-1]

        n = U.shape[1]

        B = np.zeros(shape=(4, n))
        for i in range(n - 1, -1, -1):
            for j in range(min(3, n - i - 1), -1, -1):
                find_b_inv_elem(i, j, U, D, B)
        # the first row contains garbage and should be removed
        B[0] = [0.] * n
        return B

    def _gcv(lam, X, XtWX, wE, XtE):
        r"""
        Computes the generalized cross-validation criteria [1].

        Parameters
        ----------
        lam : float, (:math:`\lambda \geq 0`)
            Regularization parameter.
        X : array, shape (5, n)
            Matrix is stored in LAPACK banded storage.
        XtWX : array, shape (4, n)
            Product :math:`X^T W X` stored in LAPACK banded storage.
        wE : array, shape (5, n)
            Matrix :math:`W^{-1} E` stored in LAPACK banded storage.
        XtE : array, shape (4, n)
            Product :math:`X^T E` stored in LAPACK banded storage.

        Returns
        -------
        res : float
            Value of the GCV criteria with the regularization parameter
            :math:`\lambda`.

        Notes
        -----
        Criteria is computed from the formula (1.3.2) [3]:

        .. math:

        GCV(\lambda) = \dfrac{1}{n} \sum\limits_{k = 1}^{n} \dfrac{ \left(
        y_k - f_{\lambda}(x_k) \right)^2}{\left( 1 - \Tr{A}/n\right)^2}$.
        The criteria is discussed in section 1.3 [3].

        The numerator is computed using (2.2.4) [3] and the denominator is
        computed using an algorithm from [2] (see in the ``compute_b_inv``
        function).

        References
        ----------
        .. [1] G. Wahba, "Estimating the smoothing parameter" in Spline models
            for observational data, Philadelphia, Pennsylvania: Society for
            Industrial and Applied Mathematics, 1990, pp. 45-65.
            :doi:`10.1137/1.9781611970128`
        .. [2] M. F. Hutchinson and F. R. de Hoog, "Smoothing noisy data with
            spline functions," Numerische Mathematik, vol. 47, no. 1,
            pp. 99-106, 1985.
            :doi:`10.1007/BF01389878`
        .. [3] E. Zemlyanoy, "Generalized cross-validation smoothing splines",
            BSc thesis, 2022. Might be available (in Russian)
            `here <https://www.hse.ru/ba/am/students/diplomas/620910604>`_

        """
        # Compute the numerator from (2.2.4) [3]
        n = X.shape[1]
        c = solve_banded((2, 2), X + lam * wE, y)
        res = np.zeros(n)
        # compute ``W^{-1} E c`` with respect to banded-storage of ``E``
        tmp = wE * c
        for i in range(n):
            for j in range(max(0, i - n + 3), min(5, i + 3)):
                res[i] += tmp[j, i + 2 - j]
        numer = np.linalg.norm(lam * res)**2 / n

        # compute the denominator
        lhs = XtWX + lam * XtE
        try:
            b_banded = compute_b_inv(lhs)
            # compute the trace of the product b_banded @ XtX
            tr = b_banded * XtWX
            tr[:-1] *= 2
            # find the denominator
            denom = (1 - sum(sum(tr)) / n)**2
        except LinAlgError:
            # cholesky decomposition cannot be performed
            raise ValueError('Seems like the problem is ill-posed')

        res = numer / denom

        return res

    n = X.shape[1]

    XtWX = compute_banded_symmetric_XT_W_Y(X, w, X)
    XtE = compute_banded_symmetric_XT_W_Y(X, w, wE)

    def fun(lam):
        return _gcv(lam, X, XtWX, wE, XtE)

    gcv_est = minimize_scalar(fun, bounds=(0, n), method='Bounded')
    if gcv_est.success:
        return gcv_est.x
    raise ValueError(f"Unable to find minimum of the GCV "
                     f"function: {gcv_est.message}")


def _coeff_of_divided_diff(x):
    """
    Returns the coefficients of the divided difference.

    Parameters
    ----------
    x : array, shape (n,)
        Array which is used for the computation of divided difference.

    Returns
    -------
    res : array_like, shape (n,)
        Coefficients of the divided difference.

    Notes
    -----
    Vector ``x`` should have unique elements, otherwise an error division by
    zero might be raised.

    No checks are performed.

    """
    n = x.shape[0]
    res = np.zeros(n)
    for i in range(n):
        pp = 1.
        for k in range(n):
            if k != i:
                pp *= (x[i] - x[k])
        res[i] = 1. / pp
    return res


def make_smoothing_spline(x, y, w=None, lam=None):
    r"""
    Compute the (coefficients of) smoothing cubic spline function using
    ``lam`` to control the tradeoff between the amount of smoothness of the
    curve and its proximity to the data. In case ``lam`` is None, using the
    GCV criteria [1] to find it.

    A smoothing spline is found as a solution to the regularized weighted
    linear regression problem:

    .. math::

        \sum\limits_{i=1}^n w_i\lvert y_i - f(x_i) \rvert^2 +
        \lambda\int\limits_{x_1}^{x_n} (f^{(2)}(u))^2 d u

    where :math:`f` is a spline function, :math:`w` is a vector of weights and
    :math:`\lambda` is a regularization parameter.

    If ``lam`` is None, we use the GCV criteria to find an optimal
    regularization parameter, otherwise we solve the regularized weighted
    linear regression problem with given parameter. The parameter controls
    the tradeoff in the following way: the larger the parameter becomes, the
    smoother the function gets.

    Parameters
    ----------
    x : array_like, shape (n,)
        Abscissas. `n` must be at least 5.
    y : array_like, shape (n,)
        Ordinates. `n` must be at least 5.
    w : array_like, shape (n,), optional
        Vector of weights. Default is ``np.ones_like(x)``.
    lam : float, (:math:`\lambda \geq 0`), optional
        Regularization parameter. If ``lam`` is None, then it is found from
        the GCV criteria. Default is None.

    Returns
    -------
    func : a BSpline object.
        A callable representing a spline in the B-spline basis
        as a solution of the problem of smoothing splines using
        the GCV criteria [1] in case ``lam`` is None, otherwise using the
        given parameter ``lam``.

    Notes
    -----
    This algorithm is a clean room reimplementation of the algorithm
    introduced by Woltring in FORTRAN [2]. The original version cannot be used
    in SciPy source code because of the license issues. The details of the
    reimplementation are discussed here (available only in Russian) [4].

    If the vector of weights ``w`` is None, we assume that all the points are
    equal in terms of weights, and vector of weights is vector of ones.

    Note that in weighted residual sum of squares, weights are not squared:
    :math:`\sum\limits_{i=1}^n w_i\lvert y_i - f(x_i) \rvert^2` while in
    ``splrep`` the sum is built from the squared weights.

    In cases when the initial problem is ill-posed (for example, the product
    :math:`X^T W X` where :math:`X` is a design matrix is not a positive
    defined matrix) a ValueError is raised.

    References
    ----------
    .. [1] G. Wahba, "Estimating the smoothing parameter" in Spline models for
        observational data, Philadelphia, Pennsylvania: Society for Industrial
        and Applied Mathematics, 1990, pp. 45-65.
        :doi:`10.1137/1.9781611970128`
    .. [2] H. J. Woltring, A Fortran package for generalized, cross-validatory
        spline smoothing and differentiation, Advances in Engineering
        Software, vol. 8, no. 2, pp. 104-113, 1986.
        :doi:`10.1016/0141-1195(86)90098-7`
    .. [3] T. Hastie, J. Friedman, and R. Tisbshirani, "Smoothing Splines" in
        The elements of Statistical Learning: Data Mining, Inference, and
        prediction, New York: Springer, 2017, pp. 241-249.
        :doi:`10.1007/978-0-387-84858-7`
    .. [4] E. Zemlyanoy, "Generalized cross-validation smoothing splines",
        BSc thesis, 2022.
        `<https://www.hse.ru/ba/am/students/diplomas/620910604>`_ (in
        Russian)

    Examples
    --------
    Generate some noisy data

    >>> import numpy as np
    >>> np.random.seed(1234)
    >>> n = 200
    >>> def func(x):
    ...    return x**3 + x**2 * np.sin(4 * x)
    >>> x = np.sort(np.random.random_sample(n) * 4 - 2)
    >>> y = func(x) + np.random.normal(scale=1.5, size=n)

    Make a smoothing spline function

    >>> from scipy.interpolate import make_smoothing_spline
    >>> spl = make_smoothing_spline(x, y)

    Plot both

    >>> import matplotlib.pyplot as plt
    >>> grid = np.linspace(x[0], x[-1], 400)
    >>> plt.plot(grid, spl(grid), label='Spline')
    >>> plt.plot(grid, func(grid), label='Original function')
    >>> plt.scatter(x, y, marker='.')
    >>> plt.legend(loc='best')
    >>> plt.show()

    """

    x = np.ascontiguousarray(x, dtype=float)
    y = np.ascontiguousarray(y, dtype=float)

    if any(x[1:] - x[:-1] <= 0):
        raise ValueError('``x`` should be an ascending array')

    if x.ndim != 1 or y.ndim != 1 or x.shape[0] != y.shape[0]:
        raise ValueError('``x`` and ``y`` should be one dimensional and the'
                         ' same size')

    if w is None:
        w = np.ones(len(x))
    else:
        w = np.ascontiguousarray(w)
        if any(w <= 0):
            raise ValueError('Invalid vector of weights')

    t = np.r_[[x[0]] * 3, x, [x[-1]] * 3]
    n = x.shape[0]

    if n <= 4:
        raise ValueError('``x`` and ``y`` length must be at least 5')

    # It is known that the solution to the stated minimization problem exists
    # and is a natural cubic spline with vector of knots equal to the unique
    # elements of ``x`` [3], so we will solve the problem in the basis of
    # natural splines.

    # create design matrix in the B-spline basis
    X_bspl = BSpline.design_matrix(x, t, 3)
    # move from B-spline basis to the basis of natural splines using equations
    # (2.1.7) [4]
    # central elements
    X = np.zeros((5, n))
    for i in range(1, 4):
        X[i, 2: -2] = X_bspl[i: i - 4, 3: -3][np.diag_indices(n - 4)]

    # first elements
    X[1, 1] = X_bspl[0, 0]
    X[2, :2] = ((x[2] + x[1] - 2 * x[0]) * X_bspl[0, 0],
                X_bspl[1, 1] + X_bspl[1, 2])
    X[3, :2] = ((x[2] - x[0]) * X_bspl[1, 1], X_bspl[2, 2])

    # last elements
    X[1, -2:] = (X_bspl[-3, -3], (x[-1] - x[-3]) * X_bspl[-2, -2])
    X[2, -2:] = (X_bspl[-2, -3] + X_bspl[-2, -2],
                 (2 * x[-1] - x[-2] - x[-3]) * X_bspl[-1, -1])
    X[3, -2] = X_bspl[-1, -1]

    # create penalty matrix and divide it by vector of weights: W^{-1} E
    wE = np.zeros((5, n))
    wE[2:, 0] = _coeff_of_divided_diff(x[:3]) / w[:3]
    wE[1:, 1] = _coeff_of_divided_diff(x[:4]) / w[:4]
    for j in range(2, n - 2):
        wE[:, j] = (x[j+2] - x[j-2]) * _coeff_of_divided_diff(x[j-2:j+3])\
                   / w[j-2: j+3]

    wE[:-1, -2] = -_coeff_of_divided_diff(x[-4:]) / w[-4:]
    wE[:-2, -1] = _coeff_of_divided_diff(x[-3:]) / w[-3:]
    wE *= 6

    if lam is None:
        lam = _compute_optimal_gcv_parameter(X, wE, y, w)
    elif lam < 0.:
        raise ValueError('Regularization parameter should be non-negative')

    # solve the initial problem in the basis of natural splines
    c = solve_banded((2, 2), X + lam * wE, y)
    # move back to B-spline basis using equations (2.2.10) [4]
    c_ = np.r_[c[0] * (t[5] + t[4] - 2 * t[3]) + c[1],
               c[0] * (t[5] - t[3]) + c[1],
               c[1: -1],
               c[-1] * (t[-4] - t[-6]) + c[-2],
               c[-1] * (2 * t[-4] - t[-5] - t[-6]) + c[-2]]

    return BSpline.construct_fast(t, c_, 3)


########################
#  FITPACK look-alikes #
########################

def fpcheck(x, t, k):
    """ Check consistency of the data vector `x` and the knot vector `t`.

    Return None if inputs are consistent, raises a ValueError otherwise.
    """
    # This routine is a clone of the `fpchec` Fortran routine,
    # https://github.com/scipy/scipy/blob/main/scipy/interpolate/fitpack/fpchec.f
    # which carries the following comment:
    #
    # subroutine fpchec verifies the number and the position of the knots
    #  t(j),j=1,2,...,n of a spline of degree k, in relation to the number
    #  and the position of the data points x(i),i=1,2,...,m. if all of the
    #  following conditions are fulfilled, the error parameter ier is set
    #  to zero. if one of the conditions is violated ier is set to ten.
    #      1) k+1 <= n-k-1 <= m
    #      2) t(1) <= t(2) <= ... <= t(k+1)
    #         t(n-k) <= t(n-k+1) <= ... <= t(n)
    #      3) t(k+1) < t(k+2) < ... < t(n-k)
    #      4) t(k+1) <= x(i) <= t(n-k)
    #      5) the conditions specified by schoenberg and whitney must hold
    #         for at least one subset of data points, i.e. there must be a
    #         subset of data points y(j) such that
    #             t(j) < y(j) < t(j+k+1), j=1,2,...,n-k-1
    x = np.asarray(x)
    t = np.asarray(t)

    if x.ndim != 1 or t.ndim != 1:
        raise ValueError(f"Expect `x` and `t` be 1D sequences. Got {x = } and {t = }")

    m = x.shape[0]
    n = t.shape[0]
    nk1 = n - k - 1

    # check condition no 1
    # c      1) k+1 <= n-k-1 <= m
    if not (k + 1 <= nk1 <= m):
        raise ValueError(f"Need k+1 <= n-k-1 <= m. Got {m = }, {n = } and {k = }.")

    # check condition no 2
    # c      2) t(1) <= t(2) <= ... <= t(k+1)
    # c         t(n-k) <= t(n-k+1) <= ... <= t(n)
    if (t[:k+1] > t[1:k+2]).any():
        raise ValueError(f"First k knots must be ordered; got {t = }.")

    if (t[nk1:] < t[nk1-1:-1]).any():
        raise ValueError(f"Last k knots must be ordered; got {t = }.")

    # c  check condition no 3
    # c      3) t(k+1) < t(k+2) < ... < t(n-k)
    if (t[k+1:n-k] <= t[k:n-k-1]).any():
        raise ValueError(f"Internal knots must be distinct. Got {t = }.")

    # c  check condition no 4
    # c      4) t(k+1) <= x(i) <= t(n-k)
    # NB: FITPACK's fpchec only checks x[0] & x[-1], so we follow.
    if (x[0] < t[k]) or (x[-1] > t[n-k-1]):
        raise ValueError(f"Out of bounds: {x = } and {t = }.")

    # c  check condition no 5
    # c      5) the conditions specified by schoenberg and whitney must hold
    # c         for at least one subset of data points, i.e. there must be a
    # c         subset of data points y(j) such that
    # c             t(j) < y(j) < t(j+k+1), j=1,2,...,n-k-1
    mesg = f"Schoenberg-Whitney condition is violated with {t = } and {x =}."

    if (x[0] >= t[k+1]) or (x[-1] <= t[n-k-2]):
        raise ValueError(mesg)

    m = x.shape[0]
    l = k+1
    nk3 = n - k - 3
    if nk3 < 2:
        return
    for j in range(1, nk3+1):
        tj = t[j]
        l += 1
        tl = t[l]
        i = np.argmax(x > tj)
        if i >= m-1:
            raise ValueError(mesg)
        if x[i] >= tl:
            raise ValueError(mesg)
    return