File size: 22,079 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
import pickle
import tempfile
import shutil
import os
import numpy as np
from numpy import pi
from numpy.testing import (assert_array_almost_equal,
assert_equal, assert_warns,
assert_allclose)
import pytest
from pytest import raises as assert_raises
from scipy.odr import (Data, Model, ODR, RealData, OdrStop, OdrWarning,
multilinear, exponential, unilinear, quadratic,
polynomial)
class TestODR:
# Bad Data for 'x'
def test_bad_data(self):
assert_raises(ValueError, Data, 2, 1)
assert_raises(ValueError, RealData, 2, 1)
# Empty Data for 'x'
def empty_data_func(self, B, x):
return B[0]*x + B[1]
@pytest.mark.thread_unsafe
def test_empty_data(self):
beta0 = [0.02, 0.0]
linear = Model(self.empty_data_func)
empty_dat = Data([], [])
assert_warns(OdrWarning, ODR,
empty_dat, linear, beta0=beta0)
empty_dat = RealData([], [])
assert_warns(OdrWarning, ODR,
empty_dat, linear, beta0=beta0)
# Explicit Example
def explicit_fcn(self, B, x):
ret = B[0] + B[1] * np.power(np.exp(B[2]*x) - 1.0, 2)
return ret
def explicit_fjd(self, B, x):
eBx = np.exp(B[2]*x)
ret = B[1] * 2.0 * (eBx-1.0) * B[2] * eBx
return ret
def explicit_fjb(self, B, x):
eBx = np.exp(B[2]*x)
res = np.vstack([np.ones(x.shape[-1]),
np.power(eBx-1.0, 2),
B[1]*2.0*(eBx-1.0)*eBx*x])
return res
def test_explicit(self):
explicit_mod = Model(
self.explicit_fcn,
fjacb=self.explicit_fjb,
fjacd=self.explicit_fjd,
meta=dict(name='Sample Explicit Model',
ref='ODRPACK UG, pg. 39'),
)
explicit_dat = Data([0.,0.,5.,7.,7.5,10.,16.,26.,30.,34.,34.5,100.],
[1265.,1263.6,1258.,1254.,1253.,1249.8,1237.,1218.,1220.6,
1213.8,1215.5,1212.])
explicit_odr = ODR(explicit_dat, explicit_mod, beta0=[1500.0, -50.0, -0.1],
ifixx=[0,0,1,1,1,1,1,1,1,1,1,0])
explicit_odr.set_job(deriv=2)
explicit_odr.set_iprint(init=0, iter=0, final=0)
out = explicit_odr.run()
assert_array_almost_equal(
out.beta,
np.array([1.2646548050648876e+03, -5.4018409956678255e+01,
-8.7849712165253724e-02]),
)
assert_array_almost_equal(
out.sd_beta,
np.array([1.0349270280543437, 1.583997785262061, 0.0063321988657267]),
)
assert_array_almost_equal(
out.cov_beta,
np.array([[4.4949592379003039e-01, -3.7421976890364739e-01,
-8.0978217468468912e-04],
[-3.7421976890364739e-01, 1.0529686462751804e+00,
-1.9453521827942002e-03],
[-8.0978217468468912e-04, -1.9453521827942002e-03,
1.6827336938454476e-05]]),
)
# Implicit Example
def implicit_fcn(self, B, x):
return (B[2]*np.power(x[0]-B[0], 2) +
2.0*B[3]*(x[0]-B[0])*(x[1]-B[1]) +
B[4]*np.power(x[1]-B[1], 2) - 1.0)
def test_implicit(self):
implicit_mod = Model(
self.implicit_fcn,
implicit=1,
meta=dict(name='Sample Implicit Model',
ref='ODRPACK UG, pg. 49'),
)
implicit_dat = Data([
[0.5,1.2,1.6,1.86,2.12,2.36,2.44,2.36,2.06,1.74,1.34,0.9,-0.28,
-0.78,-1.36,-1.9,-2.5,-2.88,-3.18,-3.44],
[-0.12,-0.6,-1.,-1.4,-2.54,-3.36,-4.,-4.75,-5.25,-5.64,-5.97,-6.32,
-6.44,-6.44,-6.41,-6.25,-5.88,-5.5,-5.24,-4.86]],
1,
)
implicit_odr = ODR(implicit_dat, implicit_mod,
beta0=[-1.0, -3.0, 0.09, 0.02, 0.08])
out = implicit_odr.run()
assert_array_almost_equal(
out.beta,
np.array([-0.9993809167281279, -2.9310484652026476, 0.0875730502693354,
0.0162299708984738, 0.0797537982976416]),
)
assert_array_almost_equal(
out.sd_beta,
np.array([0.1113840353364371, 0.1097673310686467, 0.0041060738314314,
0.0027500347539902, 0.0034962501532468]),
)
assert_allclose(
out.cov_beta,
np.array([[2.1089274602333052e+00, -1.9437686411979040e+00,
7.0263550868344446e-02, -4.7175267373474862e-02,
5.2515575927380355e-02],
[-1.9437686411979040e+00, 2.0481509222414456e+00,
-6.1600515853057307e-02, 4.6268827806232933e-02,
-5.8822307501391467e-02],
[7.0263550868344446e-02, -6.1600515853057307e-02,
2.8659542561579308e-03, -1.4628662260014491e-03,
1.4528860663055824e-03],
[-4.7175267373474862e-02, 4.6268827806232933e-02,
-1.4628662260014491e-03, 1.2855592885514335e-03,
-1.2692942951415293e-03],
[5.2515575927380355e-02, -5.8822307501391467e-02,
1.4528860663055824e-03, -1.2692942951415293e-03,
2.0778813389755596e-03]]),
rtol=1e-6, atol=2e-6,
)
# Multi-variable Example
def multi_fcn(self, B, x):
if (x < 0.0).any():
raise OdrStop
theta = pi*B[3]/2.
ctheta = np.cos(theta)
stheta = np.sin(theta)
omega = np.power(2.*pi*x*np.exp(-B[2]), B[3])
phi = np.arctan2((omega*stheta), (1.0 + omega*ctheta))
r = (B[0] - B[1]) * np.power(np.sqrt(np.power(1.0 + omega*ctheta, 2) +
np.power(omega*stheta, 2)), -B[4])
ret = np.vstack([B[1] + r*np.cos(B[4]*phi),
r*np.sin(B[4]*phi)])
return ret
def test_multi(self):
multi_mod = Model(
self.multi_fcn,
meta=dict(name='Sample Multi-Response Model',
ref='ODRPACK UG, pg. 56'),
)
multi_x = np.array([30.0, 50.0, 70.0, 100.0, 150.0, 200.0, 300.0, 500.0,
700.0, 1000.0, 1500.0, 2000.0, 3000.0, 5000.0, 7000.0, 10000.0,
15000.0, 20000.0, 30000.0, 50000.0, 70000.0, 100000.0, 150000.0])
multi_y = np.array([
[4.22, 4.167, 4.132, 4.038, 4.019, 3.956, 3.884, 3.784, 3.713,
3.633, 3.54, 3.433, 3.358, 3.258, 3.193, 3.128, 3.059, 2.984,
2.934, 2.876, 2.838, 2.798, 2.759],
[0.136, 0.167, 0.188, 0.212, 0.236, 0.257, 0.276, 0.297, 0.309,
0.311, 0.314, 0.311, 0.305, 0.289, 0.277, 0.255, 0.24, 0.218,
0.202, 0.182, 0.168, 0.153, 0.139],
])
n = len(multi_x)
multi_we = np.zeros((2, 2, n), dtype=float)
multi_ifixx = np.ones(n, dtype=int)
multi_delta = np.zeros(n, dtype=float)
multi_we[0,0,:] = 559.6
multi_we[1,0,:] = multi_we[0,1,:] = -1634.0
multi_we[1,1,:] = 8397.0
for i in range(n):
if multi_x[i] < 100.0:
multi_ifixx[i] = 0
elif multi_x[i] <= 150.0:
pass # defaults are fine
elif multi_x[i] <= 1000.0:
multi_delta[i] = 25.0
elif multi_x[i] <= 10000.0:
multi_delta[i] = 560.0
elif multi_x[i] <= 100000.0:
multi_delta[i] = 9500.0
else:
multi_delta[i] = 144000.0
if multi_x[i] == 100.0 or multi_x[i] == 150.0:
multi_we[:,:,i] = 0.0
multi_dat = Data(multi_x, multi_y, wd=1e-4/np.power(multi_x, 2),
we=multi_we)
multi_odr = ODR(multi_dat, multi_mod, beta0=[4.,2.,7.,.4,.5],
delta0=multi_delta, ifixx=multi_ifixx)
multi_odr.set_job(deriv=1, del_init=1)
out = multi_odr.run()
assert_array_almost_equal(
out.beta,
np.array([4.3799880305938963, 2.4333057577497703, 8.0028845899503978,
0.5101147161764654, 0.5173902330489161]),
)
assert_array_almost_equal(
out.sd_beta,
np.array([0.0130625231081944, 0.0130499785273277, 0.1167085962217757,
0.0132642749596149, 0.0288529201353984]),
)
assert_array_almost_equal(
out.cov_beta,
np.array([[0.0064918418231375, 0.0036159705923791, 0.0438637051470406,
-0.0058700836512467, 0.011281212888768],
[0.0036159705923791, 0.0064793789429006, 0.0517610978353126,
-0.0051181304940204, 0.0130726943624117],
[0.0438637051470406, 0.0517610978353126, 0.5182263323095322,
-0.0563083340093696, 0.1269490939468611],
[-0.0058700836512467, -0.0051181304940204, -0.0563083340093696,
0.0066939246261263, -0.0140184391377962],
[0.011281212888768, 0.0130726943624117, 0.1269490939468611,
-0.0140184391377962, 0.0316733013820852]]),
)
# Pearson's Data
# K. Pearson, Philosophical Magazine, 2, 559 (1901)
def pearson_fcn(self, B, x):
return B[0] + B[1]*x
def test_pearson(self):
p_x = np.array([0.,.9,1.8,2.6,3.3,4.4,5.2,6.1,6.5,7.4])
p_y = np.array([5.9,5.4,4.4,4.6,3.5,3.7,2.8,2.8,2.4,1.5])
p_sx = np.array([.03,.03,.04,.035,.07,.11,.13,.22,.74,1.])
p_sy = np.array([1.,.74,.5,.35,.22,.22,.12,.12,.1,.04])
p_dat = RealData(p_x, p_y, sx=p_sx, sy=p_sy)
# Reverse the data to test invariance of results
pr_dat = RealData(p_y, p_x, sx=p_sy, sy=p_sx)
p_mod = Model(self.pearson_fcn, meta=dict(name='Uni-linear Fit'))
p_odr = ODR(p_dat, p_mod, beta0=[1.,1.])
pr_odr = ODR(pr_dat, p_mod, beta0=[1.,1.])
out = p_odr.run()
assert_array_almost_equal(
out.beta,
np.array([5.4767400299231674, -0.4796082367610305]),
)
assert_array_almost_equal(
out.sd_beta,
np.array([0.3590121690702467, 0.0706291186037444]),
)
assert_array_almost_equal(
out.cov_beta,
np.array([[0.0854275622946333, -0.0161807025443155],
[-0.0161807025443155, 0.003306337993922]]),
)
rout = pr_odr.run()
assert_array_almost_equal(
rout.beta,
np.array([11.4192022410781231, -2.0850374506165474]),
)
assert_array_almost_equal(
rout.sd_beta,
np.array([0.9820231665657161, 0.3070515616198911]),
)
assert_array_almost_equal(
rout.cov_beta,
np.array([[0.6391799462548782, -0.1955657291119177],
[-0.1955657291119177, 0.0624888159223392]]),
)
# Lorentz Peak
# The data is taken from one of the undergraduate physics labs I performed.
def lorentz(self, beta, x):
return (beta[0]*beta[1]*beta[2] / np.sqrt(np.power(x*x -
beta[2]*beta[2], 2.0) + np.power(beta[1]*x, 2.0)))
def test_lorentz(self):
l_sy = np.array([.29]*18)
l_sx = np.array([.000972971,.000948268,.000707632,.000706679,
.000706074, .000703918,.000698955,.000456856,
.000455207,.000662717,.000654619,.000652694,
.000000859202,.00106589,.00106378,.00125483, .00140818,.00241839])
l_dat = RealData(
[3.9094, 3.85945, 3.84976, 3.84716, 3.84551, 3.83964, 3.82608,
3.78847, 3.78163, 3.72558, 3.70274, 3.6973, 3.67373, 3.65982,
3.6562, 3.62498, 3.55525, 3.41886],
[652, 910.5, 984, 1000, 1007.5, 1053, 1160.5, 1409.5, 1430, 1122,
957.5, 920, 777.5, 709.5, 698, 578.5, 418.5, 275.5],
sx=l_sx,
sy=l_sy,
)
l_mod = Model(self.lorentz, meta=dict(name='Lorentz Peak'))
l_odr = ODR(l_dat, l_mod, beta0=(1000., .1, 3.8))
out = l_odr.run()
assert_array_almost_equal(
out.beta,
np.array([1.4306780846149925e+03, 1.3390509034538309e-01,
3.7798193600109009e+00]),
)
assert_array_almost_equal(
out.sd_beta,
np.array([7.3621186811330963e-01, 3.5068899941471650e-04,
2.4451209281408992e-04]),
)
assert_array_almost_equal(
out.cov_beta,
np.array([[2.4714409064597873e-01, -6.9067261911110836e-05,
-3.1236953270424990e-05],
[-6.9067261911110836e-05, 5.6077531517333009e-08,
3.6133261832722601e-08],
[-3.1236953270424990e-05, 3.6133261832722601e-08,
2.7261220025171730e-08]]),
)
def test_ticket_1253(self):
def linear(c, x):
return c[0]*x+c[1]
c = [2.0, 3.0]
x = np.linspace(0, 10)
y = linear(c, x)
model = Model(linear)
data = Data(x, y, wd=1.0, we=1.0)
job = ODR(data, model, beta0=[1.0, 1.0])
result = job.run()
assert_equal(result.info, 2)
# Verify fix for gh-9140
def test_ifixx(self):
x1 = [-2.01, -0.99, -0.001, 1.02, 1.98]
x2 = [3.98, 1.01, 0.001, 0.998, 4.01]
fix = np.vstack((np.zeros_like(x1, dtype=int), np.ones_like(x2, dtype=int)))
data = Data(np.vstack((x1, x2)), y=1, fix=fix)
model = Model(lambda beta, x: x[1, :] - beta[0] * x[0, :]**2., implicit=True)
odr1 = ODR(data, model, beta0=np.array([1.]))
sol1 = odr1.run()
odr2 = ODR(data, model, beta0=np.array([1.]), ifixx=fix)
sol2 = odr2.run()
assert_equal(sol1.beta, sol2.beta)
# verify bugfix for #11800 in #11802
def test_ticket_11800(self):
# parameters
beta_true = np.array([1.0, 2.3, 1.1, -1.0, 1.3, 0.5])
nr_measurements = 10
std_dev_x = 0.01
x_error = np.array([[0.00063445, 0.00515731, 0.00162719, 0.01022866,
-0.01624845, 0.00482652, 0.00275988, -0.00714734, -0.00929201, -0.00687301],
[-0.00831623, -0.00821211, -0.00203459, 0.00938266, -0.00701829,
0.0032169, 0.00259194, -0.00581017, -0.0030283, 0.01014164]])
std_dev_y = 0.05
y_error = np.array([[0.05275304, 0.04519563, -0.07524086, 0.03575642,
0.04745194, 0.03806645, 0.07061601, -0.00753604, -0.02592543, -0.02394929],
[0.03632366, 0.06642266, 0.08373122, 0.03988822, -0.0092536,
-0.03750469, -0.03198903, 0.01642066, 0.01293648, -0.05627085]])
beta_solution = np.array([
2.62920235756665876536e+00, -1.26608484996299608838e+02,
1.29703572775403074502e+02, -1.88560985401185465804e+00,
7.83834160771274923718e+01, -7.64124076838087091801e+01])
# model's function and Jacobians
def func(beta, x):
y0 = beta[0] + beta[1] * x[0, :] + beta[2] * x[1, :]
y1 = beta[3] + beta[4] * x[0, :] + beta[5] * x[1, :]
return np.vstack((y0, y1))
def df_dbeta_odr(beta, x):
nr_meas = np.shape(x)[1]
zeros = np.zeros(nr_meas)
ones = np.ones(nr_meas)
dy0 = np.array([ones, x[0, :], x[1, :], zeros, zeros, zeros])
dy1 = np.array([zeros, zeros, zeros, ones, x[0, :], x[1, :]])
return np.stack((dy0, dy1))
def df_dx_odr(beta, x):
nr_meas = np.shape(x)[1]
ones = np.ones(nr_meas)
dy0 = np.array([beta[1] * ones, beta[2] * ones])
dy1 = np.array([beta[4] * ones, beta[5] * ones])
return np.stack((dy0, dy1))
# do measurements with errors in independent and dependent variables
x0_true = np.linspace(1, 10, nr_measurements)
x1_true = np.linspace(1, 10, nr_measurements)
x_true = np.array([x0_true, x1_true])
y_true = func(beta_true, x_true)
x_meas = x_true + x_error
y_meas = y_true + y_error
# estimate model's parameters
model_f = Model(func, fjacb=df_dbeta_odr, fjacd=df_dx_odr)
data = RealData(x_meas, y_meas, sx=std_dev_x, sy=std_dev_y)
odr_obj = ODR(data, model_f, beta0=0.9 * beta_true, maxit=100)
#odr_obj.set_iprint(init=2, iter=0, iter_step=1, final=1)
odr_obj.set_job(deriv=3)
odr_out = odr_obj.run()
# check results
assert_equal(odr_out.info, 1)
assert_array_almost_equal(odr_out.beta, beta_solution)
def test_multilinear_model(self):
x = np.linspace(0.0, 5.0)
y = 10.0 + 5.0 * x
data = Data(x, y)
odr_obj = ODR(data, multilinear)
output = odr_obj.run()
assert_array_almost_equal(output.beta, [10.0, 5.0])
def test_exponential_model(self):
x = np.linspace(0.0, 5.0)
y = -10.0 + np.exp(0.5*x)
data = Data(x, y)
odr_obj = ODR(data, exponential)
output = odr_obj.run()
assert_array_almost_equal(output.beta, [-10.0, 0.5])
def test_polynomial_model(self):
x = np.linspace(0.0, 5.0)
y = 1.0 + 2.0 * x + 3.0 * x ** 2 + 4.0 * x ** 3
poly_model = polynomial(3)
data = Data(x, y)
odr_obj = ODR(data, poly_model)
output = odr_obj.run()
assert_array_almost_equal(output.beta, [1.0, 2.0, 3.0, 4.0])
def test_unilinear_model(self):
x = np.linspace(0.0, 5.0)
y = 1.0 * x + 2.0
data = Data(x, y)
odr_obj = ODR(data, unilinear)
output = odr_obj.run()
assert_array_almost_equal(output.beta, [1.0, 2.0])
def test_quadratic_model(self):
x = np.linspace(0.0, 5.0)
y = 1.0 * x ** 2 + 2.0 * x + 3.0
data = Data(x, y)
odr_obj = ODR(data, quadratic)
output = odr_obj.run()
assert_array_almost_equal(output.beta, [1.0, 2.0, 3.0])
def test_work_ind(self):
def func(par, x):
b0, b1 = par
return b0 + b1 * x
# generate some data
n_data = 4
x = np.arange(n_data)
y = np.where(x % 2, x + 0.1, x - 0.1)
x_err = np.full(n_data, 0.1)
y_err = np.full(n_data, 0.1)
# do the fitting
linear_model = Model(func)
real_data = RealData(x, y, sx=x_err, sy=y_err)
odr_obj = ODR(real_data, linear_model, beta0=[0.4, 0.4])
odr_obj.set_job(fit_type=0)
out = odr_obj.run()
sd_ind = out.work_ind['sd']
assert_array_almost_equal(out.sd_beta,
out.work[sd_ind:sd_ind + len(out.sd_beta)])
@pytest.mark.skipif(True, reason="Fortran I/O prone to crashing so better "
"not to run this test, see gh-13127")
def test_output_file_overwrite(self):
"""
Verify fix for gh-1892
"""
def func(b, x):
return b[0] + b[1] * x
p = Model(func)
data = Data(np.arange(10), 12 * np.arange(10))
tmp_dir = tempfile.mkdtemp()
error_file_path = os.path.join(tmp_dir, "error.dat")
report_file_path = os.path.join(tmp_dir, "report.dat")
try:
ODR(data, p, beta0=[0.1, 13], errfile=error_file_path,
rptfile=report_file_path).run()
ODR(data, p, beta0=[0.1, 13], errfile=error_file_path,
rptfile=report_file_path, overwrite=True).run()
finally:
# remove output files for clean up
shutil.rmtree(tmp_dir)
def test_odr_model_default_meta(self):
def func(b, x):
return b[0] + b[1] * x
p = Model(func)
p.set_meta(name='Sample Model Meta', ref='ODRPACK')
assert_equal(p.meta, {'name': 'Sample Model Meta', 'ref': 'ODRPACK'})
def test_work_array_del_init(self):
"""
Verify fix for gh-18739 where del_init=1 fails.
"""
def func(b, x):
return b[0] + b[1] * x
# generate some data
n_data = 4
x = np.arange(n_data)
y = np.where(x % 2, x + 0.1, x - 0.1)
x_err = np.full(n_data, 0.1)
y_err = np.full(n_data, 0.1)
linear_model = Model(func)
# Try various shapes of the `we` array from various `sy` and `covy`
rd0 = RealData(x, y, sx=x_err, sy=y_err)
rd1 = RealData(x, y, sx=x_err, sy=0.1)
rd2 = RealData(x, y, sx=x_err, sy=[0.1])
rd3 = RealData(x, y, sx=x_err, sy=np.full((1, n_data), 0.1))
rd4 = RealData(x, y, sx=x_err, covy=[[0.01]])
rd5 = RealData(x, y, sx=x_err, covy=np.full((1, 1, n_data), 0.01))
for rd in [rd0, rd1, rd2, rd3, rd4, rd5]:
odr_obj = ODR(rd, linear_model, beta0=[0.4, 0.4],
delta0=np.full(n_data, -0.1))
odr_obj.set_job(fit_type=0, del_init=1)
# Just make sure that it runs without raising an exception.
odr_obj.run()
def test_pickling_data(self):
x = np.linspace(0.0, 5.0)
y = 1.0 * x + 2.0
data = Data(x, y)
obj_pickle = pickle.dumps(data)
del data
pickle.loads(obj_pickle)
def test_pickling_real_data(self):
x = np.linspace(0.0, 5.0)
y = 1.0 * x + 2.0
data = RealData(x, y)
obj_pickle = pickle.dumps(data)
del data
pickle.loads(obj_pickle)
def test_pickling_model(self):
obj_pickle = pickle.dumps(unilinear)
pickle.loads(obj_pickle)
def test_pickling_odr(self):
x = np.linspace(0.0, 5.0)
y = 1.0 * x + 2.0
odr_obj = ODR(Data(x, y), unilinear)
obj_pickle = pickle.dumps(odr_obj)
del odr_obj
pickle.loads(obj_pickle)
def test_pickling_output(self):
x = np.linspace(0.0, 5.0)
y = 1.0 * x + 2.0
output = ODR(Data(x, y), unilinear).run
obj_pickle = pickle.dumps(output)
del output
pickle.loads(obj_pickle)
|