File size: 56,113 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
# Copyright (C) 2003-2005 Peter J. Verveer
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
#    copyright notice, this list of conditions and the following
#    disclaimer in the documentation and/or other materials provided
#    with the distribution.
#
# 3. The name of the author may not be used to endorse or promote
#    products derived from this software without specific prior
#    written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import numpy as np
from . import _ni_support
from . import _ni_label
from . import _nd_image
from . import _morphology

__all__ = ['label', 'find_objects', 'labeled_comprehension', 'sum', 'mean',
           'variance', 'standard_deviation', 'minimum', 'maximum', 'median',
           'minimum_position', 'maximum_position', 'extrema', 'center_of_mass',
           'histogram', 'watershed_ift', 'sum_labels', 'value_indices']


def label(input, structure=None, output=None):
    """
    Label features in an array.

    Parameters
    ----------
    input : array_like
        An array-like object to be labeled. Any non-zero values in `input` are
        counted as features and zero values are considered the background.
    structure : array_like, optional
        A structuring element that defines feature connections.
        `structure` must be centrosymmetric
        (see Notes).
        If no structuring element is provided,
        one is automatically generated with a squared connectivity equal to
        one.  That is, for a 2-D `input` array, the default structuring element
        is::

            [[0,1,0],
             [1,1,1],
             [0,1,0]]

    output : (None, data-type, array_like), optional
        If `output` is a data type, it specifies the type of the resulting
        labeled feature array.
        If `output` is an array-like object, then `output` will be updated
        with the labeled features from this function.  This function can
        operate in-place, by passing output=input.
        Note that the output must be able to store the largest label, or this
        function will raise an Exception.

    Returns
    -------
    label : ndarray or int
        An integer ndarray where each unique feature in `input` has a unique
        label in the returned array.
    num_features : int
        How many objects were found.

        If `output` is None, this function returns a tuple of
        (`labeled_array`, `num_features`).

        If `output` is a ndarray, then it will be updated with values in
        `labeled_array` and only `num_features` will be returned by this
        function.

    See Also
    --------
    find_objects : generate a list of slices for the labeled features (or
                   objects); useful for finding features' position or
                   dimensions

    Notes
    -----
    A centrosymmetric matrix is a matrix that is symmetric about the center.
    See [1]_ for more information.

    The `structure` matrix must be centrosymmetric to ensure
    two-way connections.
    For instance, if the `structure` matrix is not centrosymmetric
    and is defined as::

        [[0,1,0],
         [1,1,0],
         [0,0,0]]

    and the `input` is::

        [[1,2],
         [0,3]]

    then the structure matrix would indicate the
    entry 2 in the input is connected to 1,
    but 1 is not connected to 2.

    References
    ----------
    .. [1] James R. Weaver, "Centrosymmetric (cross-symmetric)
       matrices, their basic properties, eigenvalues, and
       eigenvectors." The American Mathematical Monthly 92.10
       (1985): 711-717.

    Examples
    --------
    Create an image with some features, then label it using the default
    (cross-shaped) structuring element:

    >>> from scipy.ndimage import label, generate_binary_structure
    >>> import numpy as np
    >>> a = np.array([[0,0,1,1,0,0],
    ...               [0,0,0,1,0,0],
    ...               [1,1,0,0,1,0],
    ...               [0,0,0,1,0,0]])
    >>> labeled_array, num_features = label(a)

    Each of the 4 features are labeled with a different integer:

    >>> num_features
    4
    >>> labeled_array
    array([[0, 0, 1, 1, 0, 0],
           [0, 0, 0, 1, 0, 0],
           [2, 2, 0, 0, 3, 0],
           [0, 0, 0, 4, 0, 0]], dtype=int32)

    Generate a structuring element that will consider features connected even
    if they touch diagonally:

    >>> s = generate_binary_structure(2,2)

    or,

    >>> s = [[1,1,1],
    ...      [1,1,1],
    ...      [1,1,1]]

    Label the image using the new structuring element:

    >>> labeled_array, num_features = label(a, structure=s)

    Show the 2 labeled features (note that features 1, 3, and 4 from above are
    now considered a single feature):

    >>> num_features
    2
    >>> labeled_array
    array([[0, 0, 1, 1, 0, 0],
           [0, 0, 0, 1, 0, 0],
           [2, 2, 0, 0, 1, 0],
           [0, 0, 0, 1, 0, 0]], dtype=int32)

    """
    input = np.asarray(input)
    if np.iscomplexobj(input):
        raise TypeError('Complex type not supported')
    if structure is None:
        structure = _morphology.generate_binary_structure(input.ndim, 1)
    structure = np.asarray(structure, dtype=bool)
    if structure.ndim != input.ndim:
        raise RuntimeError('structure and input must have equal rank')
    for ii in structure.shape:
        if ii != 3:
            raise ValueError('structure dimensions must be equal to 3')

    # Use 32 bits if it's large enough for this image.
    # _ni_label.label() needs two entries for background and
    # foreground tracking
    need_64bits = input.size >= (2**31 - 2)

    if isinstance(output, np.ndarray):
        if output.shape != input.shape:
            raise ValueError("output shape not correct")
        caller_provided_output = True
    else:
        caller_provided_output = False
        if output is None:
            output = np.empty(input.shape, np.intp if need_64bits else np.int32)
        else:
            output = np.empty(input.shape, output)

    # handle scalars, 0-D arrays
    if input.ndim == 0 or input.size == 0:
        if input.ndim == 0:
            # scalar
            maxlabel = 1 if (input != 0) else 0
            output[...] = maxlabel
        else:
            # 0-D
            maxlabel = 0
        if caller_provided_output:
            return maxlabel
        else:
            return output, maxlabel

    try:
        max_label = _ni_label._label(input, structure, output)
    except _ni_label.NeedMoreBits as e:
        # Make another attempt with enough bits, then try to cast to the
        # new type.
        tmp_output = np.empty(input.shape, np.intp if need_64bits else np.int32)
        max_label = _ni_label._label(input, structure, tmp_output)
        output[...] = tmp_output[...]
        if not np.all(output == tmp_output):
            # refuse to return bad results
            raise RuntimeError(
                "insufficient bit-depth in requested output type"
            ) from e

    if caller_provided_output:
        # result was written in-place
        return max_label
    else:
        return output, max_label


def find_objects(input, max_label=0):
    """
    Find objects in a labeled array.

    Parameters
    ----------
    input : ndarray of ints
        Array containing objects defined by different labels. Labels with
        value 0 are ignored.
    max_label : int, optional
        Maximum label to be searched for in `input`. If max_label is not
        given, the positions of all objects are returned.

    Returns
    -------
    object_slices : list of tuples
        A list of tuples, with each tuple containing N slices (with N the
        dimension of the input array). Slices correspond to the minimal
        parallelepiped that contains the object. If a number is missing,
        None is returned instead of a slice. The label ``l`` corresponds to
        the index ``l-1`` in the returned list.

    See Also
    --------
    label, center_of_mass

    Notes
    -----
    This function is very useful for isolating a volume of interest inside
    a 3-D array, that cannot be "seen through".

    Examples
    --------
    >>> from scipy import ndimage
    >>> import numpy as np
    >>> a = np.zeros((6,6), dtype=int)
    >>> a[2:4, 2:4] = 1
    >>> a[4, 4] = 1
    >>> a[:2, :3] = 2
    >>> a[0, 5] = 3
    >>> a
    array([[2, 2, 2, 0, 0, 3],
           [2, 2, 2, 0, 0, 0],
           [0, 0, 1, 1, 0, 0],
           [0, 0, 1, 1, 0, 0],
           [0, 0, 0, 0, 1, 0],
           [0, 0, 0, 0, 0, 0]])
    >>> ndimage.find_objects(a)
    [(slice(2, 5, None), slice(2, 5, None)),
     (slice(0, 2, None), slice(0, 3, None)),
     (slice(0, 1, None), slice(5, 6, None))]
    >>> ndimage.find_objects(a, max_label=2)
    [(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None))]
    >>> ndimage.find_objects(a == 1, max_label=2)
    [(slice(2, 5, None), slice(2, 5, None)), None]

    >>> loc = ndimage.find_objects(a)[0]
    >>> a[loc]
    array([[1, 1, 0],
           [1, 1, 0],
           [0, 0, 1]])

    """
    input = np.asarray(input)
    if np.iscomplexobj(input):
        raise TypeError('Complex type not supported')

    if max_label < 1:
        max_label = input.max()

    return _nd_image.find_objects(input, max_label)


def value_indices(arr, *, ignore_value=None):
    """
    Find indices of each distinct value in given array.

    Parameters
    ----------
    arr : ndarray of ints
        Array containing integer values.
    ignore_value : int, optional
        This value will be ignored in searching the `arr` array. If not
        given, all values found will be included in output. Default
        is None.

    Returns
    -------
    indices : dictionary
        A Python dictionary of array indices for each distinct value. The
        dictionary is keyed by the distinct values, the entries are array
        index tuples covering all occurrences of the value within the
        array.

        This dictionary can occupy significant memory, usually several times
        the size of the input array.

    See Also
    --------
    label, maximum, median, minimum_position, extrema, sum, mean, variance,
    standard_deviation, numpy.where, numpy.unique

    Notes
    -----
    For a small array with few distinct values, one might use
    `numpy.unique()` to find all possible values, and ``(arr == val)`` to
    locate each value within that array. However, for large arrays,
    with many distinct values, this can become extremely inefficient,
    as locating each value would require a new search through the entire
    array. Using this function, there is essentially one search, with
    the indices saved for all distinct values.

    This is useful when matching a categorical image (e.g. a segmentation
    or classification) to an associated image of other data, allowing
    any per-class statistic(s) to then be calculated. Provides a
    more flexible alternative to functions like ``scipy.ndimage.mean()``
    and ``scipy.ndimage.variance()``.

    Some other closely related functionality, with different strengths and
    weaknesses, can also be found in ``scipy.stats.binned_statistic()`` and
    the `scikit-image <https://scikit-image.org/>`_ function
    ``skimage.measure.regionprops()``.

    Note for IDL users: this provides functionality equivalent to IDL's
    REVERSE_INDICES option (as per the IDL documentation for the
    `HISTOGRAM <https://www.l3harrisgeospatial.com/docs/histogram.html>`_
    function).

    .. versionadded:: 1.10.0

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import ndimage
    >>> a = np.zeros((6, 6), dtype=int)
    >>> a[2:4, 2:4] = 1
    >>> a[4, 4] = 1
    >>> a[:2, :3] = 2
    >>> a[0, 5] = 3
    >>> a
    array([[2, 2, 2, 0, 0, 3],
           [2, 2, 2, 0, 0, 0],
           [0, 0, 1, 1, 0, 0],
           [0, 0, 1, 1, 0, 0],
           [0, 0, 0, 0, 1, 0],
           [0, 0, 0, 0, 0, 0]])
    >>> val_indices = ndimage.value_indices(a)

    The dictionary `val_indices` will have an entry for each distinct
    value in the input array.

    >>> val_indices.keys()
    dict_keys([np.int64(0), np.int64(1), np.int64(2), np.int64(3)])

    The entry for each value is an index tuple, locating the elements
    with that value.

    >>> ndx1 = val_indices[1]
    >>> ndx1
    (array([2, 2, 3, 3, 4]), array([2, 3, 2, 3, 4]))

    This can be used to index into the original array, or any other
    array with the same shape.

    >>> a[ndx1]
    array([1, 1, 1, 1, 1])

    If the zeros were to be ignored, then the resulting dictionary
    would no longer have an entry for zero.

    >>> val_indices = ndimage.value_indices(a, ignore_value=0)
    >>> val_indices.keys()
    dict_keys([np.int64(1), np.int64(2), np.int64(3)])

    """
    # Cope with ignore_value being None, without too much extra complexity
    # in the C code. If not None, the value is passed in as a numpy array
    # with the same dtype as arr.
    arr = np.asarray(arr)
    ignore_value_arr = np.zeros((1,), dtype=arr.dtype)
    ignoreIsNone = (ignore_value is None)
    if not ignoreIsNone:
        ignore_value_arr[0] = ignore_value_arr.dtype.type(ignore_value)

    val_indices = _nd_image.value_indices(arr, ignoreIsNone, ignore_value_arr)
    return val_indices


def labeled_comprehension(input, labels, index, func, out_dtype, default,
                          pass_positions=False):
    """
    Roughly equivalent to [func(input[labels == i]) for i in index].

    Sequentially applies an arbitrary function (that works on array_like input)
    to subsets of an N-D image array specified by `labels` and `index`.
    The option exists to provide the function with positional parameters as the
    second argument.

    Parameters
    ----------
    input : array_like
        Data from which to select `labels` to process.
    labels : array_like or None
        Labels to objects in `input`.
        If not None, array must be same shape as `input`.
        If None, `func` is applied to raveled `input`.
    index : int, sequence of ints or None
        Subset of `labels` to which to apply `func`.
        If a scalar, a single value is returned.
        If None, `func` is applied to all non-zero values of `labels`.
    func : callable
        Python function to apply to `labels` from `input`.
    out_dtype : dtype
        Dtype to use for `result`.
    default : int, float or None
        Default return value when a element of `index` does not exist
        in `labels`.
    pass_positions : bool, optional
        If True, pass linear indices to `func` as a second argument.
        Default is False.

    Returns
    -------
    result : ndarray
        Result of applying `func` to each of `labels` to `input` in `index`.

    Examples
    --------
    >>> import numpy as np
    >>> a = np.array([[1, 2, 0, 0],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])
    >>> from scipy import ndimage
    >>> lbl, nlbl = ndimage.label(a)
    >>> lbls = np.arange(1, nlbl+1)
    >>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, 0)
    array([ 2.75,  5.5 ,  6.  ])

    Falling back to `default`:

    >>> lbls = np.arange(1, nlbl+2)
    >>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, -1)
    array([ 2.75,  5.5 ,  6.  , -1.  ])

    Passing positions:

    >>> def fn(val, pos):
    ...     print("fn says: %s : %s" % (val, pos))
    ...     return (val.sum()) if (pos.sum() % 2 == 0) else (-val.sum())
    ...
    >>> ndimage.labeled_comprehension(a, lbl, lbls, fn, float, 0, True)
    fn says: [1 2 5 3] : [0 1 4 5]
    fn says: [4 7] : [ 7 11]
    fn says: [9 3] : [12 13]
    array([ 11.,  11., -12.,   0.])

    """

    as_scalar = np.isscalar(index)
    input = np.asarray(input)

    if pass_positions:
        positions = np.arange(input.size).reshape(input.shape)

    if labels is None:
        if index is not None:
            raise ValueError("index without defined labels")
        if not pass_positions:
            return func(input.ravel())
        else:
            return func(input.ravel(), positions.ravel())

    labels = np.asarray(labels)

    try:
        input, labels = np.broadcast_arrays(input, labels)
    except ValueError as e:
        raise ValueError("input and labels must have the same shape "
                            "(excepting dimensions with width 1)") from e

    if index is None:
        if not pass_positions:
            return func(input[labels > 0])
        else:
            return func(input[labels > 0], positions[labels > 0])

    index = np.atleast_1d(index)
    if np.any(index.astype(labels.dtype).astype(index.dtype) != index):
        raise ValueError(f"Cannot convert index values from <{index.dtype}> to "
                         f"<{labels.dtype}> (labels' type) without loss of precision")

    index = index.astype(labels.dtype)

    # optimization: find min/max in index,
    # and select those parts of labels, input, and positions
    lo = index.min()
    hi = index.max()
    mask = (labels >= lo) & (labels <= hi)

    # this also ravels the arrays
    labels = labels[mask]
    input = input[mask]
    if pass_positions:
        positions = positions[mask]

    # sort everything by labels
    label_order = labels.argsort()
    labels = labels[label_order]
    input = input[label_order]
    if pass_positions:
        positions = positions[label_order]

    index_order = index.argsort()
    sorted_index = index[index_order]

    def do_map(inputs, output):
        """labels must be sorted"""
        nidx = sorted_index.size

        # Find boundaries for each stretch of constant labels
        # This could be faster, but we already paid N log N to sort labels.
        lo = np.searchsorted(labels, sorted_index, side='left')
        hi = np.searchsorted(labels, sorted_index, side='right')

        for i, l, h in zip(range(nidx), lo, hi):
            if l == h:
                continue
            output[i] = func(*[inp[l:h] for inp in inputs])

    temp = np.empty(index.shape, out_dtype)
    temp[:] = default
    if not pass_positions:
        do_map([input], temp)
    else:
        do_map([input, positions], temp)

    output = np.zeros(index.shape, out_dtype)
    output[index_order] = temp
    if as_scalar:
        output = output[0]

    return output


def _safely_castable_to_int(dt):
    """Test whether the NumPy data type `dt` can be safely cast to an int."""
    int_size = np.dtype(int).itemsize
    safe = ((np.issubdtype(dt, np.signedinteger) and dt.itemsize <= int_size) or
            (np.issubdtype(dt, np.unsignedinteger) and dt.itemsize < int_size))
    return safe


def _stats(input, labels=None, index=None, centered=False):
    """Count, sum, and optionally compute (sum - centre)^2 of input by label

    Parameters
    ----------
    input : array_like, N-D
        The input data to be analyzed.
    labels : array_like (N-D), optional
        The labels of the data in `input`. This array must be broadcast
        compatible with `input`; typically, it is the same shape as `input`.
        If `labels` is None, all nonzero values in `input` are treated as
        the single labeled group.
    index : label or sequence of labels, optional
        These are the labels of the groups for which the stats are computed.
        If `index` is None, the stats are computed for the single group where
        `labels` is greater than 0.
    centered : bool, optional
        If True, the centered sum of squares for each labeled group is
        also returned. Default is False.

    Returns
    -------
    counts : int or ndarray of ints
        The number of elements in each labeled group.
    sums : scalar or ndarray of scalars
        The sums of the values in each labeled group.
    sums_c : scalar or ndarray of scalars, optional
        The sums of mean-centered squares of the values in each labeled group.
        This is only returned if `centered` is True.

    """
    def single_group(vals):
        if centered:
            vals_c = vals - vals.mean()
            return vals.size, vals.sum(), (vals_c * vals_c.conjugate()).sum()
        else:
            return vals.size, vals.sum()

    input = np.asarray(input)
    if labels is None:
        return single_group(input)

    # ensure input and labels match sizes
    input, labels = np.broadcast_arrays(input, labels)

    if index is None:
        return single_group(input[labels > 0])

    if np.isscalar(index):
        return single_group(input[labels == index])

    def _sum_centered(labels):
        # `labels` is expected to be an ndarray with the same shape as `input`.
        # It must contain the label indices (which are not necessarily the labels
        # themselves).
        means = sums / counts
        centered_input = input - means[labels]
        # bincount expects 1-D inputs, so we ravel the arguments.
        bc = np.bincount(labels.ravel(),
                              weights=(centered_input *
                                       centered_input.conjugate()).ravel())
        return bc

    # Remap labels to unique integers if necessary, or if the largest
    # label is larger than the number of values.

    if (not _safely_castable_to_int(labels.dtype) or
            labels.min() < 0 or labels.max() > labels.size):
        # Use np.unique to generate the label indices.  `new_labels` will
        # be 1-D, but it should be interpreted as the flattened N-D array of
        # label indices.
        unique_labels, new_labels = np.unique(labels, return_inverse=True)
        new_labels = np.reshape(new_labels, (-1,))  # flatten, since it may be >1-D
        counts = np.bincount(new_labels)
        sums = np.bincount(new_labels, weights=input.ravel())
        if centered:
            # Compute the sum of the mean-centered squares.
            # We must reshape new_labels to the N-D shape of `input` before
            # passing it _sum_centered.
            sums_c = _sum_centered(new_labels.reshape(labels.shape))
        idxs = np.searchsorted(unique_labels, index)
        # make all of idxs valid
        idxs[idxs >= unique_labels.size] = 0
        found = (unique_labels[idxs] == index)
    else:
        # labels are an integer type allowed by bincount, and there aren't too
        # many, so call bincount directly.
        counts = np.bincount(labels.ravel())
        sums = np.bincount(labels.ravel(), weights=input.ravel())
        if centered:
            sums_c = _sum_centered(labels)
        # make sure all index values are valid
        idxs = np.asanyarray(index, np.int_).copy()
        found = (idxs >= 0) & (idxs < counts.size)
        idxs[~found] = 0

    counts = counts[idxs]
    counts[~found] = 0
    sums = sums[idxs]
    sums[~found] = 0

    if not centered:
        return (counts, sums)
    else:
        sums_c = sums_c[idxs]
        sums_c[~found] = 0
        return (counts, sums, sums_c)


def sum(input, labels=None, index=None):
    """
    Calculate the sum of the values of the array.

    Notes
    -----
    This is an alias for `ndimage.sum_labels` kept for backwards compatibility
    reasons, for new code please prefer `sum_labels`.  See the `sum_labels`
    docstring for more details.

    """
    return sum_labels(input, labels, index)


def sum_labels(input, labels=None, index=None):
    """
    Calculate the sum of the values of the array.

    Parameters
    ----------
    input : array_like
        Values of `input` inside the regions defined by `labels`
        are summed together.
    labels : array_like of ints, optional
        Assign labels to the values of the array. Has to have the same shape as
        `input`.
    index : array_like, optional
        A single label number or a sequence of label numbers of
        the objects to be measured.

    Returns
    -------
    sum : ndarray or scalar
        An array of the sums of values of `input` inside the regions defined
        by `labels` with the same shape as `index`. If 'index' is None or scalar,
        a scalar is returned.

    See Also
    --------
    mean, median

    Examples
    --------
    >>> from scipy import ndimage
    >>> input =  [0,1,2,3]
    >>> labels = [1,1,2,2]
    >>> ndimage.sum_labels(input, labels, index=[1,2])
    [1.0, 5.0]
    >>> ndimage.sum_labels(input, labels, index=1)
    1
    >>> ndimage.sum_labels(input, labels)
    6


    """
    count, sum = _stats(input, labels, index)
    return sum


def mean(input, labels=None, index=None):
    """
    Calculate the mean of the values of an array at labels.

    Parameters
    ----------
    input : array_like
        Array on which to compute the mean of elements over distinct
        regions.
    labels : array_like, optional
        Array of labels of same shape, or broadcastable to the same shape as
        `input`. All elements sharing the same label form one region over
        which the mean of the elements is computed.
    index : int or sequence of ints, optional
        Labels of the objects over which the mean is to be computed.
        Default is None, in which case the mean for all values where label is
        greater than 0 is calculated.

    Returns
    -------
    out : list
        Sequence of same length as `index`, with the mean of the different
        regions labeled by the labels in `index`.

    See Also
    --------
    variance, standard_deviation, minimum, maximum, sum, label

    Examples
    --------
    >>> from scipy import ndimage
    >>> import numpy as np
    >>> a = np.arange(25).reshape((5,5))
    >>> labels = np.zeros_like(a)
    >>> labels[3:5,3:5] = 1
    >>> index = np.unique(labels)
    >>> labels
    array([[0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0],
           [0, 0, 0, 1, 1],
           [0, 0, 0, 1, 1]])
    >>> index
    array([0, 1])
    >>> ndimage.mean(a, labels=labels, index=index)
    [10.285714285714286, 21.0]

    """

    count, sum = _stats(input, labels, index)
    return sum / np.asanyarray(count).astype(np.float64)


def variance(input, labels=None, index=None):
    """
    Calculate the variance of the values of an N-D image array, optionally at
    specified sub-regions.

    Parameters
    ----------
    input : array_like
        Nd-image data to process.
    labels : array_like, optional
        Labels defining sub-regions in `input`.
        If not None, must be same shape as `input`.
    index : int or sequence of ints, optional
        `labels` to include in output.  If None (default), all values where
        `labels` is non-zero are used.

    Returns
    -------
    variance : float or ndarray
        Values of variance, for each sub-region if `labels` and `index` are
        specified.

    See Also
    --------
    label, standard_deviation, maximum, minimum, extrema

    Examples
    --------
    >>> import numpy as np
    >>> a = np.array([[1, 2, 0, 0],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])
    >>> from scipy import ndimage
    >>> ndimage.variance(a)
    7.609375

    Features to process can be specified using `labels` and `index`:

    >>> lbl, nlbl = ndimage.label(a)
    >>> ndimage.variance(a, lbl, index=np.arange(1, nlbl+1))
    array([ 2.1875,  2.25  ,  9.    ])

    If no index is given, all non-zero `labels` are processed:

    >>> ndimage.variance(a, lbl)
    6.1875

    """
    count, sum, sum_c_sq = _stats(input, labels, index, centered=True)
    return sum_c_sq / np.asanyarray(count).astype(float)


def standard_deviation(input, labels=None, index=None):
    """
    Calculate the standard deviation of the values of an N-D image array,
    optionally at specified sub-regions.

    Parameters
    ----------
    input : array_like
        N-D image data to process.
    labels : array_like, optional
        Labels to identify sub-regions in `input`.
        If not None, must be same shape as `input`.
    index : int or sequence of ints, optional
        `labels` to include in output. If None (default), all values where
        `labels` is non-zero are used.

    Returns
    -------
    standard_deviation : float or ndarray
        Values of standard deviation, for each sub-region if `labels` and
        `index` are specified.

    See Also
    --------
    label, variance, maximum, minimum, extrema

    Examples
    --------
    >>> import numpy as np
    >>> a = np.array([[1, 2, 0, 0],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])
    >>> from scipy import ndimage
    >>> ndimage.standard_deviation(a)
    2.7585095613392387

    Features to process can be specified using `labels` and `index`:

    >>> lbl, nlbl = ndimage.label(a)
    >>> ndimage.standard_deviation(a, lbl, index=np.arange(1, nlbl+1))
    array([ 1.479,  1.5  ,  3.   ])

    If no index is given, non-zero `labels` are processed:

    >>> ndimage.standard_deviation(a, lbl)
    2.4874685927665499

    """
    return np.sqrt(variance(input, labels, index))


def _select(input, labels=None, index=None, find_min=False, find_max=False,
            find_min_positions=False, find_max_positions=False,
            find_median=False):
    """Returns min, max, or both, plus their positions (if requested), and
    median."""

    input = np.asanyarray(input)

    find_positions = find_min_positions or find_max_positions
    positions = None
    if find_positions:
        positions = np.arange(input.size).reshape(input.shape)

    def single_group(vals, positions):
        result = []
        if find_min:
            result += [vals.min()]
        if find_min_positions:
            result += [positions[vals == vals.min()][0]]
        if find_max:
            result += [vals.max()]
        if find_max_positions:
            result += [positions[vals == vals.max()][0]]
        if find_median:
            result += [np.median(vals)]
        return result

    if labels is None:
        return single_group(input, positions)

    # ensure input and labels match sizes
    input, labels = np.broadcast_arrays(input, labels)

    if index is None:
        mask = (labels > 0)
        masked_positions = None
        if find_positions:
            masked_positions = positions[mask]
        return single_group(input[mask], masked_positions)

    if np.isscalar(index):
        mask = (labels == index)
        masked_positions = None
        if find_positions:
            masked_positions = positions[mask]
        return single_group(input[mask], masked_positions)

    index = np.asarray(index)

    # remap labels to unique integers if necessary, or if the largest
    # label is larger than the number of values.
    if (not _safely_castable_to_int(labels.dtype) or
            labels.min() < 0 or labels.max() > labels.size):
        # remap labels, and indexes
        unique_labels, labels = np.unique(labels, return_inverse=True)
        idxs = np.searchsorted(unique_labels, index)

        # make all of idxs valid
        idxs[idxs >= unique_labels.size] = 0
        found = (unique_labels[idxs] == index)
    else:
        # labels are an integer type, and there aren't too many
        idxs = np.asanyarray(index, np.int_).copy()
        found = (idxs >= 0) & (idxs <= labels.max())

    idxs[~ found] = labels.max() + 1

    if find_median:
        order = np.lexsort((input.ravel(), labels.ravel()))
    else:
        order = input.ravel().argsort()
    input = input.ravel()[order]
    labels = labels.ravel()[order]
    if find_positions:
        positions = positions.ravel()[order]

    result = []
    if find_min:
        mins = np.zeros(labels.max() + 2, input.dtype)
        mins[labels[::-1]] = input[::-1]
        result += [mins[idxs]]
    if find_min_positions:
        minpos = np.zeros(labels.max() + 2, int)
        minpos[labels[::-1]] = positions[::-1]
        result += [minpos[idxs]]
    if find_max:
        maxs = np.zeros(labels.max() + 2, input.dtype)
        maxs[labels] = input
        result += [maxs[idxs]]
    if find_max_positions:
        maxpos = np.zeros(labels.max() + 2, int)
        maxpos[labels] = positions
        result += [maxpos[idxs]]
    if find_median:
        locs = np.arange(len(labels))
        lo = np.zeros(labels.max() + 2, np.int_)
        lo[labels[::-1]] = locs[::-1]
        hi = np.zeros(labels.max() + 2, np.int_)
        hi[labels] = locs
        lo = lo[idxs]
        hi = hi[idxs]
        # lo is an index to the lowest value in input for each label,
        # hi is an index to the largest value.
        # move them to be either the same ((hi - lo) % 2 == 0) or next
        # to each other ((hi - lo) % 2 == 1), then average.
        step = (hi - lo) // 2
        lo += step
        hi -= step
        if (np.issubdtype(input.dtype, np.integer)
                or np.issubdtype(input.dtype, np.bool_)):
            # avoid integer overflow or boolean addition (gh-12836)
            result += [(input[lo].astype('d') + input[hi].astype('d')) / 2.0]
        else:
            result += [(input[lo] + input[hi]) / 2.0]

    return result


def minimum(input, labels=None, index=None):
    """
    Calculate the minimum of the values of an array over labeled regions.

    Parameters
    ----------
    input : array_like
        Array_like of values. For each region specified by `labels`, the
        minimal values of `input` over the region is computed.
    labels : array_like, optional
        An array_like of integers marking different regions over which the
        minimum value of `input` is to be computed. `labels` must have the
        same shape as `input`. If `labels` is not specified, the minimum
        over the whole array is returned.
    index : array_like, optional
        A list of region labels that are taken into account for computing the
        minima. If index is None, the minimum over all elements where `labels`
        is non-zero is returned.

    Returns
    -------
    minimum : float or list of floats
        List of minima of `input` over the regions determined by `labels` and
        whose index is in `index`. If `index` or `labels` are not specified, a
        float is returned: the minimal value of `input` if `labels` is None,
        and the minimal value of elements where `labels` is greater than zero
        if `index` is None.

    See Also
    --------
    label, maximum, median, minimum_position, extrema, sum, mean, variance,
    standard_deviation

    Notes
    -----
    The function returns a Python list and not a NumPy array, use
    `np.array` to convert the list to an array.

    Examples
    --------
    >>> from scipy import ndimage
    >>> import numpy as np
    >>> a = np.array([[1, 2, 0, 0],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])
    >>> labels, labels_nb = ndimage.label(a)
    >>> labels
    array([[1, 1, 0, 0],
           [1, 1, 0, 2],
           [0, 0, 0, 2],
           [3, 3, 0, 0]], dtype=int32)
    >>> ndimage.minimum(a, labels=labels, index=np.arange(1, labels_nb + 1))
    [1, 4, 3]
    >>> ndimage.minimum(a)
    0
    >>> ndimage.minimum(a, labels=labels)
    1

    """
    return _select(input, labels, index, find_min=True)[0]


def maximum(input, labels=None, index=None):
    """
    Calculate the maximum of the values of an array over labeled regions.

    Parameters
    ----------
    input : array_like
        Array_like of values. For each region specified by `labels`, the
        maximal values of `input` over the region is computed.
    labels : array_like, optional
        An array of integers marking different regions over which the
        maximum value of `input` is to be computed. `labels` must have the
        same shape as `input`. If `labels` is not specified, the maximum
        over the whole array is returned.
    index : array_like, optional
        A list of region labels that are taken into account for computing the
        maxima. If index is None, the maximum over all elements where `labels`
        is non-zero is returned.

    Returns
    -------
    output : float or list of floats
        List of maxima of `input` over the regions determined by `labels` and
        whose index is in `index`. If `index` or `labels` are not specified, a
        float is returned: the maximal value of `input` if `labels` is None,
        and the maximal value of elements where `labels` is greater than zero
        if `index` is None.

    See Also
    --------
    label, minimum, median, maximum_position, extrema, sum, mean, variance,
    standard_deviation

    Notes
    -----
    The function returns a Python list and not a NumPy array, use
    `np.array` to convert the list to an array.

    Examples
    --------
    >>> import numpy as np
    >>> a = np.arange(16).reshape((4,4))
    >>> a
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11],
           [12, 13, 14, 15]])
    >>> labels = np.zeros_like(a)
    >>> labels[:2,:2] = 1
    >>> labels[2:, 1:3] = 2
    >>> labels
    array([[1, 1, 0, 0],
           [1, 1, 0, 0],
           [0, 2, 2, 0],
           [0, 2, 2, 0]])
    >>> from scipy import ndimage
    >>> ndimage.maximum(a)
    15
    >>> ndimage.maximum(a, labels=labels, index=[1,2])
    [5, 14]
    >>> ndimage.maximum(a, labels=labels)
    14

    >>> b = np.array([[1, 2, 0, 0],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])
    >>> labels, labels_nb = ndimage.label(b)
    >>> labels
    array([[1, 1, 0, 0],
           [1, 1, 0, 2],
           [0, 0, 0, 2],
           [3, 3, 0, 0]], dtype=int32)
    >>> ndimage.maximum(b, labels=labels, index=np.arange(1, labels_nb + 1))
    [5, 7, 9]

    """
    return _select(input, labels, index, find_max=True)[0]


def median(input, labels=None, index=None):
    """
    Calculate the median of the values of an array over labeled regions.

    Parameters
    ----------
    input : array_like
        Array_like of values. For each region specified by `labels`, the
        median value of `input` over the region is computed.
    labels : array_like, optional
        An array_like of integers marking different regions over which the
        median value of `input` is to be computed. `labels` must have the
        same shape as `input`. If `labels` is not specified, the median
        over the whole array is returned.
    index : array_like, optional
        A list of region labels that are taken into account for computing the
        medians. If index is None, the median over all elements where `labels`
        is non-zero is returned.

    Returns
    -------
    median : float or list of floats
        List of medians of `input` over the regions determined by `labels` and
        whose index is in `index`. If `index` or `labels` are not specified, a
        float is returned: the median value of `input` if `labels` is None,
        and the median value of elements where `labels` is greater than zero
        if `index` is None.

    See Also
    --------
    label, minimum, maximum, extrema, sum, mean, variance, standard_deviation

    Notes
    -----
    The function returns a Python list and not a NumPy array, use
    `np.array` to convert the list to an array.

    Examples
    --------
    >>> from scipy import ndimage
    >>> import numpy as np
    >>> a = np.array([[1, 2, 0, 1],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])
    >>> labels, labels_nb = ndimage.label(a)
    >>> labels
    array([[1, 1, 0, 2],
           [1, 1, 0, 2],
           [0, 0, 0, 2],
           [3, 3, 0, 0]], dtype=int32)
    >>> ndimage.median(a, labels=labels, index=np.arange(1, labels_nb + 1))
    [2.5, 4.0, 6.0]
    >>> ndimage.median(a)
    1.0
    >>> ndimage.median(a, labels=labels)
    3.0

    """
    return _select(input, labels, index, find_median=True)[0]


def minimum_position(input, labels=None, index=None):
    """
    Find the positions of the minimums of the values of an array at labels.

    Parameters
    ----------
    input : array_like
        Array_like of values.
    labels : array_like, optional
        An array of integers marking different regions over which the
        position of the minimum value of `input` is to be computed.
        `labels` must have the same shape as `input`. If `labels` is not
        specified, the location of the first minimum over the whole
        array is returned.

        The `labels` argument only works when `index` is specified.
    index : array_like, optional
        A list of region labels that are taken into account for finding the
        location of the minima. If `index` is None, the ``first`` minimum
        over all elements where `labels` is non-zero is returned.

        The `index` argument only works when `labels` is specified.

    Returns
    -------
    output : list of tuples of ints
        Tuple of ints or list of tuples of ints that specify the location
        of minima of `input` over the regions determined by `labels` and
        whose index is in `index`.

        If `index` or `labels` are not specified, a tuple of ints is
        returned specifying the location of the first minimal value of `input`.

    See Also
    --------
    label, minimum, median, maximum_position, extrema, sum, mean, variance,
    standard_deviation

    Examples
    --------
    >>> import numpy as np
    >>> a = np.array([[10, 20, 30],
    ...               [40, 80, 100],
    ...               [1, 100, 200]])
    >>> b = np.array([[1, 2, 0, 1],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])

    >>> from scipy import ndimage

    >>> ndimage.minimum_position(a)
    (2, 0)
    >>> ndimage.minimum_position(b)
    (0, 2)

    Features to process can be specified using `labels` and `index`:

    >>> label, pos = ndimage.label(a)
    >>> ndimage.minimum_position(a, label, index=np.arange(1, pos+1))
    [(2, 0)]

    >>> label, pos = ndimage.label(b)
    >>> ndimage.minimum_position(b, label, index=np.arange(1, pos+1))
    [(0, 0), (0, 3), (3, 1)]

    """
    dims = np.array(np.asarray(input).shape)
    # see np.unravel_index to understand this line.
    dim_prod = np.cumprod([1] + list(dims[:0:-1]))[::-1]

    result = _select(input, labels, index, find_min_positions=True)[0]

    if np.isscalar(result):
        return tuple((result // dim_prod) % dims)

    return [tuple(v) for v in (result.reshape(-1, 1) // dim_prod) % dims]


def maximum_position(input, labels=None, index=None):
    """
    Find the positions of the maximums of the values of an array at labels.

    For each region specified by `labels`, the position of the maximum
    value of `input` within the region is returned.

    Parameters
    ----------
    input : array_like
        Array_like of values.
    labels : array_like, optional
        An array of integers marking different regions over which the
        position of the maximum value of `input` is to be computed.
        `labels` must have the same shape as `input`. If `labels` is not
        specified, the location of the first maximum over the whole
        array is returned.

        The `labels` argument only works when `index` is specified.
    index : array_like, optional
        A list of region labels that are taken into account for finding the
        location of the maxima. If `index` is None, the first maximum
        over all elements where `labels` is non-zero is returned.

        The `index` argument only works when `labels` is specified.

    Returns
    -------
    output : list of tuples of ints
        List of tuples of ints that specify the location of maxima of
        `input` over the regions determined by `labels` and whose index
        is in `index`.

        If `index` or `labels` are not specified, a tuple of ints is
        returned specifying the location of the ``first`` maximal value
        of `input`.

    See Also
    --------
    label, minimum, median, maximum_position, extrema, sum, mean, variance,
    standard_deviation

    Examples
    --------
    >>> from scipy import ndimage
    >>> import numpy as np
    >>> a = np.array([[1, 2, 0, 0],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])
    >>> ndimage.maximum_position(a)
    (3, 0)

    Features to process can be specified using `labels` and `index`:

    >>> lbl = np.array([[0, 1, 2, 3],
    ...                 [0, 1, 2, 3],
    ...                 [0, 1, 2, 3],
    ...                 [0, 1, 2, 3]])
    >>> ndimage.maximum_position(a, lbl, 1)
    (1, 1)

    If no index is given, non-zero `labels` are processed:

    >>> ndimage.maximum_position(a, lbl)
    (2, 3)

    If there are no maxima, the position of the first element is returned:

    >>> ndimage.maximum_position(a, lbl, 2)
    (0, 2)

    """
    dims = np.array(np.asarray(input).shape)
    # see np.unravel_index to understand this line.
    dim_prod = np.cumprod([1] + list(dims[:0:-1]))[::-1]

    result = _select(input, labels, index, find_max_positions=True)[0]

    if np.isscalar(result):
        return tuple((result // dim_prod) % dims)

    return [tuple(v) for v in (result.reshape(-1, 1) // dim_prod) % dims]


def extrema(input, labels=None, index=None):
    """
    Calculate the minimums and maximums of the values of an array
    at labels, along with their positions.

    Parameters
    ----------
    input : ndarray
        N-D image data to process.
    labels : ndarray, optional
        Labels of features in input.
        If not None, must be same shape as `input`.
    index : int or sequence of ints, optional
        Labels to include in output.  If None (default), all values where
        non-zero `labels` are used.

    Returns
    -------
    minimums, maximums : int or ndarray
        Values of minimums and maximums in each feature.
    min_positions, max_positions : tuple or list of tuples
        Each tuple gives the N-D coordinates of the corresponding minimum
        or maximum.

    See Also
    --------
    maximum, minimum, maximum_position, minimum_position, center_of_mass

    Examples
    --------
    >>> import numpy as np
    >>> a = np.array([[1, 2, 0, 0],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])
    >>> from scipy import ndimage
    >>> ndimage.extrema(a)
    (0, 9, (0, 2), (3, 0))

    Features to process can be specified using `labels` and `index`:

    >>> lbl, nlbl = ndimage.label(a)
    >>> ndimage.extrema(a, lbl, index=np.arange(1, nlbl+1))
    (array([1, 4, 3]),
     array([5, 7, 9]),
     [(0, 0), (1, 3), (3, 1)],
     [(1, 0), (2, 3), (3, 0)])

    If no index is given, non-zero `labels` are processed:

    >>> ndimage.extrema(a, lbl)
    (1, 9, (0, 0), (3, 0))

    """
    dims = np.array(np.asarray(input).shape)
    # see np.unravel_index to understand this line.
    dim_prod = np.cumprod([1] + list(dims[:0:-1]))[::-1]

    minimums, min_positions, maximums, max_positions = _select(input, labels,
                                                               index,
                                                               find_min=True,
                                                               find_max=True,
                                                               find_min_positions=True,
                                                               find_max_positions=True)

    if np.isscalar(minimums):
        return (minimums, maximums, tuple((min_positions // dim_prod) % dims),
                tuple((max_positions // dim_prod) % dims))

    min_positions = [
        tuple(v) for v in (min_positions.reshape(-1, 1) // dim_prod) % dims
    ]
    max_positions = [
        tuple(v) for v in (max_positions.reshape(-1, 1) // dim_prod) % dims
    ]

    return minimums, maximums, min_positions, max_positions


def center_of_mass(input, labels=None, index=None):
    """
    Calculate the center of mass of the values of an array at labels.

    Parameters
    ----------
    input : ndarray
        Data from which to calculate center-of-mass. The masses can either
        be positive or negative.
    labels : ndarray, optional
        Labels for objects in `input`, as generated by `ndimage.label`.
        Only used with `index`. Dimensions must be the same as `input`.
    index : int or sequence of ints, optional
        Labels for which to calculate centers-of-mass. If not specified,
        the combined center of mass of all labels greater than zero
        will be calculated. Only used with `labels`.

    Returns
    -------
    center_of_mass : tuple, or list of tuples
        Coordinates of centers-of-mass.

    Examples
    --------
    >>> import numpy as np
    >>> a = np.array(([0,0,0,0],
    ...               [0,1,1,0],
    ...               [0,1,1,0],
    ...               [0,1,1,0]))
    >>> from scipy import ndimage
    >>> ndimage.center_of_mass(a)
    (2.0, 1.5)

    Calculation of multiple objects in an image

    >>> b = np.array(([0,1,1,0],
    ...               [0,1,0,0],
    ...               [0,0,0,0],
    ...               [0,0,1,1],
    ...               [0,0,1,1]))
    >>> lbl = ndimage.label(b)[0]
    >>> ndimage.center_of_mass(b, lbl, [1,2])
    [(0.33333333333333331, 1.3333333333333333), (3.5, 2.5)]

    Negative masses are also accepted, which can occur for example when
    bias is removed from measured data due to random noise.

    >>> c = np.array(([-1,0,0,0],
    ...               [0,-1,-1,0],
    ...               [0,1,-1,0],
    ...               [0,1,1,0]))
    >>> ndimage.center_of_mass(c)
    (-4.0, 1.0)

    If there are division by zero issues, the function does not raise an
    error but rather issues a RuntimeWarning before returning inf and/or NaN.

    >>> d = np.array([-1, 1])
    >>> ndimage.center_of_mass(d)
    (inf,)
    """
    input = np.asarray(input)
    normalizer = sum_labels(input, labels, index)
    grids = np.ogrid[[slice(0, i) for i in input.shape]]

    results = [sum_labels(input * grids[dir].astype(float), labels, index) / normalizer
               for dir in range(input.ndim)]

    if np.isscalar(results[0]):
        return tuple(results)

    return [tuple(v) for v in np.array(results).T]


def histogram(input, min, max, bins, labels=None, index=None):
    """
    Calculate the histogram of the values of an array, optionally at labels.

    Histogram calculates the frequency of values in an array within bins
    determined by `min`, `max`, and `bins`. The `labels` and `index`
    keywords can limit the scope of the histogram to specified sub-regions
    within the array.

    Parameters
    ----------
    input : array_like
        Data for which to calculate histogram.
    min, max : int
        Minimum and maximum values of range of histogram bins.
    bins : int
        Number of bins.
    labels : array_like, optional
        Labels for objects in `input`.
        If not None, must be same shape as `input`.
    index : int or sequence of ints, optional
        Label or labels for which to calculate histogram. If None, all values
        where label is greater than zero are used

    Returns
    -------
    hist : ndarray
        Histogram counts.

    Examples
    --------
    >>> import numpy as np
    >>> a = np.array([[ 0.    ,  0.2146,  0.5962,  0.    ],
    ...               [ 0.    ,  0.7778,  0.    ,  0.    ],
    ...               [ 0.    ,  0.    ,  0.    ,  0.    ],
    ...               [ 0.    ,  0.    ,  0.7181,  0.2787],
    ...               [ 0.    ,  0.    ,  0.6573,  0.3094]])
    >>> from scipy import ndimage
    >>> ndimage.histogram(a, 0, 1, 10)
    array([13,  0,  2,  1,  0,  1,  1,  2,  0,  0])

    With labels and no indices, non-zero elements are counted:

    >>> lbl, nlbl = ndimage.label(a)
    >>> ndimage.histogram(a, 0, 1, 10, lbl)
    array([0, 0, 2, 1, 0, 1, 1, 2, 0, 0])

    Indices can be used to count only certain objects:

    >>> ndimage.histogram(a, 0, 1, 10, lbl, 2)
    array([0, 0, 1, 1, 0, 0, 1, 1, 0, 0])

    """
    _bins = np.linspace(min, max, bins + 1)

    def _hist(vals):
        return np.histogram(vals, _bins)[0]

    return labeled_comprehension(input, labels, index, _hist, object, None,
                                 pass_positions=False)


def watershed_ift(input, markers, structure=None, output=None):
    """
    Apply watershed from markers using image foresting transform algorithm.

    Parameters
    ----------
    input : array_like
        Input.
    markers : array_like
        Markers are points within each watershed that form the beginning
        of the process. Negative markers are considered background markers
        which are processed after the other markers.
    structure : structure element, optional
        A structuring element defining the connectivity of the object can be
        provided. If None, an element is generated with a squared
        connectivity equal to one.
    output : ndarray, optional
        An output array can optionally be provided. The same shape as input.

    Returns
    -------
    watershed_ift : ndarray
        Output.  Same shape as `input`.

    References
    ----------
    .. [1] A.X. Falcao, J. Stolfi and R. de Alencar Lotufo, "The image
           foresting transform: theory, algorithms, and applications",
           Pattern Analysis and Machine Intelligence, vol. 26, pp. 19-29, 2004.

    """
    input = np.asarray(input)
    if input.dtype.type not in [np.uint8, np.uint16]:
        raise TypeError('only 8 and 16 unsigned inputs are supported')

    if structure is None:
        structure = _morphology.generate_binary_structure(input.ndim, 1)
    structure = np.asarray(structure, dtype=bool)
    if structure.ndim != input.ndim:
        raise RuntimeError('structure and input must have equal rank')
    for ii in structure.shape:
        if ii != 3:
            raise RuntimeError('structure dimensions must be equal to 3')

    if not structure.flags.contiguous:
        structure = structure.copy()
    markers = np.asarray(markers)
    if input.shape != markers.shape:
        raise RuntimeError('input and markers must have equal shape')

    integral_types = [np.int8,
                      np.int16,
                      np.int32,
                      np.int64,
                      np.intc,
                      np.intp]

    if markers.dtype.type not in integral_types:
        raise RuntimeError('marker should be of integer type')

    if isinstance(output, np.ndarray):
        if output.dtype.type not in integral_types:
            raise RuntimeError('output should be of integer type')
    else:
        output = markers.dtype

    output = _ni_support._get_output(output, input)
    _nd_image.watershed_ift(input, markers, structure, output)
    return output