File size: 36,670 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 |
# Copyright (C) 2003-2005 Peter J. Verveer
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# 3. The name of the author may not be used to endorse or promote
# products derived from this software without specific prior
# written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import itertools
import warnings
import numpy as np
from scipy._lib._util import normalize_axis_index
from scipy import special
from . import _ni_support
from . import _nd_image
from ._ni_docstrings import docfiller
__all__ = ['spline_filter1d', 'spline_filter', 'geometric_transform',
'map_coordinates', 'affine_transform', 'shift', 'zoom', 'rotate']
@docfiller
def spline_filter1d(input, order=3, axis=-1, output=np.float64,
mode='mirror'):
"""
Calculate a 1-D spline filter along the given axis.
The lines of the array along the given axis are filtered by a
spline filter. The order of the spline must be >= 2 and <= 5.
Parameters
----------
%(input)s
order : int, optional
The order of the spline, default is 3.
axis : int, optional
The axis along which the spline filter is applied. Default is the last
axis.
output : ndarray or dtype, optional
The array in which to place the output, or the dtype of the returned
array. Default is ``numpy.float64``.
%(mode_interp_mirror)s
Returns
-------
spline_filter1d : ndarray
The filtered input.
See Also
--------
spline_filter : Multidimensional spline filter.
Notes
-----
All of the interpolation functions in `ndimage` do spline interpolation of
the input image. If using B-splines of `order > 1`, the input image
values have to be converted to B-spline coefficients first, which is
done by applying this 1-D filter sequentially along all
axes of the input. All functions that require B-spline coefficients
will automatically filter their inputs, a behavior controllable with
the `prefilter` keyword argument. For functions that accept a `mode`
parameter, the result will only be correct if it matches the `mode`
used when filtering.
For complex-valued `input`, this function processes the real and imaginary
components independently.
.. versionadded:: 1.6.0
Complex-valued support added.
Examples
--------
We can filter an image using 1-D spline along the given axis:
>>> from scipy.ndimage import spline_filter1d
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> orig_img = np.eye(20) # create an image
>>> orig_img[10, :] = 1.0
>>> sp_filter_axis_0 = spline_filter1d(orig_img, axis=0)
>>> sp_filter_axis_1 = spline_filter1d(orig_img, axis=1)
>>> f, ax = plt.subplots(1, 3, sharex=True)
>>> for ind, data in enumerate([[orig_img, "original image"],
... [sp_filter_axis_0, "spline filter (axis=0)"],
... [sp_filter_axis_1, "spline filter (axis=1)"]]):
... ax[ind].imshow(data[0], cmap='gray_r')
... ax[ind].set_title(data[1])
>>> plt.tight_layout()
>>> plt.show()
"""
if order < 0 or order > 5:
raise RuntimeError('spline order not supported')
input = np.asarray(input)
complex_output = np.iscomplexobj(input)
output = _ni_support._get_output(output, input,
complex_output=complex_output)
if complex_output:
spline_filter1d(input.real, order, axis, output.real, mode)
spline_filter1d(input.imag, order, axis, output.imag, mode)
return output
if order in [0, 1]:
output[...] = np.array(input)
else:
mode = _ni_support._extend_mode_to_code(mode)
axis = normalize_axis_index(axis, input.ndim)
_nd_image.spline_filter1d(input, order, axis, output, mode)
return output
@docfiller
def spline_filter(input, order=3, output=np.float64, mode='mirror'):
"""
Multidimensional spline filter.
Parameters
----------
%(input)s
order : int, optional
The order of the spline, default is 3.
output : ndarray or dtype, optional
The array in which to place the output, or the dtype of the returned
array. Default is ``numpy.float64``.
%(mode_interp_mirror)s
Returns
-------
spline_filter : ndarray
Filtered array. Has the same shape as `input`.
See Also
--------
spline_filter1d : Calculate a 1-D spline filter along the given axis.
Notes
-----
The multidimensional filter is implemented as a sequence of
1-D spline filters. The intermediate arrays are stored
in the same data type as the output. Therefore, for output types
with a limited precision, the results may be imprecise because
intermediate results may be stored with insufficient precision.
For complex-valued `input`, this function processes the real and imaginary
components independently.
.. versionadded:: 1.6.0
Complex-valued support added.
Examples
--------
We can filter an image using multidimensional splines:
>>> from scipy.ndimage import spline_filter
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> orig_img = np.eye(20) # create an image
>>> orig_img[10, :] = 1.0
>>> sp_filter = spline_filter(orig_img, order=3)
>>> f, ax = plt.subplots(1, 2, sharex=True)
>>> for ind, data in enumerate([[orig_img, "original image"],
... [sp_filter, "spline filter"]]):
... ax[ind].imshow(data[0], cmap='gray_r')
... ax[ind].set_title(data[1])
>>> plt.tight_layout()
>>> plt.show()
"""
if order < 2 or order > 5:
raise RuntimeError('spline order not supported')
input = np.asarray(input)
complex_output = np.iscomplexobj(input)
output = _ni_support._get_output(output, input,
complex_output=complex_output)
if complex_output:
spline_filter(input.real, order, output.real, mode)
spline_filter(input.imag, order, output.imag, mode)
return output
if order not in [0, 1] and input.ndim > 0:
for axis in range(input.ndim):
spline_filter1d(input, order, axis, output=output, mode=mode)
input = output
else:
output[...] = input[...]
return output
def _prepad_for_spline_filter(input, mode, cval):
if mode in ['nearest', 'grid-constant']:
npad = 12
if mode == 'grid-constant':
padded = np.pad(input, npad, mode='constant',
constant_values=cval)
elif mode == 'nearest':
padded = np.pad(input, npad, mode='edge')
else:
# other modes have exact boundary conditions implemented so
# no prepadding is needed
npad = 0
padded = input
return padded, npad
@docfiller
def geometric_transform(input, mapping, output_shape=None,
output=None, order=3,
mode='constant', cval=0.0, prefilter=True,
extra_arguments=(), extra_keywords=None):
"""
Apply an arbitrary geometric transform.
The given mapping function is used to find, for each point in the
output, the corresponding coordinates in the input. The value of the
input at those coordinates is determined by spline interpolation of
the requested order.
Parameters
----------
%(input)s
mapping : {callable, scipy.LowLevelCallable}
A callable object that accepts a tuple of length equal to the output
array rank, and returns the corresponding input coordinates as a tuple
of length equal to the input array rank.
output_shape : tuple of ints, optional
Shape tuple.
%(output)s
order : int, optional
The order of the spline interpolation, default is 3.
The order has to be in the range 0-5.
%(mode_interp_constant)s
%(cval)s
%(prefilter)s
extra_arguments : tuple, optional
Extra arguments passed to `mapping`.
extra_keywords : dict, optional
Extra keywords passed to `mapping`.
Returns
-------
output : ndarray
The filtered input.
See Also
--------
map_coordinates, affine_transform, spline_filter1d
Notes
-----
This function also accepts low-level callback functions with one
the following signatures and wrapped in `scipy.LowLevelCallable`:
.. code:: c
int mapping(npy_intp *output_coordinates, double *input_coordinates,
int output_rank, int input_rank, void *user_data)
int mapping(intptr_t *output_coordinates, double *input_coordinates,
int output_rank, int input_rank, void *user_data)
The calling function iterates over the elements of the output array,
calling the callback function at each element. The coordinates of the
current output element are passed through ``output_coordinates``. The
callback function must return the coordinates at which the input must
be interpolated in ``input_coordinates``. The rank of the input and
output arrays are given by ``input_rank`` and ``output_rank``
respectively. ``user_data`` is the data pointer provided
to `scipy.LowLevelCallable` as-is.
The callback function must return an integer error status that is zero
if something went wrong and one otherwise. If an error occurs, you should
normally set the Python error status with an informative message
before returning, otherwise a default error message is set by the
calling function.
In addition, some other low-level function pointer specifications
are accepted, but these are for backward compatibility only and should
not be used in new code.
For complex-valued `input`, this function transforms the real and imaginary
components independently.
.. versionadded:: 1.6.0
Complex-valued support added.
Examples
--------
>>> import numpy as np
>>> from scipy.ndimage import geometric_transform
>>> a = np.arange(12.).reshape((4, 3))
>>> def shift_func(output_coords):
... return (output_coords[0] - 0.5, output_coords[1] - 0.5)
...
>>> geometric_transform(a, shift_func)
array([[ 0. , 0. , 0. ],
[ 0. , 1.362, 2.738],
[ 0. , 4.812, 6.187],
[ 0. , 8.263, 9.637]])
>>> b = [1, 2, 3, 4, 5]
>>> def shift_func(output_coords):
... return (output_coords[0] - 3,)
...
>>> geometric_transform(b, shift_func, mode='constant')
array([0, 0, 0, 1, 2])
>>> geometric_transform(b, shift_func, mode='nearest')
array([1, 1, 1, 1, 2])
>>> geometric_transform(b, shift_func, mode='reflect')
array([3, 2, 1, 1, 2])
>>> geometric_transform(b, shift_func, mode='wrap')
array([2, 3, 4, 1, 2])
"""
if extra_keywords is None:
extra_keywords = {}
if order < 0 or order > 5:
raise RuntimeError('spline order not supported')
input = np.asarray(input)
if output_shape is None:
output_shape = input.shape
if input.ndim < 1 or len(output_shape) < 1:
raise RuntimeError('input and output rank must be > 0')
complex_output = np.iscomplexobj(input)
output = _ni_support._get_output(output, input, shape=output_shape,
complex_output=complex_output)
if complex_output:
kwargs = dict(order=order, mode=mode, prefilter=prefilter,
output_shape=output_shape,
extra_arguments=extra_arguments,
extra_keywords=extra_keywords)
geometric_transform(input.real, mapping, output=output.real,
cval=np.real(cval), **kwargs)
geometric_transform(input.imag, mapping, output=output.imag,
cval=np.imag(cval), **kwargs)
return output
if prefilter and order > 1:
padded, npad = _prepad_for_spline_filter(input, mode, cval)
filtered = spline_filter(padded, order, output=np.float64,
mode=mode)
else:
npad = 0
filtered = input
mode = _ni_support._extend_mode_to_code(mode)
_nd_image.geometric_transform(filtered, mapping, None, None, None, output,
order, mode, cval, npad, extra_arguments,
extra_keywords)
return output
@docfiller
def map_coordinates(input, coordinates, output=None, order=3,
mode='constant', cval=0.0, prefilter=True):
"""
Map the input array to new coordinates by interpolation.
The array of coordinates is used to find, for each point in the output,
the corresponding coordinates in the input. The value of the input at
those coordinates is determined by spline interpolation of the
requested order.
The shape of the output is derived from that of the coordinate
array by dropping the first axis. The values of the array along
the first axis are the coordinates in the input array at which the
output value is found.
Parameters
----------
%(input)s
coordinates : array_like
The coordinates at which `input` is evaluated.
%(output)s
order : int, optional
The order of the spline interpolation, default is 3.
The order has to be in the range 0-5.
%(mode_interp_constant)s
%(cval)s
%(prefilter)s
Returns
-------
map_coordinates : ndarray
The result of transforming the input. The shape of the output is
derived from that of `coordinates` by dropping the first axis.
See Also
--------
spline_filter, geometric_transform, scipy.interpolate
Notes
-----
For complex-valued `input`, this function maps the real and imaginary
components independently.
.. versionadded:: 1.6.0
Complex-valued support added.
Examples
--------
>>> from scipy import ndimage
>>> import numpy as np
>>> a = np.arange(12.).reshape((4, 3))
>>> a
array([[ 0., 1., 2.],
[ 3., 4., 5.],
[ 6., 7., 8.],
[ 9., 10., 11.]])
>>> ndimage.map_coordinates(a, [[0.5, 2], [0.5, 1]], order=1)
array([ 2., 7.])
Above, the interpolated value of a[0.5, 0.5] gives output[0], while
a[2, 1] is output[1].
>>> inds = np.array([[0.5, 2], [0.5, 4]])
>>> ndimage.map_coordinates(a, inds, order=1, cval=-33.3)
array([ 2. , -33.3])
>>> ndimage.map_coordinates(a, inds, order=1, mode='nearest')
array([ 2., 8.])
>>> ndimage.map_coordinates(a, inds, order=1, cval=0, output=bool)
array([ True, False], dtype=bool)
"""
if order < 0 or order > 5:
raise RuntimeError('spline order not supported')
input = np.asarray(input)
coordinates = np.asarray(coordinates)
if np.iscomplexobj(coordinates):
raise TypeError('Complex type not supported')
output_shape = coordinates.shape[1:]
if input.ndim < 1 or len(output_shape) < 1:
raise RuntimeError('input and output rank must be > 0')
if coordinates.shape[0] != input.ndim:
raise RuntimeError('invalid shape for coordinate array')
complex_output = np.iscomplexobj(input)
output = _ni_support._get_output(output, input, shape=output_shape,
complex_output=complex_output)
if complex_output:
kwargs = dict(order=order, mode=mode, prefilter=prefilter)
map_coordinates(input.real, coordinates, output=output.real,
cval=np.real(cval), **kwargs)
map_coordinates(input.imag, coordinates, output=output.imag,
cval=np.imag(cval), **kwargs)
return output
if prefilter and order > 1:
padded, npad = _prepad_for_spline_filter(input, mode, cval)
filtered = spline_filter(padded, order, output=np.float64, mode=mode)
else:
npad = 0
filtered = input
mode = _ni_support._extend_mode_to_code(mode)
_nd_image.geometric_transform(filtered, None, coordinates, None, None,
output, order, mode, cval, npad, None, None)
return output
@docfiller
def affine_transform(input, matrix, offset=0.0, output_shape=None,
output=None, order=3,
mode='constant', cval=0.0, prefilter=True):
"""
Apply an affine transformation.
Given an output image pixel index vector ``o``, the pixel value
is determined from the input image at position
``np.dot(matrix, o) + offset``.
This does 'pull' (or 'backward') resampling, transforming the output space
to the input to locate data. Affine transformations are often described in
the 'push' (or 'forward') direction, transforming input to output. If you
have a matrix for the 'push' transformation, use its inverse
(:func:`numpy.linalg.inv`) in this function.
Parameters
----------
%(input)s
matrix : ndarray
The inverse coordinate transformation matrix, mapping output
coordinates to input coordinates. If ``ndim`` is the number of
dimensions of ``input``, the given matrix must have one of the
following shapes:
- ``(ndim, ndim)``: the linear transformation matrix for each
output coordinate.
- ``(ndim,)``: assume that the 2-D transformation matrix is
diagonal, with the diagonal specified by the given value. A more
efficient algorithm is then used that exploits the separability
of the problem.
- ``(ndim + 1, ndim + 1)``: assume that the transformation is
specified using homogeneous coordinates [1]_. In this case, any
value passed to ``offset`` is ignored.
- ``(ndim, ndim + 1)``: as above, but the bottom row of a
homogeneous transformation matrix is always ``[0, 0, ..., 1]``,
and may be omitted.
offset : float or sequence, optional
The offset into the array where the transform is applied. If a float,
`offset` is the same for each axis. If a sequence, `offset` should
contain one value for each axis.
output_shape : tuple of ints, optional
Shape tuple.
%(output)s
order : int, optional
The order of the spline interpolation, default is 3.
The order has to be in the range 0-5.
%(mode_interp_constant)s
%(cval)s
%(prefilter)s
Returns
-------
affine_transform : ndarray
The transformed input.
Notes
-----
The given matrix and offset are used to find for each point in the
output the corresponding coordinates in the input by an affine
transformation. The value of the input at those coordinates is
determined by spline interpolation of the requested order. Points
outside the boundaries of the input are filled according to the given
mode.
.. versionchanged:: 0.18.0
Previously, the exact interpretation of the affine transformation
depended on whether the matrix was supplied as a 1-D or a
2-D array. If a 1-D array was supplied
to the matrix parameter, the output pixel value at index ``o``
was determined from the input image at position
``matrix * (o + offset)``.
For complex-valued `input`, this function transforms the real and imaginary
components independently.
.. versionadded:: 1.6.0
Complex-valued support added.
References
----------
.. [1] https://en.wikipedia.org/wiki/Homogeneous_coordinates
"""
if order < 0 or order > 5:
raise RuntimeError('spline order not supported')
input = np.asarray(input)
if output_shape is None:
if isinstance(output, np.ndarray):
output_shape = output.shape
else:
output_shape = input.shape
if input.ndim < 1 or len(output_shape) < 1:
raise RuntimeError('input and output rank must be > 0')
complex_output = np.iscomplexobj(input)
output = _ni_support._get_output(output, input, shape=output_shape,
complex_output=complex_output)
if complex_output:
kwargs = dict(offset=offset, output_shape=output_shape, order=order,
mode=mode, prefilter=prefilter)
affine_transform(input.real, matrix, output=output.real,
cval=np.real(cval), **kwargs)
affine_transform(input.imag, matrix, output=output.imag,
cval=np.imag(cval), **kwargs)
return output
if prefilter and order > 1:
padded, npad = _prepad_for_spline_filter(input, mode, cval)
filtered = spline_filter(padded, order, output=np.float64, mode=mode)
else:
npad = 0
filtered = input
mode = _ni_support._extend_mode_to_code(mode)
matrix = np.asarray(matrix, dtype=np.float64)
if matrix.ndim not in [1, 2] or matrix.shape[0] < 1:
raise RuntimeError('no proper affine matrix provided')
if (matrix.ndim == 2 and matrix.shape[1] == input.ndim + 1 and
(matrix.shape[0] in [input.ndim, input.ndim + 1])):
if matrix.shape[0] == input.ndim + 1:
exptd = [0] * input.ndim + [1]
if not np.all(matrix[input.ndim] == exptd):
msg = (f'Expected homogeneous transformation matrix with '
f'shape {matrix.shape} for image shape {input.shape}, '
f'but bottom row was not equal to {exptd}')
raise ValueError(msg)
# assume input is homogeneous coordinate transformation matrix
offset = matrix[:input.ndim, input.ndim]
matrix = matrix[:input.ndim, :input.ndim]
if matrix.shape[0] != input.ndim:
raise RuntimeError('affine matrix has wrong number of rows')
if matrix.ndim == 2 and matrix.shape[1] != output.ndim:
raise RuntimeError('affine matrix has wrong number of columns')
if not matrix.flags.contiguous:
matrix = matrix.copy()
offset = _ni_support._normalize_sequence(offset, input.ndim)
offset = np.asarray(offset, dtype=np.float64)
if offset.ndim != 1 or offset.shape[0] < 1:
raise RuntimeError('no proper offset provided')
if not offset.flags.contiguous:
offset = offset.copy()
if matrix.ndim == 1:
warnings.warn(
"The behavior of affine_transform with a 1-D "
"array supplied for the matrix parameter has changed in "
"SciPy 0.18.0.",
stacklevel=2
)
_nd_image.zoom_shift(filtered, matrix, offset/matrix, output, order,
mode, cval, npad, False)
else:
_nd_image.geometric_transform(filtered, None, None, matrix, offset,
output, order, mode, cval, npad, None,
None)
return output
@docfiller
def shift(input, shift, output=None, order=3, mode='constant', cval=0.0,
prefilter=True):
"""
Shift an array.
The array is shifted using spline interpolation of the requested order.
Points outside the boundaries of the input are filled according to the
given mode.
Parameters
----------
%(input)s
shift : float or sequence
The shift along the axes. If a float, `shift` is the same for each
axis. If a sequence, `shift` should contain one value for each axis.
%(output)s
order : int, optional
The order of the spline interpolation, default is 3.
The order has to be in the range 0-5.
%(mode_interp_constant)s
%(cval)s
%(prefilter)s
Returns
-------
shift : ndarray
The shifted input.
See Also
--------
affine_transform : Affine transformations
Notes
-----
For complex-valued `input`, this function shifts the real and imaginary
components independently.
.. versionadded:: 1.6.0
Complex-valued support added.
Examples
--------
Import the necessary modules and an exemplary image.
>>> from scipy.ndimage import shift
>>> import matplotlib.pyplot as plt
>>> from scipy import datasets
>>> image = datasets.ascent()
Shift the image vertically by 20 pixels.
>>> image_shifted_vertically = shift(image, (20, 0))
Shift the image vertically by -200 pixels and horizontally by 100 pixels.
>>> image_shifted_both_directions = shift(image, (-200, 100))
Plot the original and the shifted images.
>>> fig, axes = plt.subplots(3, 1, figsize=(4, 12))
>>> plt.gray() # show the filtered result in grayscale
>>> top, middle, bottom = axes
>>> for ax in axes:
... ax.set_axis_off() # remove coordinate system
>>> top.imshow(image)
>>> top.set_title("Original image")
>>> middle.imshow(image_shifted_vertically)
>>> middle.set_title("Vertically shifted image")
>>> bottom.imshow(image_shifted_both_directions)
>>> bottom.set_title("Image shifted in both directions")
>>> fig.tight_layout()
"""
if order < 0 or order > 5:
raise RuntimeError('spline order not supported')
input = np.asarray(input)
if input.ndim < 1:
raise RuntimeError('input and output rank must be > 0')
complex_output = np.iscomplexobj(input)
output = _ni_support._get_output(output, input, complex_output=complex_output)
if complex_output:
# import under different name to avoid confusion with shift parameter
from scipy.ndimage._interpolation import shift as _shift
kwargs = dict(order=order, mode=mode, prefilter=prefilter)
_shift(input.real, shift, output=output.real, cval=np.real(cval), **kwargs)
_shift(input.imag, shift, output=output.imag, cval=np.imag(cval), **kwargs)
return output
if prefilter and order > 1:
padded, npad = _prepad_for_spline_filter(input, mode, cval)
filtered = spline_filter(padded, order, output=np.float64, mode=mode)
else:
npad = 0
filtered = input
mode = _ni_support._extend_mode_to_code(mode)
shift = _ni_support._normalize_sequence(shift, input.ndim)
shift = [-ii for ii in shift]
shift = np.asarray(shift, dtype=np.float64)
if not shift.flags.contiguous:
shift = shift.copy()
_nd_image.zoom_shift(filtered, None, shift, output, order, mode, cval,
npad, False)
return output
@docfiller
def zoom(input, zoom, output=None, order=3, mode='constant', cval=0.0,
prefilter=True, *, grid_mode=False):
"""
Zoom an array.
The array is zoomed using spline interpolation of the requested order.
Parameters
----------
%(input)s
zoom : float or sequence
The zoom factor along the axes. If a float, `zoom` is the same for each
axis. If a sequence, `zoom` should contain one value for each axis.
%(output)s
order : int, optional
The order of the spline interpolation, default is 3.
The order has to be in the range 0-5.
%(mode_interp_constant)s
%(cval)s
%(prefilter)s
grid_mode : bool, optional
If False, the distance from the pixel centers is zoomed. Otherwise, the
distance including the full pixel extent is used. For example, a 1d
signal of length 5 is considered to have length 4 when `grid_mode` is
False, but length 5 when `grid_mode` is True. See the following
visual illustration:
.. code-block:: text
| pixel 1 | pixel 2 | pixel 3 | pixel 4 | pixel 5 |
|<-------------------------------------->|
vs.
|<----------------------------------------------->|
The starting point of the arrow in the diagram above corresponds to
coordinate location 0 in each mode.
Returns
-------
zoom : ndarray
The zoomed input.
Notes
-----
For complex-valued `input`, this function zooms the real and imaginary
components independently.
.. versionadded:: 1.6.0
Complex-valued support added.
Examples
--------
>>> from scipy import ndimage, datasets
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side
>>> ascent = datasets.ascent()
>>> result = ndimage.zoom(ascent, 3.0)
>>> ax1.imshow(ascent, vmin=0, vmax=255)
>>> ax2.imshow(result, vmin=0, vmax=255)
>>> plt.show()
>>> print(ascent.shape)
(512, 512)
>>> print(result.shape)
(1536, 1536)
"""
if order < 0 or order > 5:
raise RuntimeError('spline order not supported')
input = np.asarray(input)
if input.ndim < 1:
raise RuntimeError('input and output rank must be > 0')
zoom = _ni_support._normalize_sequence(zoom, input.ndim)
output_shape = tuple(
[int(round(ii * jj)) for ii, jj in zip(input.shape, zoom)])
complex_output = np.iscomplexobj(input)
output = _ni_support._get_output(output, input, shape=output_shape,
complex_output=complex_output)
if complex_output:
# import under different name to avoid confusion with zoom parameter
from scipy.ndimage._interpolation import zoom as _zoom
kwargs = dict(order=order, mode=mode, prefilter=prefilter)
_zoom(input.real, zoom, output=output.real, cval=np.real(cval), **kwargs)
_zoom(input.imag, zoom, output=output.imag, cval=np.imag(cval), **kwargs)
return output
if prefilter and order > 1:
padded, npad = _prepad_for_spline_filter(input, mode, cval)
filtered = spline_filter(padded, order, output=np.float64, mode=mode)
else:
npad = 0
filtered = input
if grid_mode:
# warn about modes that may have surprising behavior
suggest_mode = None
if mode == 'constant':
suggest_mode = 'grid-constant'
elif mode == 'wrap':
suggest_mode = 'grid-wrap'
if suggest_mode is not None:
warnings.warn(
(f"It is recommended to use mode = {suggest_mode} instead of {mode} "
f"when grid_mode is True."),
stacklevel=2
)
mode = _ni_support._extend_mode_to_code(mode)
zoom_div = np.array(output_shape)
zoom_nominator = np.array(input.shape)
if not grid_mode:
zoom_div -= 1
zoom_nominator -= 1
# Zooming to infinite values is unpredictable, so just choose
# zoom factor 1 instead
zoom = np.divide(zoom_nominator, zoom_div,
out=np.ones_like(input.shape, dtype=np.float64),
where=zoom_div != 0)
zoom = np.ascontiguousarray(zoom)
_nd_image.zoom_shift(filtered, zoom, None, output, order, mode, cval, npad,
grid_mode)
return output
@docfiller
def rotate(input, angle, axes=(1, 0), reshape=True, output=None, order=3,
mode='constant', cval=0.0, prefilter=True):
"""
Rotate an array.
The array is rotated in the plane defined by the two axes given by the
`axes` parameter using spline interpolation of the requested order.
Parameters
----------
%(input)s
angle : float
The rotation angle in degrees.
axes : tuple of 2 ints, optional
The two axes that define the plane of rotation. Default is the first
two axes.
reshape : bool, optional
If `reshape` is true, the output shape is adapted so that the input
array is contained completely in the output. Default is True.
%(output)s
order : int, optional
The order of the spline interpolation, default is 3.
The order has to be in the range 0-5.
%(mode_interp_constant)s
%(cval)s
%(prefilter)s
Returns
-------
rotate : ndarray
The rotated input.
Notes
-----
For complex-valued `input`, this function rotates the real and imaginary
components independently.
.. versionadded:: 1.6.0
Complex-valued support added.
Examples
--------
>>> from scipy import ndimage, datasets
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure(figsize=(10, 3))
>>> ax1, ax2, ax3 = fig.subplots(1, 3)
>>> img = datasets.ascent()
>>> img_45 = ndimage.rotate(img, 45, reshape=False)
>>> full_img_45 = ndimage.rotate(img, 45, reshape=True)
>>> ax1.imshow(img, cmap='gray')
>>> ax1.set_axis_off()
>>> ax2.imshow(img_45, cmap='gray')
>>> ax2.set_axis_off()
>>> ax3.imshow(full_img_45, cmap='gray')
>>> ax3.set_axis_off()
>>> fig.set_layout_engine('tight')
>>> plt.show()
>>> print(img.shape)
(512, 512)
>>> print(img_45.shape)
(512, 512)
>>> print(full_img_45.shape)
(724, 724)
"""
input_arr = np.asarray(input)
ndim = input_arr.ndim
if ndim < 2:
raise ValueError('input array should be at least 2D')
axes = list(axes)
if len(axes) != 2:
raise ValueError('axes should contain exactly two values')
if not all([float(ax).is_integer() for ax in axes]):
raise ValueError('axes should contain only integer values')
if axes[0] < 0:
axes[0] += ndim
if axes[1] < 0:
axes[1] += ndim
if axes[0] < 0 or axes[1] < 0 or axes[0] >= ndim or axes[1] >= ndim:
raise ValueError('invalid rotation plane specified')
axes.sort()
c, s = special.cosdg(angle), special.sindg(angle)
rot_matrix = np.array([[c, s],
[-s, c]])
img_shape = np.asarray(input_arr.shape)
in_plane_shape = img_shape[axes]
if reshape:
# Compute transformed input bounds
iy, ix = in_plane_shape
out_bounds = rot_matrix @ [[0, 0, iy, iy],
[0, ix, 0, ix]]
# Compute the shape of the transformed input plane
out_plane_shape = (np.ptp(out_bounds, axis=1) + 0.5).astype(int)
else:
out_plane_shape = img_shape[axes]
out_center = rot_matrix @ ((out_plane_shape - 1) / 2)
in_center = (in_plane_shape - 1) / 2
offset = in_center - out_center
output_shape = img_shape
output_shape[axes] = out_plane_shape
output_shape = tuple(output_shape)
complex_output = np.iscomplexobj(input_arr)
output = _ni_support._get_output(output, input_arr, shape=output_shape,
complex_output=complex_output)
if ndim <= 2:
affine_transform(input_arr, rot_matrix, offset, output_shape, output,
order, mode, cval, prefilter)
else:
# If ndim > 2, the rotation is applied over all the planes
# parallel to axes
planes_coord = itertools.product(
*[[slice(None)] if ax in axes else range(img_shape[ax])
for ax in range(ndim)])
out_plane_shape = tuple(out_plane_shape)
for coordinates in planes_coord:
ia = input_arr[coordinates]
oa = output[coordinates]
affine_transform(ia, rot_matrix, offset, out_plane_shape,
oa, order, mode, cval, prefilter)
return output
|