File size: 36,366 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
import warnings

import numpy as np
from scipy.special import factorial
from scipy._lib._util import (_asarray_validated, float_factorial, check_random_state,
                              _transition_to_rng)


__all__ = ["KroghInterpolator", "krogh_interpolate",
           "BarycentricInterpolator", "barycentric_interpolate",
           "approximate_taylor_polynomial"]


def _isscalar(x):
    """Check whether x is if a scalar type, or 0-dim"""
    return np.isscalar(x) or hasattr(x, 'shape') and x.shape == ()


class _Interpolator1D:
    """
    Common features in univariate interpolation

    Deal with input data type and interpolation axis rolling. The
    actual interpolator can assume the y-data is of shape (n, r) where
    `n` is the number of x-points, and `r` the number of variables,
    and use self.dtype as the y-data type.

    Attributes
    ----------
    _y_axis
        Axis along which the interpolation goes in the original array
    _y_extra_shape
        Additional trailing shape of the input arrays, excluding
        the interpolation axis.
    dtype
        Dtype of the y-data arrays. Can be set via _set_dtype, which
        forces it to be float or complex.

    Methods
    -------
    __call__
    _prepare_x
    _finish_y
    _reshape_yi
    _set_yi
    _set_dtype
    _evaluate

    """

    __slots__ = ('_y_axis', '_y_extra_shape', 'dtype')

    def __init__(self, xi=None, yi=None, axis=None):
        self._y_axis = axis
        self._y_extra_shape = None
        self.dtype = None
        if yi is not None:
            self._set_yi(yi, xi=xi, axis=axis)

    def __call__(self, x):
        """
        Evaluate the interpolant

        Parameters
        ----------
        x : array_like
            Point or points at which to evaluate the interpolant.

        Returns
        -------
        y : array_like
            Interpolated values. Shape is determined by replacing
            the interpolation axis in the original array with the shape of `x`.

        Notes
        -----
        Input values `x` must be convertible to `float` values like `int`
        or `float`.

        """
        x, x_shape = self._prepare_x(x)
        y = self._evaluate(x)
        return self._finish_y(y, x_shape)

    def _evaluate(self, x):
        """
        Actually evaluate the value of the interpolator.
        """
        raise NotImplementedError()

    def _prepare_x(self, x):
        """Reshape input x array to 1-D"""
        x = _asarray_validated(x, check_finite=False, as_inexact=True)
        x_shape = x.shape
        return x.ravel(), x_shape

    def _finish_y(self, y, x_shape):
        """Reshape interpolated y back to an N-D array similar to initial y"""
        y = y.reshape(x_shape + self._y_extra_shape)
        if self._y_axis != 0 and x_shape != ():
            nx = len(x_shape)
            ny = len(self._y_extra_shape)
            s = (list(range(nx, nx + self._y_axis))
                 + list(range(nx)) + list(range(nx+self._y_axis, nx+ny)))
            y = y.transpose(s)
        return y

    def _reshape_yi(self, yi, check=False):
        yi = np.moveaxis(np.asarray(yi), self._y_axis, 0)
        if check and yi.shape[1:] != self._y_extra_shape:
            ok_shape = (f"{self._y_extra_shape[-self._y_axis:]!r} + (N,) + "
                        f"{self._y_extra_shape[:-self._y_axis]!r}")
            raise ValueError(f"Data must be of shape {ok_shape}")
        return yi.reshape((yi.shape[0], -1))

    def _set_yi(self, yi, xi=None, axis=None):
        if axis is None:
            axis = self._y_axis
        if axis is None:
            raise ValueError("no interpolation axis specified")

        yi = np.asarray(yi)

        shape = yi.shape
        if shape == ():
            shape = (1,)
        if xi is not None and shape[axis] != len(xi):
            raise ValueError("x and y arrays must be equal in length along "
                             "interpolation axis.")

        self._y_axis = (axis % yi.ndim)
        self._y_extra_shape = yi.shape[:self._y_axis] + yi.shape[self._y_axis+1:]
        self.dtype = None
        self._set_dtype(yi.dtype)

    def _set_dtype(self, dtype, union=False):
        if np.issubdtype(dtype, np.complexfloating) \
               or np.issubdtype(self.dtype, np.complexfloating):
            self.dtype = np.complex128
        else:
            if not union or self.dtype != np.complex128:
                self.dtype = np.float64


class _Interpolator1DWithDerivatives(_Interpolator1D):
    def derivatives(self, x, der=None):
        """
        Evaluate several derivatives of the polynomial at the point `x`

        Produce an array of derivatives evaluated at the point `x`.

        Parameters
        ----------
        x : array_like
            Point or points at which to evaluate the derivatives
        der : int or list or None, optional
            How many derivatives to evaluate, or None for all potentially
            nonzero derivatives (that is, a number equal to the number
            of points), or a list of derivatives to evaluate. This number
            includes the function value as the '0th' derivative.

        Returns
        -------
        d : ndarray
            Array with derivatives; ``d[j]`` contains the jth derivative.
            Shape of ``d[j]`` is determined by replacing the interpolation
            axis in the original array with the shape of `x`.

        Examples
        --------
        >>> from scipy.interpolate import KroghInterpolator
        >>> KroghInterpolator([0,0,0],[1,2,3]).derivatives(0)
        array([1.0,2.0,3.0])
        >>> KroghInterpolator([0,0,0],[1,2,3]).derivatives([0,0])
        array([[1.0,1.0],
               [2.0,2.0],
               [3.0,3.0]])

        """
        x, x_shape = self._prepare_x(x)
        y = self._evaluate_derivatives(x, der)

        y = y.reshape((y.shape[0],) + x_shape + self._y_extra_shape)
        if self._y_axis != 0 and x_shape != ():
            nx = len(x_shape)
            ny = len(self._y_extra_shape)
            s = ([0] + list(range(nx+1, nx + self._y_axis+1))
                 + list(range(1, nx+1)) +
                 list(range(nx+1+self._y_axis, nx+ny+1)))
            y = y.transpose(s)
        return y

    def derivative(self, x, der=1):
        """
        Evaluate a single derivative of the polynomial at the point `x`.

        Parameters
        ----------
        x : array_like
            Point or points at which to evaluate the derivatives

        der : integer, optional
            Which derivative to evaluate (default: first derivative).
            This number includes the function value as 0th derivative.

        Returns
        -------
        d : ndarray
            Derivative interpolated at the x-points. Shape of `d` is
            determined by replacing the interpolation axis in the
            original array with the shape of `x`.

        Notes
        -----
        This may be computed by evaluating all derivatives up to the desired
        one (using self.derivatives()) and then discarding the rest.

        """
        x, x_shape = self._prepare_x(x)
        y = self._evaluate_derivatives(x, der+1)
        return self._finish_y(y[der], x_shape)

    def _evaluate_derivatives(self, x, der=None):
        """
        Actually evaluate the derivatives.

        Parameters
        ----------
        x : array_like
            1D array of points at which to evaluate the derivatives
        der : integer, optional
            The number of derivatives to evaluate, from 'order 0' (der=1)
            to order der-1.  If omitted, return all possibly-non-zero
            derivatives, ie 0 to order n-1.

        Returns
        -------
        d : ndarray
            Array of shape ``(der, x.size, self.yi.shape[1])`` containing
            the derivatives from 0 to der-1
        """
        raise NotImplementedError()


class KroghInterpolator(_Interpolator1DWithDerivatives):
    """
    Interpolating polynomial for a set of points.

    The polynomial passes through all the pairs ``(xi, yi)``. One may
    additionally specify a number of derivatives at each point `xi`;
    this is done by repeating the value `xi` and specifying the
    derivatives as successive `yi` values.

    Allows evaluation of the polynomial and all its derivatives.
    For reasons of numerical stability, this function does not compute
    the coefficients of the polynomial, although they can be obtained
    by evaluating all the derivatives.

    Parameters
    ----------
    xi : array_like, shape (npoints, )
        Known x-coordinates. Must be sorted in increasing order.
    yi : array_like, shape (..., npoints, ...)
        Known y-coordinates. When an xi occurs two or more times in
        a row, the corresponding yi's represent derivative values. The length of `yi`
        along the interpolation axis must be equal to the length of `xi`. Use the
        `axis` parameter to select the correct axis.
    axis : int, optional
        Axis in the `yi` array corresponding to the x-coordinate values. Defaults to
        ``axis=0``.

    Notes
    -----
    Be aware that the algorithms implemented here are not necessarily
    the most numerically stable known. Moreover, even in a world of
    exact computation, unless the x coordinates are chosen very
    carefully - Chebyshev zeros (e.g., cos(i*pi/n)) are a good choice -
    polynomial interpolation itself is a very ill-conditioned process
    due to the Runge phenomenon. In general, even with well-chosen
    x values, degrees higher than about thirty cause problems with
    numerical instability in this code.

    Based on [1]_.

    References
    ----------
    .. [1] Krogh, "Efficient Algorithms for Polynomial Interpolation
        and Numerical Differentiation", 1970.

    Examples
    --------
    To produce a polynomial that is zero at 0 and 1 and has
    derivative 2 at 0, call

    >>> from scipy.interpolate import KroghInterpolator
    >>> KroghInterpolator([0,0,1],[0,2,0])

    This constructs the quadratic :math:`2x^2-2x`. The derivative condition
    is indicated by the repeated zero in the `xi` array; the corresponding
    yi values are 0, the function value, and 2, the derivative value.

    For another example, given `xi`, `yi`, and a derivative `ypi` for each
    point, appropriate arrays can be constructed as:

    >>> import numpy as np
    >>> rng = np.random.default_rng()
    >>> xi = np.linspace(0, 1, 5)
    >>> yi, ypi = rng.random((2, 5))
    >>> xi_k, yi_k = np.repeat(xi, 2), np.ravel(np.dstack((yi,ypi)))
    >>> KroghInterpolator(xi_k, yi_k)

    To produce a vector-valued polynomial, supply a higher-dimensional
    array for `yi`:

    >>> KroghInterpolator([0,1],[[2,3],[4,5]])

    This constructs a linear polynomial giving (2,3) at 0 and (4,5) at 1.

    """

    def __init__(self, xi, yi, axis=0):
        super().__init__(xi, yi, axis)

        self.xi = np.asarray(xi)
        self.yi = self._reshape_yi(yi)
        self.n, self.r = self.yi.shape

        if (deg := self.xi.size) > 30:
            warnings.warn(f"{deg} degrees provided, degrees higher than about"
                          " thirty cause problems with numerical instability "
                          "with 'KroghInterpolator'", stacklevel=2)

        c = np.zeros((self.n+1, self.r), dtype=self.dtype)
        c[0] = self.yi[0]
        Vk = np.zeros((self.n, self.r), dtype=self.dtype)
        for k in range(1, self.n):
            s = 0
            while s <= k and xi[k-s] == xi[k]:
                s += 1
            s -= 1
            Vk[0] = self.yi[k]/float_factorial(s)
            for i in range(k-s):
                if xi[i] == xi[k]:
                    raise ValueError("Elements of `xi` can't be equal.")
                if s == 0:
                    Vk[i+1] = (c[i]-Vk[i])/(xi[i]-xi[k])
                else:
                    Vk[i+1] = (Vk[i+1]-Vk[i])/(xi[i]-xi[k])
            c[k] = Vk[k-s]
        self.c = c

    def _evaluate(self, x):
        pi = 1
        p = np.zeros((len(x), self.r), dtype=self.dtype)
        p += self.c[0,np.newaxis,:]
        for k in range(1, self.n):
            w = x - self.xi[k-1]
            pi = w*pi
            p += pi[:,np.newaxis] * self.c[k]
        return p

    def _evaluate_derivatives(self, x, der=None):
        n = self.n
        r = self.r

        if der is None:
            der = self.n

        pi = np.zeros((n, len(x)))
        w = np.zeros((n, len(x)))
        pi[0] = 1
        p = np.zeros((len(x), self.r), dtype=self.dtype)
        p += self.c[0, np.newaxis, :]

        for k in range(1, n):
            w[k-1] = x - self.xi[k-1]
            pi[k] = w[k-1] * pi[k-1]
            p += pi[k, :, np.newaxis] * self.c[k]

        cn = np.zeros((max(der, n+1), len(x), r), dtype=self.dtype)
        cn[:n+1, :, :] += self.c[:n+1, np.newaxis, :]
        cn[0] = p
        for k in range(1, n):
            for i in range(1, n-k+1):
                pi[i] = w[k+i-1]*pi[i-1] + pi[i]
                cn[k] = cn[k] + pi[i, :, np.newaxis]*cn[k+i]
            cn[k] *= float_factorial(k)

        cn[n, :, :] = 0
        return cn[:der]


def krogh_interpolate(xi, yi, x, der=0, axis=0):
    """
    Convenience function for polynomial interpolation.

    See `KroghInterpolator` for more details.

    Parameters
    ----------
    xi : array_like
        Interpolation points (known x-coordinates).
    yi : array_like
        Known y-coordinates, of shape ``(xi.size, R)``. Interpreted as
        vectors of length R, or scalars if R=1.
    x : array_like
        Point or points at which to evaluate the derivatives.
    der : int or list or None, optional
        How many derivatives to evaluate, or None for all potentially
        nonzero derivatives (that is, a number equal to the number
        of points), or a list of derivatives to evaluate. This number
        includes the function value as the '0th' derivative.
    axis : int, optional
        Axis in the `yi` array corresponding to the x-coordinate values.

    Returns
    -------
    d : ndarray
        If the interpolator's values are R-D then the
        returned array will be the number of derivatives by N by R.
        If `x` is a scalar, the middle dimension will be dropped; if
        the `yi` are scalars then the last dimension will be dropped.

    See Also
    --------
    KroghInterpolator : Krogh interpolator

    Notes
    -----
    Construction of the interpolating polynomial is a relatively expensive
    process. If you want to evaluate it repeatedly consider using the class
    KroghInterpolator (which is what this function uses).

    Examples
    --------
    We can interpolate 2D observed data using Krogh interpolation:

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.interpolate import krogh_interpolate
    >>> x_observed = np.linspace(0.0, 10.0, 11)
    >>> y_observed = np.sin(x_observed)
    >>> x = np.linspace(min(x_observed), max(x_observed), num=100)
    >>> y = krogh_interpolate(x_observed, y_observed, x)
    >>> plt.plot(x_observed, y_observed, "o", label="observation")
    >>> plt.plot(x, y, label="krogh interpolation")
    >>> plt.legend()
    >>> plt.show()
    """

    P = KroghInterpolator(xi, yi, axis=axis)
    if der == 0:
        return P(x)
    elif _isscalar(der):
        return P.derivative(x, der=der)
    else:
        return P.derivatives(x, der=np.amax(der)+1)[der]


def approximate_taylor_polynomial(f,x,degree,scale,order=None):
    """
    Estimate the Taylor polynomial of f at x by polynomial fitting.

    Parameters
    ----------
    f : callable
        The function whose Taylor polynomial is sought. Should accept
        a vector of `x` values.
    x : scalar
        The point at which the polynomial is to be evaluated.
    degree : int
        The degree of the Taylor polynomial
    scale : scalar
        The width of the interval to use to evaluate the Taylor polynomial.
        Function values spread over a range this wide are used to fit the
        polynomial. Must be chosen carefully.
    order : int or None, optional
        The order of the polynomial to be used in the fitting; `f` will be
        evaluated ``order+1`` times. If None, use `degree`.

    Returns
    -------
    p : poly1d instance
        The Taylor polynomial (translated to the origin, so that
        for example p(0)=f(x)).

    Notes
    -----
    The appropriate choice of "scale" is a trade-off; too large and the
    function differs from its Taylor polynomial too much to get a good
    answer, too small and round-off errors overwhelm the higher-order terms.
    The algorithm used becomes numerically unstable around order 30 even
    under ideal circumstances.

    Choosing order somewhat larger than degree may improve the higher-order
    terms.

    Examples
    --------
    We can calculate Taylor approximation polynomials of sin function with
    various degrees:

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.interpolate import approximate_taylor_polynomial
    >>> x = np.linspace(-10.0, 10.0, num=100)
    >>> plt.plot(x, np.sin(x), label="sin curve")
    >>> for degree in np.arange(1, 15, step=2):
    ...     sin_taylor = approximate_taylor_polynomial(np.sin, 0, degree, 1,
    ...                                                order=degree + 2)
    ...     plt.plot(x, sin_taylor(x), label=f"degree={degree}")
    >>> plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left',
    ...            borderaxespad=0.0, shadow=True)
    >>> plt.tight_layout()
    >>> plt.axis([-10, 10, -10, 10])
    >>> plt.show()

    """
    if order is None:
        order = degree

    n = order+1
    # Choose n points that cluster near the endpoints of the interval in
    # a way that avoids the Runge phenomenon. Ensure, by including the
    # endpoint or not as appropriate, that one point always falls at x
    # exactly.
    xs = scale*np.cos(np.linspace(0,np.pi,n,endpoint=n % 1)) + x

    P = KroghInterpolator(xs, f(xs))
    d = P.derivatives(x,der=degree+1)

    return np.poly1d((d/factorial(np.arange(degree+1)))[::-1])


class BarycentricInterpolator(_Interpolator1DWithDerivatives):
    r"""Interpolating polynomial for a set of points.

    Constructs a polynomial that passes through a given set of points.
    Allows evaluation of the polynomial and all its derivatives,
    efficient changing of the y-values to be interpolated,
    and updating by adding more x- and y-values.

    For reasons of numerical stability, this function does not compute
    the coefficients of the polynomial.

    The values `yi` need to be provided before the function is
    evaluated, but none of the preprocessing depends on them, so rapid
    updates are possible.

    Parameters
    ----------
    xi : array_like, shape (npoints, )
        1-D array of x coordinates of the points the polynomial
        should pass through
    yi : array_like, shape (..., npoints, ...), optional
        N-D array of y coordinates of the points the polynomial should pass through.
        If None, the y values will be supplied later via the `set_y` method.
        The length of `yi` along the interpolation axis must be equal to the length
        of `xi`. Use the ``axis`` parameter to select correct axis.
    axis : int, optional
        Axis in the yi array corresponding to the x-coordinate values. Defaults
        to ``axis=0``.
    wi : array_like, optional
        The barycentric weights for the chosen interpolation points `xi`.
        If absent or None, the weights will be computed from `xi` (default).
        This allows for the reuse of the weights `wi` if several interpolants
        are being calculated using the same nodes `xi`, without re-computation.
    rng : {None, int, `numpy.random.Generator`}, optional
        If `rng` is passed by keyword, types other than `numpy.random.Generator` are
        passed to `numpy.random.default_rng` to instantiate a ``Generator``.
        If `rng` is already a ``Generator`` instance, then the provided instance is
        used. Specify `rng` for repeatable interpolation.

        If this argument `random_state` is passed by keyword,
        legacy behavior for the argument `random_state` applies:

        - If `random_state` is None (or `numpy.random`), the `numpy.random.RandomState`
          singleton is used.
        - If `random_state` is an int, a new ``RandomState`` instance is used,
          seeded with `random_state`.
        - If `random_state` is already a ``Generator`` or ``RandomState`` instance then
          that instance is used.

        .. versionchanged:: 1.15.0
            As part of the `SPEC-007 <https://scientific-python.org/specs/spec-0007/>`_
            transition from use of `numpy.random.RandomState` to
            `numpy.random.Generator` this keyword was changed from `random_state` to `rng`.
            For an interim period, both keywords will continue to work (only specify
            one of them). After the interim period using the `random_state` keyword will emit
            warnings. The behavior of the `random_state` and `rng` keywords is outlined above.

    Notes
    -----
    This class uses a "barycentric interpolation" method that treats
    the problem as a special case of rational function interpolation.
    This algorithm is quite stable, numerically, but even in a world of
    exact computation, unless the x coordinates are chosen very
    carefully - Chebyshev zeros (e.g., cos(i*pi/n)) are a good choice -
    polynomial interpolation itself is a very ill-conditioned process
    due to the Runge phenomenon.

    Based on Berrut and Trefethen 2004, "Barycentric Lagrange Interpolation".

    Examples
    --------
    To produce a quintic barycentric interpolant approximating the function
    :math:`\sin x`, and its first four derivatives, using six randomly-spaced
    nodes in :math:`(0, \frac{\pi}{2})`:

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.interpolate import BarycentricInterpolator
    >>> rng = np.random.default_rng()
    >>> xi = rng.random(6) * np.pi/2
    >>> f, f_d1, f_d2, f_d3, f_d4 = np.sin, np.cos, lambda x: -np.sin(x), lambda x: -np.cos(x), np.sin
    >>> P = BarycentricInterpolator(xi, f(xi), random_state=rng)
    >>> fig, axs = plt.subplots(5, 1, sharex=True, layout='constrained', figsize=(7,10))
    >>> x = np.linspace(0, np.pi, 100)
    >>> axs[0].plot(x, P(x), 'r:', x, f(x), 'k--', xi, f(xi), 'xk')
    >>> axs[1].plot(x, P.derivative(x), 'r:', x, f_d1(x), 'k--', xi, f_d1(xi), 'xk')
    >>> axs[2].plot(x, P.derivative(x, 2), 'r:', x, f_d2(x), 'k--', xi, f_d2(xi), 'xk')
    >>> axs[3].plot(x, P.derivative(x, 3), 'r:', x, f_d3(x), 'k--', xi, f_d3(xi), 'xk')
    >>> axs[4].plot(x, P.derivative(x, 4), 'r:', x, f_d4(x), 'k--', xi, f_d4(xi), 'xk')
    >>> axs[0].set_xlim(0, np.pi)
    >>> axs[4].set_xlabel(r"$x$")
    >>> axs[4].set_xticks([i * np.pi / 4 for i in range(5)],
    ...                   ["0", r"$\frac{\pi}{4}$", r"$\frac{\pi}{2}$", r"$\frac{3\pi}{4}$", r"$\pi$"])
    >>> axs[0].set_ylabel("$f(x)$")
    >>> axs[1].set_ylabel("$f'(x)$")
    >>> axs[2].set_ylabel("$f''(x)$")
    >>> axs[3].set_ylabel("$f^{(3)}(x)$")
    >>> axs[4].set_ylabel("$f^{(4)}(x)$")
    >>> labels = ['Interpolation nodes', 'True function $f$', 'Barycentric interpolation']
    >>> axs[0].legend(axs[0].get_lines()[::-1], labels, bbox_to_anchor=(0., 1.02, 1., .102),
    ...               loc='lower left', ncols=3, mode="expand", borderaxespad=0., frameon=False)
    >>> plt.show()
    """ # numpy/numpydoc#87  # noqa: E501

    @_transition_to_rng("random_state", replace_doc=False)
    def __init__(self, xi, yi=None, axis=0, *, wi=None, rng=None):
        super().__init__(xi, yi, axis)

        rng = check_random_state(rng)

        self.xi = np.asarray(xi, dtype=np.float64)
        self.set_yi(yi)
        self.n = len(self.xi)

        # cache derivative object to avoid re-computing the weights with every call.
        self._diff_cij = None

        if wi is not None:
            self.wi = wi
        else:
            # See page 510 of Berrut and Trefethen 2004 for an explanation of the
            # capacity scaling and the suggestion of using a random permutation of
            # the input factors.
            # At the moment, the permutation is not performed for xi that are
            # appended later through the add_xi interface. It's not clear to me how
            # to implement that and it seems that most situations that require
            # these numerical stability improvements will be able to provide all
            # the points to the constructor.
            self._inv_capacity = 4.0 / (np.max(self.xi) - np.min(self.xi))
            permute = rng.permutation(self.n, )
            inv_permute = np.zeros(self.n, dtype=np.int32)
            inv_permute[permute] = np.arange(self.n)
            self.wi = np.zeros(self.n)

            for i in range(self.n):
                dist = self._inv_capacity * (self.xi[i] - self.xi[permute])
                dist[inv_permute[i]] = 1.0
                prod = np.prod(dist)
                if prod == 0.0:
                    raise ValueError("Interpolation points xi must be"
                                     " distinct.")
                self.wi[i] = 1.0 / prod

    def set_yi(self, yi, axis=None):
        """
        Update the y values to be interpolated

        The barycentric interpolation algorithm requires the calculation
        of weights, but these depend only on the `xi`. The `yi` can be changed
        at any time.

        Parameters
        ----------
        yi : array_like
            The y-coordinates of the points the polynomial will pass through.
            If None, the y values must be supplied later.
        axis : int, optional
            Axis in the `yi` array corresponding to the x-coordinate values.

        """
        if yi is None:
            self.yi = None
            return
        self._set_yi(yi, xi=self.xi, axis=axis)
        self.yi = self._reshape_yi(yi)
        self.n, self.r = self.yi.shape
        self._diff_baryint = None

    def add_xi(self, xi, yi=None):
        """
        Add more x values to the set to be interpolated

        The barycentric interpolation algorithm allows easy updating by
        adding more points for the polynomial to pass through.

        Parameters
        ----------
        xi : array_like
            The x coordinates of the points that the polynomial should pass
            through.
        yi : array_like, optional
            The y coordinates of the points the polynomial should pass through.
            Should have shape ``(xi.size, R)``; if R > 1 then the polynomial is
            vector-valued.
            If `yi` is not given, the y values will be supplied later. `yi`
            should be given if and only if the interpolator has y values
            specified.

        Notes
        -----
        The new points added by `add_xi` are not randomly permuted
        so there is potential for numerical instability,
        especially for a large number of points. If this
        happens, please reconstruct interpolation from scratch instead.
        """
        if yi is not None:
            if self.yi is None:
                raise ValueError("No previous yi value to update!")
            yi = self._reshape_yi(yi, check=True)
            self.yi = np.vstack((self.yi,yi))
        else:
            if self.yi is not None:
                raise ValueError("No update to yi provided!")
        old_n = self.n
        self.xi = np.concatenate((self.xi,xi))
        self.n = len(self.xi)
        self.wi **= -1
        old_wi = self.wi
        self.wi = np.zeros(self.n)
        self.wi[:old_n] = old_wi
        for j in range(old_n, self.n):
            self.wi[:j] *= self._inv_capacity * (self.xi[j]-self.xi[:j])
            self.wi[j] = np.multiply.reduce(
                self._inv_capacity * (self.xi[:j]-self.xi[j])
            )
        self.wi **= -1
        self._diff_cij = None
        self._diff_baryint = None

    def __call__(self, x):
        """Evaluate the interpolating polynomial at the points x

        Parameters
        ----------
        x : array_like
            Point or points at which to evaluate the interpolant.

        Returns
        -------
        y : array_like
            Interpolated values. Shape is determined by replacing
            the interpolation axis in the original array with the shape of `x`.

        Notes
        -----
        Currently the code computes an outer product between `x` and the
        weights, that is, it constructs an intermediate array of size
        ``(N, len(x))``, where N is the degree of the polynomial.
        """
        return _Interpolator1D.__call__(self, x)

    def _evaluate(self, x):
        if x.size == 0:
            p = np.zeros((0, self.r), dtype=self.dtype)
        else:
            c = x[..., np.newaxis] - self.xi
            z = c == 0
            c[z] = 1
            c = self.wi / c
            with np.errstate(divide='ignore'):
                p = np.dot(c, self.yi) / np.sum(c, axis=-1)[..., np.newaxis]
            # Now fix where x==some xi
            r = np.nonzero(z)
            if len(r) == 1:  # evaluation at a scalar
                if len(r[0]) > 0:  # equals one of the points
                    p = self.yi[r[0][0]]
            else:
                p[r[:-1]] = self.yi[r[-1]]
        return p

    def derivative(self, x, der=1):
        """
        Evaluate a single derivative of the polynomial at the point x.

        Parameters
        ----------
        x : array_like
            Point or points at which to evaluate the derivatives
        der : integer, optional
            Which derivative to evaluate (default: first derivative).
            This number includes the function value as 0th derivative.

        Returns
        -------
        d : ndarray
            Derivative interpolated at the x-points. Shape of `d` is
            determined by replacing the interpolation axis in the
            original array with the shape of `x`.
        """
        x, x_shape = self._prepare_x(x)
        y = self._evaluate_derivatives(x, der+1, all_lower=False)
        return self._finish_y(y, x_shape)

    def _evaluate_derivatives(self, x, der=None, all_lower=True):
        # NB: der here is not the order of the highest derivative;
        # instead, it is the size of the derivatives matrix that
        # would be returned with all_lower=True, including the
        # '0th' derivative (the undifferentiated function).
        # E.g. to evaluate the 5th derivative alone, call
        # _evaluate_derivatives(x, der=6, all_lower=False).

        if (not all_lower) and (x.size == 0 or self.r == 0):
            return np.zeros((0, self.r), dtype=self.dtype)

        if (not all_lower) and der == 1:
            return self._evaluate(x)

        if (not all_lower) and (der > self.n):
            return np.zeros((len(x), self.r), dtype=self.dtype)

        if der is None:
            der = self.n

        if all_lower and (x.size == 0 or self.r == 0):
            return np.zeros((der, len(x), self.r), dtype=self.dtype)

        if self._diff_cij is None:
            # c[i,j] = xi[i] - xi[j]
            c = self.xi[:, np.newaxis] - self.xi

            # avoid division by 0 (diagonal entries are so far zero by construction)
            np.fill_diagonal(c, 1)

            # c[i,j] = (w[j] / w[i]) / (xi[i] - xi[j]) (equation 9.4)
            c = self.wi/ (c * self.wi[..., np.newaxis])

            # fill in correct diagonal entries: each column sums to 0
            np.fill_diagonal(c, 0)

            # calculate diagonal
            # c[j,j] = -sum_{i != j} c[i,j] (equation 9.5)
            d = -c.sum(axis=1)
            # c[i,j] = l_j(x_i)
            np.fill_diagonal(c, d)

            self._diff_cij = c

        if self._diff_baryint is None:
            # initialise and cache derivative interpolator and cijs;
            # reuse weights wi (which depend only on interpolation points xi),
            # to avoid unnecessary re-computation
            self._diff_baryint = BarycentricInterpolator(xi=self.xi,
                                                         yi=self._diff_cij @ self.yi,
                                                         wi=self.wi)
            self._diff_baryint._diff_cij = self._diff_cij

        if all_lower:
            # assemble matrix of derivatives from order 0 to order der-1,
            # in the format required by _Interpolator1DWithDerivatives.
            cn = np.zeros((der, len(x), self.r), dtype=self.dtype)
            for d in range(der):
                cn[d, :, :] = self._evaluate_derivatives(x, d+1, all_lower=False)
            return cn

        # recursively evaluate only the derivative requested
        return self._diff_baryint._evaluate_derivatives(x, der-1, all_lower=False)


def barycentric_interpolate(xi, yi, x, axis=0, *, der=0, rng=None):
    """
    Convenience function for polynomial interpolation.

    Constructs a polynomial that passes through a given set of points,
    then evaluates the polynomial. For reasons of numerical stability,
    this function does not compute the coefficients of the polynomial.

    This function uses a "barycentric interpolation" method that treats
    the problem as a special case of rational function interpolation.
    This algorithm is quite stable, numerically, but even in a world of
    exact computation, unless the `x` coordinates are chosen very
    carefully - Chebyshev zeros (e.g., cos(i*pi/n)) are a good choice -
    polynomial interpolation itself is a very ill-conditioned process
    due to the Runge phenomenon.

    Parameters
    ----------
    xi : array_like
        1-D array of x coordinates of the points the polynomial should
        pass through
    yi : array_like
        The y coordinates of the points the polynomial should pass through.
    x : scalar or array_like
        Point or points at which to evaluate the interpolant.
    axis : int, optional
        Axis in the `yi` array corresponding to the x-coordinate values.
    der : int or list or None, optional
        How many derivatives to evaluate, or None for all potentially
        nonzero derivatives (that is, a number equal to the number
        of points), or a list of derivatives to evaluate. This number
        includes the function value as the '0th' derivative.
    rng : `numpy.random.Generator`, optional
        Pseudorandom number generator state. When `rng` is None, a new
        `numpy.random.Generator` is created using entropy from the
        operating system. Types other than `numpy.random.Generator` are
        passed to `numpy.random.default_rng` to instantiate a ``Generator``.

    Returns
    -------
    y : scalar or array_like
        Interpolated values. Shape is determined by replacing
        the interpolation axis in the original array with the shape of `x`.

    See Also
    --------
    BarycentricInterpolator : Barycentric interpolator

    Notes
    -----
    Construction of the interpolation weights is a relatively slow process.
    If you want to call this many times with the same xi (but possibly
    varying yi or x) you should use the class `BarycentricInterpolator`.
    This is what this function uses internally.

    Examples
    --------
    We can interpolate 2D observed data using barycentric interpolation:

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.interpolate import barycentric_interpolate
    >>> x_observed = np.linspace(0.0, 10.0, 11)
    >>> y_observed = np.sin(x_observed)
    >>> x = np.linspace(min(x_observed), max(x_observed), num=100)
    >>> y = barycentric_interpolate(x_observed, y_observed, x)
    >>> plt.plot(x_observed, y_observed, "o", label="observation")
    >>> plt.plot(x, y, label="barycentric interpolation")
    >>> plt.legend()
    >>> plt.show()

    """
    P = BarycentricInterpolator(xi, yi, axis=axis, rng=rng)
    if der == 0:
        return P(x)
    elif _isscalar(der):
        return P.derivative(x, der=der)
    else:
        return P.derivatives(x, der=np.amax(der)+1)[der]