File size: 29,802 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
import numpy as np
import scipy._lib._elementwise_iterative_method as eim
from scipy._lib._util import _RichResult
from scipy._lib._array_api import array_namespace, xp_ravel

_ELIMITS = -1  # used in _bracket_root
_ESTOPONESIDE = 2  # used in _bracket_root

def _bracket_root_iv(func, xl0, xr0, xmin, xmax, factor, args, maxiter):

    if not callable(func):
        raise ValueError('`func` must be callable.')

    if not np.iterable(args):
        args = (args,)

    xp = array_namespace(xl0)
    xl0 = xp.asarray(xl0)[()]
    if (not xp.isdtype(xl0.dtype, "numeric")
        or xp.isdtype(xl0.dtype, "complex floating")):
        raise ValueError('`xl0` must be numeric and real.')

    xr0 = xl0 + 1 if xr0 is None else xr0
    xmin = -xp.inf if xmin is None else xmin
    xmax = xp.inf if xmax is None else xmax
    factor = 2. if factor is None else factor
    xl0, xr0, xmin, xmax, factor = xp.broadcast_arrays(
        xl0, xp.asarray(xr0), xp.asarray(xmin), xp.asarray(xmax), xp.asarray(factor))

    if (not xp.isdtype(xr0.dtype, "numeric")
        or xp.isdtype(xr0.dtype, "complex floating")):
        raise ValueError('`xr0` must be numeric and real.')

    if (not xp.isdtype(xmin.dtype, "numeric")
        or xp.isdtype(xmin.dtype, "complex floating")):
        raise ValueError('`xmin` must be numeric and real.')

    if (not xp.isdtype(xmax.dtype, "numeric")
        or xp.isdtype(xmax.dtype, "complex floating")):
        raise ValueError('`xmax` must be numeric and real.')

    if (not xp.isdtype(factor.dtype, "numeric")
        or xp.isdtype(factor.dtype, "complex floating")):
        raise ValueError('`factor` must be numeric and real.')
    if not xp.all(factor > 1):
        raise ValueError('All elements of `factor` must be greater than 1.')

    maxiter = xp.asarray(maxiter)
    message = '`maxiter` must be a non-negative integer.'
    if (not xp.isdtype(maxiter.dtype, "numeric") or maxiter.shape != tuple()
            or xp.isdtype(maxiter.dtype, "complex floating")):
        raise ValueError(message)
    maxiter_int = int(maxiter[()])
    if not maxiter == maxiter_int or maxiter < 0:
        raise ValueError(message)

    return func, xl0, xr0, xmin, xmax, factor, args, maxiter, xp


def _bracket_root(func, xl0, xr0=None, *, xmin=None, xmax=None, factor=None,
                  args=(), maxiter=1000):
    """Bracket the root of a monotonic scalar function of one variable

    This function works elementwise when `xl0`, `xr0`, `xmin`, `xmax`, `factor`, and
    the elements of `args` are broadcastable arrays.

    Parameters
    ----------
    func : callable
        The function for which the root is to be bracketed.
        The signature must be::

            func(x: ndarray, *args) -> ndarray

        where each element of ``x`` is a finite real and ``args`` is a tuple,
        which may contain an arbitrary number of arrays that are broadcastable
        with `x`. ``func`` must be an elementwise function: each element
        ``func(x)[i]`` must equal ``func(x[i])`` for all indices ``i``.
    xl0, xr0: float array_like
        Starting guess of bracket, which need not contain a root. If `xr0` is
        not provided, ``xr0 = xl0 + 1``. Must be broadcastable with one another.
    xmin, xmax : float array_like, optional
        Minimum and maximum allowable endpoints of the bracket, inclusive. Must
        be broadcastable with `xl0` and `xr0`.
    factor : float array_like, default: 2
        The factor used to grow the bracket. See notes for details.
    args : tuple, optional
        Additional positional arguments to be passed to `func`.  Must be arrays
        broadcastable with `xl0`, `xr0`, `xmin`, and `xmax`. If the callable to be
        bracketed requires arguments that are not broadcastable with these
        arrays, wrap that callable with `func` such that `func` accepts
        only `x` and broadcastable arrays.
    maxiter : int, optional
        The maximum number of iterations of the algorithm to perform.

    Returns
    -------
    res : _RichResult
        An instance of `scipy._lib._util._RichResult` with the following
        attributes. The descriptions are written as though the values will be
        scalars; however, if `func` returns an array, the outputs will be
        arrays of the same shape.

        xl, xr : float
            The lower and upper ends of the bracket, if the algorithm
            terminated successfully.
        fl, fr : float
            The function value at the lower and upper ends of the bracket.
        nfev : int
            The number of function evaluations required to find the bracket.
            This is distinct from the number of times `func` is *called*
            because the function may evaluated at multiple points in a single
            call.
        nit : int
            The number of iterations of the algorithm that were performed.
        status : int
            An integer representing the exit status of the algorithm.

            - ``0`` : The algorithm produced a valid bracket.
            - ``-1`` : The bracket expanded to the allowable limits without finding a bracket.
            - ``-2`` : The maximum number of iterations was reached.
            - ``-3`` : A non-finite value was encountered.
            - ``-4`` : Iteration was terminated by `callback`.
            - ``-5``: The initial bracket does not satisfy `xmin <= xl0 < xr0 < xmax`.
            - ``1`` : The algorithm is proceeding normally (in `callback` only).
            - ``2`` : A bracket was found in the opposite search direction (in `callback` only).

        success : bool
            ``True`` when the algorithm terminated successfully (status ``0``).

    Notes
    -----
    This function generalizes an algorithm found in pieces throughout
    `scipy.stats`. The strategy is to iteratively grow the bracket ``(l, r)``
     until ``func(l) < 0 < func(r)``. The bracket grows to the left as follows.

    - If `xmin` is not provided, the distance between `xl0` and `l` is iteratively
      increased by `factor`.
    - If `xmin` is provided, the distance between `xmin` and `l` is iteratively
      decreased by `factor`. Note that this also *increases* the bracket size.

    Growth of the bracket to the right is analogous.

    Growth of the bracket in one direction stops when the endpoint is no longer
    finite, the function value at the endpoint is no longer finite, or the
    endpoint reaches its limiting value (`xmin` or `xmax`). Iteration terminates
    when the bracket stops growing in both directions, the bracket surrounds
    the root, or a root is found (accidentally).

    If two brackets are found - that is, a bracket is found on both sides in
    the same iteration, the smaller of the two is returned.
    If roots of the function are found, both `l` and `r` are set to the
    leftmost root.

    """  # noqa: E501
    # Todo:
    # - find bracket with sign change in specified direction
    # - Add tolerance
    # - allow factor < 1?

    callback = None  # works; I just don't want to test it
    temp = _bracket_root_iv(func, xl0, xr0, xmin, xmax, factor, args, maxiter)
    func, xl0, xr0, xmin, xmax, factor, args, maxiter, xp = temp

    xs = (xl0, xr0)
    temp = eim._initialize(func, xs, args)
    func, xs, fs, args, shape, dtype, xp = temp  # line split for PEP8
    xl0, xr0 = xs
    xmin = xp_ravel(xp.astype(xp.broadcast_to(xmin, shape), dtype, copy=False), xp=xp)
    xmax = xp_ravel(xp.astype(xp.broadcast_to(xmax, shape), dtype, copy=False), xp=xp)
    invalid_bracket = ~((xmin <= xl0) & (xl0 < xr0) & (xr0 <= xmax))

    # The approach is to treat the left and right searches as though they were
    # (almost) totally independent one-sided bracket searches. (The interaction
    # is considered when checking for termination and preparing the result
    # object.)
    # `x` is the "moving" end of the bracket
    x = xp.concat(xs)
    f = xp.concat(fs)
    invalid_bracket = xp.concat((invalid_bracket, invalid_bracket))
    n = x.shape[0] // 2

    # `x_last` is the previous location of the moving end of the bracket. If
    # the signs of `f` and `f_last` are different, `x` and `x_last` form a
    # bracket.
    x_last = xp.concat((x[n:], x[:n]))
    f_last = xp.concat((f[n:], f[:n]))
    # `x0` is the "fixed" end of the bracket.
    x0 = x_last
    # We don't need to retain the corresponding function value, since the
    # fixed end of the bracket is only needed to compute the new value of the
    # moving end; it is never returned.
    limit = xp.concat((xmin, xmax))

    factor = xp_ravel(xp.broadcast_to(factor, shape), xp=xp)
    factor = xp.astype(factor, dtype, copy=False)
    factor = xp.concat((factor, factor))

    active = xp.arange(2*n)
    args = [xp.concat((arg, arg)) for arg in args]

    # This is needed due to inner workings of `eim._loop`.
    # We're abusing it a tiny bit.
    shape = shape + (2,)

    # `d` is for "distance".
    # For searches without a limit, the distance between the fixed end of the
    # bracket `x0` and the moving end `x` will grow by `factor` each iteration.
    # For searches with a limit, the distance between the `limit` and moving
    # end of the bracket `x` will shrink by `factor` each iteration.
    i = xp.isinf(limit)
    ni = ~i
    d = xp.zeros_like(x)
    d[i] = x[i] - x0[i]
    d[ni] = limit[ni] - x[ni]

    status = xp.full_like(x, eim._EINPROGRESS, dtype=xp.int32)  # in progress
    status[invalid_bracket] = eim._EINPUTERR
    nit, nfev = 0, 1  # one function evaluation per side performed above

    work = _RichResult(x=x, x0=x0, f=f, limit=limit, factor=factor,
                       active=active, d=d, x_last=x_last, f_last=f_last,
                       nit=nit, nfev=nfev, status=status, args=args,
                       xl=xp.nan, xr=xp.nan, fl=xp.nan, fr=xp.nan, n=n)
    res_work_pairs = [('status', 'status'), ('xl', 'xl'), ('xr', 'xr'),
                      ('nit', 'nit'), ('nfev', 'nfev'), ('fl', 'fl'),
                      ('fr', 'fr'), ('x', 'x'), ('f', 'f'),
                      ('x_last', 'x_last'), ('f_last', 'f_last')]

    def pre_func_eval(work):
        # Initialize moving end of bracket
        x = xp.zeros_like(work.x)

        # Unlimited brackets grow by `factor` by increasing distance from fixed
        # end to moving end.
        i = xp.isinf(work.limit)  # indices of unlimited brackets
        work.d[i] *= work.factor[i]
        x[i] = work.x0[i] + work.d[i]

        # Limited brackets grow by decreasing the distance from the limit to
        # the moving end.
        ni = ~i  # indices of limited brackets
        work.d[ni] /= work.factor[ni]
        x[ni] = work.limit[ni] - work.d[ni]

        return x

    def post_func_eval(x, f, work):
        # Keep track of the previous location of the moving end so that we can
        # return a narrower bracket. (The alternative is to remember the
        # original fixed end, but then the bracket would be wider than needed.)
        work.x_last = work.x
        work.f_last = work.f
        work.x = x
        work.f = f

    def check_termination(work):
        # Condition 0: initial bracket is invalid
        stop = (work.status == eim._EINPUTERR)

        # Condition 1: a valid bracket (or the root itself) has been found
        sf = xp.sign(work.f)
        sf_last = xp.sign(work.f_last)
        i = ((sf_last == -sf) | (sf_last == 0) | (sf == 0)) & ~stop
        work.status[i] = eim._ECONVERGED
        stop[i] = True

        # Condition 2: the other side's search found a valid bracket.
        # (If we just found a bracket with the rightward search, we can stop
        #  the leftward search, and vice-versa.)
        # To do this, we need to set the status of the other side's search;
        # this is tricky because `work.status` contains only the *active*
        # elements, so we don't immediately know the index of the element we
        # need to set - or even if it's still there. (That search may have
        # terminated already, e.g. by reaching its `limit`.)
        # To facilitate this, `work.active` contains a unit integer index of
        # each search. Index `k` (`k < n)` and `k + n` correspond with a
        # leftward and rightward search, respectively. Elements are removed
        # from `work.active` just as they are removed from `work.status`, so
        # we use `work.active` to help find the right location in
        # `work.status`.
        # Get the integer indices of the elements that can also stop
        also_stop = (work.active[i] + work.n) % (2*work.n)
        # Check whether they are still active.
        # To start, we need to find out where in `work.active` they would
        # appear if they are indeed there.
        j = xp.searchsorted(work.active, also_stop)
        # If the location exceeds the length of the `work.active`, they are
        # not there.
        j = j[j < work.active.shape[0]]
        # Check whether they are still there.
        j = j[also_stop == work.active[j]]
        # Now convert these to boolean indices to use with `work.status`.
        i = xp.zeros_like(stop)
        i[j] = True  # boolean indices of elements that can also stop
        i = i & ~stop
        work.status[i] = _ESTOPONESIDE
        stop[i] = True

        # Condition 3: moving end of bracket reaches limit
        i = (work.x == work.limit) & ~stop
        work.status[i] = _ELIMITS
        stop[i] = True

        # Condition 4: non-finite value encountered
        i = ~(xp.isfinite(work.x) & xp.isfinite(work.f)) & ~stop
        work.status[i] = eim._EVALUEERR
        stop[i] = True

        return stop

    def post_termination_check(work):
        pass

    def customize_result(res, shape):
        n = res['x'].shape[0] // 2

        # To avoid ambiguity, below we refer to `xl0`, the initial left endpoint
        # as `a` and `xr0`, the initial right endpoint, as `b`.
        # Because we treat the two one-sided searches as though they were
        # independent, what we keep track of in `work` and what we want to
        # return in `res` look quite different. Combine the results from the
        # two one-sided searches before reporting the results to the user.
        # - "a" refers to the leftward search (the moving end started at `a`)
        # - "b" refers to the rightward search (the moving end started at `b`)
        # - "l" refers to the left end of the bracket (closer to -oo)
        # - "r" refers to the right end of the bracket (closer to +oo)
        xal = res['x'][:n]
        xar = res['x_last'][:n]
        xbl = res['x_last'][n:]
        xbr = res['x'][n:]

        fal = res['f'][:n]
        far = res['f_last'][:n]
        fbl = res['f_last'][n:]
        fbr = res['f'][n:]

        # Initialize the brackets and corresponding function values to return
        # to the user. Brackets may not be valid (e.g. there is no root,
        # there weren't enough iterations, NaN encountered), but we still need
        # to return something. One option would be all NaNs, but what I've
        # chosen here is the left- and right-most points at which the function
        # has been evaluated. This gives the user some information about what
        # interval of the real line has been searched and shows that there is
        # no sign change between the two ends.
        xl = xp.asarray(xal, copy=True)
        fl = xp.asarray(fal, copy=True)
        xr = xp.asarray(xbr, copy=True)
        fr = xp.asarray(fbr, copy=True)

        # `status` indicates whether the bracket is valid or not. If so,
        # we want to adjust the bracket we return to be the narrowest possible
        # given the points at which we evaluated the function.
        # For example if bracket "a" is valid and smaller than bracket "b" OR
        # if bracket "a" is valid and bracket "b" is not valid, we want to
        # return bracket "a" (and vice versa).
        sa = res['status'][:n]
        sb = res['status'][n:]

        da = xar - xal
        db = xbr - xbl

        i1 = ((da <= db) & (sa == 0)) | ((sa == 0) & (sb != 0))
        i2 = ((db <= da) & (sb == 0)) | ((sb == 0) & (sa != 0))

        xr[i1] = xar[i1]
        fr[i1] = far[i1]
        xl[i2] = xbl[i2]
        fl[i2] = fbl[i2]

        # Finish assembling the result object
        res['xl'] = xl
        res['xr'] = xr
        res['fl'] = fl
        res['fr'] = fr

        res['nit'] = xp.maximum(res['nit'][:n], res['nit'][n:])
        res['nfev'] = res['nfev'][:n] + res['nfev'][n:]
        # If the status on one side is zero, the status is zero. In any case,
        # report the status from one side only.
        res['status'] = xp.where(sa == 0, sa, sb)
        res['success'] = (res['status'] == 0)

        del res['x']
        del res['f']
        del res['x_last']
        del res['f_last']

        return shape[:-1]

    return eim._loop(work, callback, shape, maxiter, func, args, dtype,
                     pre_func_eval, post_func_eval, check_termination,
                     post_termination_check, customize_result, res_work_pairs,
                     xp)


def _bracket_minimum_iv(func, xm0, xl0, xr0, xmin, xmax, factor, args, maxiter):

    if not callable(func):
        raise ValueError('`func` must be callable.')

    if not np.iterable(args):
        args = (args,)

    xp = array_namespace(xm0)
    xm0 = xp.asarray(xm0)[()]
    if (not xp.isdtype(xm0.dtype, "numeric")
        or xp.isdtype(xm0.dtype, "complex floating")):
        raise ValueError('`xm0` must be numeric and real.')

    xmin = -xp.inf if xmin is None else xmin
    xmax = xp.inf if xmax is None else xmax

    # If xl0 (xr0) is not supplied, fill with a dummy value for the sake
    # of broadcasting. We need to wait until xmin (xmax) has been validated
    # to compute the default values.
    xl0_not_supplied = False
    if xl0 is None:
        xl0 = xp.nan
        xl0_not_supplied = True

    xr0_not_supplied = False
    if xr0 is None:
        xr0 = xp.nan
        xr0_not_supplied = True

    factor = 2.0 if factor is None else factor
    xl0, xm0, xr0, xmin, xmax, factor = xp.broadcast_arrays(
        xp.asarray(xl0), xm0, xp.asarray(xr0), xp.asarray(xmin),
        xp.asarray(xmax), xp.asarray(factor)
    )

    if (not xp.isdtype(xl0.dtype, "numeric")
        or xp.isdtype(xl0.dtype, "complex floating")):
        raise ValueError('`xl0` must be numeric and real.')

    if (not xp.isdtype(xr0.dtype, "numeric")
        or xp.isdtype(xr0.dtype, "complex floating")):
        raise ValueError('`xr0` must be numeric and real.')

    if (not xp.isdtype(xmin.dtype, "numeric")
        or xp.isdtype(xmin.dtype, "complex floating")):
        raise ValueError('`xmin` must be numeric and real.')

    if (not xp.isdtype(xmax.dtype, "numeric")
        or xp.isdtype(xmax.dtype, "complex floating")):
        raise ValueError('`xmax` must be numeric and real.')

    if (not xp.isdtype(factor.dtype, "numeric")
        or xp.isdtype(factor.dtype, "complex floating")):
        raise ValueError('`factor` must be numeric and real.')
    if not xp.all(factor > 1):
        raise ValueError('All elements of `factor` must be greater than 1.')

    # Calculate default values of xl0 and/or xr0 if they have not been supplied
    # by the user. We need to be careful to ensure xl0 and xr0 are not outside
    # of (xmin, xmax).
    if xl0_not_supplied:
        xl0 = xm0 - xp.minimum((xm0 - xmin)/16, xp.asarray(0.5))
    if xr0_not_supplied:
        xr0 = xm0 + xp.minimum((xmax - xm0)/16, xp.asarray(0.5))

    maxiter = xp.asarray(maxiter)
    message = '`maxiter` must be a non-negative integer.'
    if (not xp.isdtype(maxiter.dtype, "numeric") or maxiter.shape != tuple()
            or xp.isdtype(maxiter.dtype, "complex floating")):
        raise ValueError(message)
    maxiter_int = int(maxiter[()])
    if not maxiter == maxiter_int or maxiter < 0:
        raise ValueError(message)

    return func, xm0, xl0, xr0, xmin, xmax, factor, args, maxiter, xp


def _bracket_minimum(func, xm0, *, xl0=None, xr0=None, xmin=None, xmax=None,
                     factor=None, args=(), maxiter=1000):
    """Bracket the minimum of a unimodal scalar function of one variable

    This function works elementwise when `xm0`, `xl0`, `xr0`, `xmin`, `xmax`,
    and the elements of `args` are broadcastable arrays.

    Parameters
    ----------
    func : callable
        The function for which the minimum is to be bracketed.
        The signature must be::

            func(x: ndarray, *args) -> ndarray

        where each element of ``x`` is a finite real and ``args`` is a tuple,
        which may contain an arbitrary number of arrays that are broadcastable
        with ``x``. `func` must be an elementwise function: each element
        ``func(x)[i]`` must equal ``func(x[i])`` for all indices `i`.
    xm0: float array_like
        Starting guess for middle point of bracket.
    xl0, xr0: float array_like, optional
        Starting guesses for left and right endpoints of the bracket. Must be
        broadcastable with one another and with `xm0`.
    xmin, xmax : float array_like, optional
        Minimum and maximum allowable endpoints of the bracket, inclusive. Must
        be broadcastable with `xl0`, `xm0`, and `xr0`.
    factor : float array_like, optional
        Controls expansion of bracket endpoint in downhill direction. Works
        differently in the cases where a limit is set in the downhill direction
        with `xmax` or `xmin`. See Notes.
    args : tuple, optional
        Additional positional arguments to be passed to `func`.  Must be arrays
        broadcastable with `xl0`, `xm0`, `xr0`, `xmin`, and `xmax`. If the
        callable to be bracketed requires arguments that are not broadcastable
        with these arrays, wrap that callable with `func` such that `func`
        accepts only ``x`` and broadcastable arrays.
    maxiter : int, optional
        The maximum number of iterations of the algorithm to perform. The number
        of function evaluations is three greater than the number of iterations.

    Returns
    -------
    res : _RichResult
        An instance of `scipy._lib._util._RichResult` with the following
        attributes. The descriptions are written as though the values will be
        scalars; however, if `func` returns an array, the outputs will be
        arrays of the same shape.

        xl, xm, xr : float
            The left, middle, and right points of the bracket, if the algorithm
            terminated successfully.
        fl, fm, fr : float
            The function value at the left, middle, and right points of the bracket.
        nfev : int
            The number of function evaluations required to find the bracket.
        nit : int
            The number of iterations of the algorithm that were performed.
        status : int
            An integer representing the exit status of the algorithm.

            - ``0`` : The algorithm produced a valid bracket.
            - ``-1`` : The bracket expanded to the allowable limits. Assuming
                       unimodality, this implies the endpoint at the limit is a
                       minimizer.
            - ``-2`` : The maximum number of iterations was reached.
            - ``-3`` : A non-finite value was encountered.
            - ``-4`` : ``None`` shall pass.
            - ``-5`` : The initial bracket does not satisfy
                       `xmin <= xl0 < xm0 < xr0 <= xmax`.

        success : bool
            ``True`` when the algorithm terminated successfully (status ``0``).

    Notes
    -----
    Similar to `scipy.optimize.bracket`, this function seeks to find real
    points ``xl < xm < xr`` such that ``f(xl) >= f(xm)`` and ``f(xr) >= f(xm)``,
    where at least one of the inequalities is strict. Unlike `scipy.optimize.bracket`,
    this function can operate in a vectorized manner on array input, so long as
    the input arrays are broadcastable with each other. Also unlike
    `scipy.optimize.bracket`, users may specify minimum and maximum endpoints
    for the desired bracket.

    Given an initial trio of points ``xl = xl0``, ``xm = xm0``, ``xr = xr0``,
    the algorithm checks if these points already give a valid bracket. If not,
    a new endpoint, ``w`` is chosen in the "downhill" direction, ``xm`` becomes the new
    opposite endpoint, and either `xl` or `xr` becomes the new middle point,
    depending on which direction is downhill. The algorithm repeats from here.

    The new endpoint `w` is chosen differently depending on whether or not a
    boundary `xmin` or `xmax` has been set in the downhill direction. Without
    loss of generality, suppose the downhill direction is to the right, so that
    ``f(xl) > f(xm) > f(xr)``. If there is no boundary to the right, then `w`
    is chosen to be ``xr + factor * (xr - xm)`` where `factor` is controlled by
    the user (defaults to 2.0) so that step sizes increase in geometric proportion.
    If there is a boundary, `xmax` in this case, then `w` is chosen to be
    ``xmax - (xmax - xr)/factor``, with steps slowing to a stop at
    `xmax`. This cautious approach ensures that a minimum near but distinct from
    the boundary isn't missed while also detecting whether or not the `xmax` is
    a minimizer when `xmax` is reached after a finite number of steps.
    """  # noqa: E501
    callback = None  # works; I just don't want to test it

    temp = _bracket_minimum_iv(func, xm0, xl0, xr0, xmin, xmax, factor, args, maxiter)
    func, xm0, xl0, xr0, xmin, xmax, factor, args, maxiter, xp = temp

    xs = (xl0, xm0, xr0)
    temp = eim._initialize(func, xs, args)
    func, xs, fs, args, shape, dtype, xp = temp

    xl0, xm0, xr0 = xs
    fl0, fm0, fr0 = fs
    xmin = xp.astype(xp.broadcast_to(xmin, shape), dtype, copy=False)
    xmin = xp_ravel(xmin, xp=xp)
    xmax = xp.astype(xp.broadcast_to(xmax, shape), dtype, copy=False)
    xmax = xp_ravel(xmax, xp=xp)
    invalid_bracket = ~((xmin <= xl0) & (xl0 < xm0) & (xm0 < xr0) & (xr0 <= xmax))
    # We will modify factor later on so make a copy. np.broadcast_to returns
    # a read-only view.
    factor = xp.astype(xp.broadcast_to(factor, shape), dtype, copy=True)
    factor = xp_ravel(factor)

    # To simplify the logic, swap xl and xr if f(xl) < f(xr). We should always be
    # marching downhill in the direction from xl to xr.
    comp = fl0 < fr0
    xl0[comp], xr0[comp] = xr0[comp], xl0[comp]
    fl0[comp], fr0[comp] = fr0[comp], fl0[comp]
    # We only need the boundary in the direction we're traveling.
    limit = xp.where(comp, xmin, xmax)

    unlimited = xp.isinf(limit)
    limited = ~unlimited
    step = xp.empty_like(xl0)

    step[unlimited] = (xr0[unlimited] - xm0[unlimited])
    step[limited] = (limit[limited] - xr0[limited])

    # Step size is divided by factor for case where there is a limit.
    factor[limited] = 1 / factor[limited]

    status = xp.full_like(xl0, eim._EINPROGRESS, dtype=xp.int32)
    status[invalid_bracket] = eim._EINPUTERR
    nit, nfev = 0, 3

    work = _RichResult(xl=xl0, xm=xm0, xr=xr0, xr0=xr0, fl=fl0, fm=fm0, fr=fr0,
                       step=step, limit=limit, limited=limited, factor=factor, nit=nit,
                       nfev=nfev, status=status, args=args)

    res_work_pairs = [('status', 'status'), ('xl', 'xl'), ('xm', 'xm'), ('xr', 'xr'),
                      ('nit', 'nit'), ('nfev', 'nfev'), ('fl', 'fl'), ('fm', 'fm'),
                      ('fr', 'fr')]

    def pre_func_eval(work):
        work.step *= work.factor
        x = xp.empty_like(work.xr)
        x[~work.limited] = work.xr0[~work.limited] + work.step[~work.limited]
        x[work.limited] = work.limit[work.limited] - work.step[work.limited]
        # Since the new bracket endpoint is calculated from an offset with the
        # limit, it may be the case that the new endpoint equals the old endpoint,
        # when the old endpoint is sufficiently close to the limit. We use the
        # limit itself as the new endpoint in these cases.
        x[work.limited] = xp.where(
            x[work.limited] == work.xr[work.limited],
            work.limit[work.limited],
            x[work.limited],
        )
        return x

    def post_func_eval(x, f, work):
        work.xl, work.xm, work.xr = work.xm, work.xr, x
        work.fl, work.fm, work.fr = work.fm, work.fr, f

    def check_termination(work):
        # Condition 0: Initial bracket is invalid.
        stop = (work.status == eim._EINPUTERR)

        # Condition 1: A valid bracket has been found.
        i = (
            (work.fl >= work.fm) & (work.fr > work.fm)
            | (work.fl > work.fm) & (work.fr >= work.fm)
        ) & ~stop
        work.status[i] = eim._ECONVERGED
        stop[i] = True

        # Condition 2: Moving end of bracket reaches limit.
        i = (work.xr == work.limit) & ~stop
        work.status[i] = _ELIMITS
        stop[i] = True

        # Condition 3: non-finite value encountered
        i = ~(xp.isfinite(work.xr) & xp.isfinite(work.fr)) & ~stop
        work.status[i] = eim._EVALUEERR
        stop[i] = True

        return stop

    def post_termination_check(work):
        pass

    def customize_result(res, shape):
        # Reorder entries of xl and xr if they were swapped due to f(xl0) < f(xr0).
        comp = res['xl'] > res['xr']
        res['xl'][comp], res['xr'][comp] = res['xr'][comp], res['xl'][comp]
        res['fl'][comp], res['fr'][comp] = res['fr'][comp], res['fl'][comp]
        return shape

    return eim._loop(work, callback, shape,
                     maxiter, func, args, dtype,
                     pre_func_eval, post_func_eval,
                     check_termination, post_termination_check,
                     customize_result, res_work_pairs, xp)