File size: 22,895 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
"""Constraints definition for minimize."""
import numpy as np
from ._hessian_update_strategy import BFGS
from ._differentiable_functions import (
    VectorFunction, LinearVectorFunction, IdentityVectorFunction)
from ._optimize import OptimizeWarning
from warnings import warn, catch_warnings, simplefilter, filterwarnings
from scipy.sparse import issparse


def _arr_to_scalar(x):
    # If x is a numpy array, return x.item().  This will
    # fail if the array has more than one element.
    return x.item() if isinstance(x, np.ndarray) else x


class NonlinearConstraint:
    """Nonlinear constraint on the variables.

    The constraint has the general inequality form::

        lb <= fun(x) <= ub

    Here the vector of independent variables x is passed as ndarray of shape
    (n,) and ``fun`` returns a vector with m components.

    It is possible to use equal bounds to represent an equality constraint or
    infinite bounds to represent a one-sided constraint.

    Parameters
    ----------
    fun : callable
        The function defining the constraint.
        The signature is ``fun(x) -> array_like, shape (m,)``.
    lb, ub : array_like
        Lower and upper bounds on the constraint. Each array must have the
        shape (m,) or be a scalar, in the latter case a bound will be the same
        for all components of the constraint. Use ``np.inf`` with an
        appropriate sign to specify a one-sided constraint.
        Set components of `lb` and `ub` equal to represent an equality
        constraint. Note that you can mix constraints of different types:
        interval, one-sided or equality, by setting different components of
        `lb` and `ub` as  necessary.
    jac : {callable,  '2-point', '3-point', 'cs'}, optional
        Method of computing the Jacobian matrix (an m-by-n matrix,
        where element (i, j) is the partial derivative of f[i] with
        respect to x[j]).  The keywords {'2-point', '3-point',
        'cs'} select a finite difference scheme for the numerical estimation.
        A callable must have the following signature::

            jac(x) -> {ndarray, sparse matrix}, shape (m, n)

        Default is '2-point'.
    hess : {callable, '2-point', '3-point', 'cs', HessianUpdateStrategy, None}, optional
        Method for computing the Hessian matrix. The keywords
        {'2-point', '3-point', 'cs'} select a finite difference scheme for
        numerical  estimation.  Alternatively, objects implementing
        `HessianUpdateStrategy` interface can be used to approximate the
        Hessian. Currently available implementations are:

        - `BFGS` (default option)
        - `SR1`

        A callable must return the Hessian matrix of ``dot(fun, v)`` and
        must have the following signature:
        ``hess(x, v) -> {LinearOperator, sparse matrix, array_like}, shape (n, n)``.
        Here ``v`` is ndarray with shape (m,) containing Lagrange multipliers.
    keep_feasible : array_like of bool, optional
        Whether to keep the constraint components feasible throughout
        iterations. A single value set this property for all components.
        Default is False. Has no effect for equality constraints.
    finite_diff_rel_step: None or array_like, optional
        Relative step size for the finite difference approximation. Default is
        None, which will select a reasonable value automatically depending
        on a finite difference scheme.
    finite_diff_jac_sparsity: {None, array_like, sparse matrix}, optional
        Defines the sparsity structure of the Jacobian matrix for finite
        difference estimation, its shape must be (m, n). If the Jacobian has
        only few non-zero elements in *each* row, providing the sparsity
        structure will greatly speed up the computations. A zero entry means
        that a corresponding element in the Jacobian is identically zero.
        If provided, forces the use of 'lsmr' trust-region solver.
        If None (default) then dense differencing will be used.

    Notes
    -----
    Finite difference schemes {'2-point', '3-point', 'cs'} may be used for
    approximating either the Jacobian or the Hessian. We, however, do not allow
    its use for approximating both simultaneously. Hence whenever the Jacobian
    is estimated via finite-differences, we require the Hessian to be estimated
    using one of the quasi-Newton strategies.

    The scheme 'cs' is potentially the most accurate, but requires the function
    to correctly handles complex inputs and be analytically continuable to the
    complex plane. The scheme '3-point' is more accurate than '2-point' but
    requires twice as many operations.

    Examples
    --------
    Constrain ``x[0] < sin(x[1]) + 1.9``

    >>> from scipy.optimize import NonlinearConstraint
    >>> import numpy as np
    >>> con = lambda x: x[0] - np.sin(x[1])
    >>> nlc = NonlinearConstraint(con, -np.inf, 1.9)

    """
    def __init__(self, fun, lb, ub, jac='2-point', hess=None,
                 keep_feasible=False, finite_diff_rel_step=None,
                 finite_diff_jac_sparsity=None):
        if hess is None:
            hess = BFGS()
        self.fun = fun
        self.lb = lb
        self.ub = ub
        self.finite_diff_rel_step = finite_diff_rel_step
        self.finite_diff_jac_sparsity = finite_diff_jac_sparsity
        self.jac = jac
        self.hess = hess
        self.keep_feasible = keep_feasible


class LinearConstraint:
    """Linear constraint on the variables.

    The constraint has the general inequality form::

        lb <= A.dot(x) <= ub

    Here the vector of independent variables x is passed as ndarray of shape
    (n,) and the matrix A has shape (m, n).

    It is possible to use equal bounds to represent an equality constraint or
    infinite bounds to represent a one-sided constraint.

    Parameters
    ----------
    A : {array_like, sparse matrix}, shape (m, n)
        Matrix defining the constraint.
    lb, ub : dense array_like, optional
        Lower and upper limits on the constraint. Each array must have the
        shape (m,) or be a scalar, in the latter case a bound will be the same
        for all components of the constraint. Use ``np.inf`` with an
        appropriate sign to specify a one-sided constraint.
        Set components of `lb` and `ub` equal to represent an equality
        constraint. Note that you can mix constraints of different types:
        interval, one-sided or equality, by setting different components of
        `lb` and `ub` as  necessary. Defaults to ``lb = -np.inf``
        and ``ub = np.inf`` (no limits).
    keep_feasible : dense array_like of bool, optional
        Whether to keep the constraint components feasible throughout
        iterations. A single value set this property for all components.
        Default is False. Has no effect for equality constraints.
    """
    def _input_validation(self):
        if self.A.ndim != 2:
            message = "`A` must have exactly two dimensions."
            raise ValueError(message)

        try:
            shape = self.A.shape[0:1]
            self.lb = np.broadcast_to(self.lb, shape)
            self.ub = np.broadcast_to(self.ub, shape)
            self.keep_feasible = np.broadcast_to(self.keep_feasible, shape)
        except ValueError:
            message = ("`lb`, `ub`, and `keep_feasible` must be broadcastable "
                       "to shape `A.shape[0:1]`")
            raise ValueError(message)

    def __init__(self, A, lb=-np.inf, ub=np.inf, keep_feasible=False):
        if not issparse(A):
            # In some cases, if the constraint is not valid, this emits a
            # VisibleDeprecationWarning about ragged nested sequences
            # before eventually causing an error. `scipy.optimize.milp` would
            # prefer that this just error out immediately so it can handle it
            # rather than concerning the user.
            with catch_warnings():
                simplefilter("error")
                self.A = np.atleast_2d(A).astype(np.float64)
        else:
            self.A = A
        if issparse(lb) or issparse(ub):
            raise ValueError("Constraint limits must be dense arrays.")
        self.lb = np.atleast_1d(lb).astype(np.float64)
        self.ub = np.atleast_1d(ub).astype(np.float64)

        if issparse(keep_feasible):
            raise ValueError("`keep_feasible` must be a dense array.")
        self.keep_feasible = np.atleast_1d(keep_feasible).astype(bool)
        self._input_validation()

    def residual(self, x):
        """
        Calculate the residual between the constraint function and the limits

        For a linear constraint of the form::

            lb <= A@x <= ub

        the lower and upper residuals between ``A@x`` and the limits are values
        ``sl`` and ``sb`` such that::

            lb + sl == A@x == ub - sb

        When all elements of ``sl`` and ``sb`` are positive, all elements of
        the constraint are satisfied; a negative element in ``sl`` or ``sb``
        indicates that the corresponding element of the constraint is not
        satisfied.

        Parameters
        ----------
        x: array_like
            Vector of independent variables

        Returns
        -------
        sl, sb : array-like
            The lower and upper residuals
        """
        return self.A@x - self.lb, self.ub - self.A@x


class Bounds:
    """Bounds constraint on the variables.

    The constraint has the general inequality form::

        lb <= x <= ub

    It is possible to use equal bounds to represent an equality constraint or
    infinite bounds to represent a one-sided constraint.

    Parameters
    ----------
    lb, ub : dense array_like, optional
        Lower and upper bounds on independent variables. `lb`, `ub`, and
        `keep_feasible` must be the same shape or broadcastable.
        Set components of `lb` and `ub` equal
        to fix a variable. Use ``np.inf`` with an appropriate sign to disable
        bounds on all or some variables. Note that you can mix constraints of
        different types: interval, one-sided or equality, by setting different
        components of `lb` and `ub` as necessary. Defaults to ``lb = -np.inf``
        and ``ub = np.inf`` (no bounds).
    keep_feasible : dense array_like of bool, optional
        Whether to keep the constraint components feasible throughout
        iterations. Must be broadcastable with `lb` and `ub`.
        Default is False. Has no effect for equality constraints.
    """
    def _input_validation(self):
        try:
            res = np.broadcast_arrays(self.lb, self.ub, self.keep_feasible)
            self.lb, self.ub, self.keep_feasible = res
        except ValueError:
            message = "`lb`, `ub`, and `keep_feasible` must be broadcastable."
            raise ValueError(message)

    def __init__(self, lb=-np.inf, ub=np.inf, keep_feasible=False):
        if issparse(lb) or issparse(ub):
            raise ValueError("Lower and upper bounds must be dense arrays.")
        self.lb = np.atleast_1d(lb)
        self.ub = np.atleast_1d(ub)

        if issparse(keep_feasible):
            raise ValueError("`keep_feasible` must be a dense array.")
        self.keep_feasible = np.atleast_1d(keep_feasible).astype(bool)
        self._input_validation()

    def __repr__(self):
        start = f"{type(self).__name__}({self.lb!r}, {self.ub!r}"
        if np.any(self.keep_feasible):
            end = f", keep_feasible={self.keep_feasible!r})"
        else:
            end = ")"
        return start + end

    def residual(self, x):
        """Calculate the residual (slack) between the input and the bounds

        For a bound constraint of the form::

            lb <= x <= ub

        the lower and upper residuals between `x` and the bounds are values
        ``sl`` and ``sb`` such that::

            lb + sl == x == ub - sb

        When all elements of ``sl`` and ``sb`` are positive, all elements of
        ``x`` lie within the bounds; a negative element in ``sl`` or ``sb``
        indicates that the corresponding element of ``x`` is out of bounds.

        Parameters
        ----------
        x: array_like
            Vector of independent variables

        Returns
        -------
        sl, sb : array-like
            The lower and upper residuals
        """
        return x - self.lb, self.ub - x


class PreparedConstraint:
    """Constraint prepared from a user defined constraint.

    On creation it will check whether a constraint definition is valid and
    the initial point is feasible. If created successfully, it will contain
    the attributes listed below.

    Parameters
    ----------
    constraint : {NonlinearConstraint, LinearConstraint`, Bounds}
        Constraint to check and prepare.
    x0 : array_like
        Initial vector of independent variables.
    sparse_jacobian : bool or None, optional
        If bool, then the Jacobian of the constraint will be converted
        to the corresponded format if necessary. If None (default), such
        conversion is not made.
    finite_diff_bounds : 2-tuple, optional
        Lower and upper bounds on the independent variables for the finite
        difference approximation, if applicable. Defaults to no bounds.

    Attributes
    ----------
    fun : {VectorFunction, LinearVectorFunction, IdentityVectorFunction}
        Function defining the constraint wrapped by one of the convenience
        classes.
    bounds : 2-tuple
        Contains lower and upper bounds for the constraints --- lb and ub.
        These are converted to ndarray and have a size equal to the number of
        the constraints.
    keep_feasible : ndarray
         Array indicating which components must be kept feasible with a size
         equal to the number of the constraints.
    """
    def __init__(self, constraint, x0, sparse_jacobian=None,
                 finite_diff_bounds=(-np.inf, np.inf)):
        if isinstance(constraint, NonlinearConstraint):
            fun = VectorFunction(constraint.fun, x0,
                                 constraint.jac, constraint.hess,
                                 constraint.finite_diff_rel_step,
                                 constraint.finite_diff_jac_sparsity,
                                 finite_diff_bounds, sparse_jacobian)
        elif isinstance(constraint, LinearConstraint):
            fun = LinearVectorFunction(constraint.A, x0, sparse_jacobian)
        elif isinstance(constraint, Bounds):
            fun = IdentityVectorFunction(x0, sparse_jacobian)
        else:
            raise ValueError("`constraint` of an unknown type is passed.")

        m = fun.m

        lb = np.asarray(constraint.lb, dtype=float)
        ub = np.asarray(constraint.ub, dtype=float)
        keep_feasible = np.asarray(constraint.keep_feasible, dtype=bool)

        lb = np.broadcast_to(lb, m)
        ub = np.broadcast_to(ub, m)
        keep_feasible = np.broadcast_to(keep_feasible, m)

        if keep_feasible.shape != (m,):
            raise ValueError("`keep_feasible` has a wrong shape.")

        mask = keep_feasible & (lb != ub)
        f0 = fun.f
        if np.any(f0[mask] < lb[mask]) or np.any(f0[mask] > ub[mask]):
            raise ValueError("`x0` is infeasible with respect to some "
                             "inequality constraint with `keep_feasible` "
                             "set to True.")

        self.fun = fun
        self.bounds = (lb, ub)
        self.keep_feasible = keep_feasible

    def violation(self, x):
        """How much the constraint is exceeded by.

        Parameters
        ----------
        x : array-like
            Vector of independent variables

        Returns
        -------
        excess : array-like
            How much the constraint is exceeded by, for each of the
            constraints specified by `PreparedConstraint.fun`.
        """
        with catch_warnings():
            # Ignore the following warning, it's not important when
            # figuring out total violation
            # UserWarning: delta_grad == 0.0. Check if the approximated
            # function is linear
            filterwarnings("ignore", "delta_grad", UserWarning)
            ev = self.fun.fun(np.asarray(x))

        excess_lb = np.maximum(self.bounds[0] - ev, 0)
        excess_ub = np.maximum(ev - self.bounds[1], 0)

        return excess_lb + excess_ub


def new_bounds_to_old(lb, ub, n):
    """Convert the new bounds representation to the old one.

    The new representation is a tuple (lb, ub) and the old one is a list
    containing n tuples, ith containing lower and upper bound on a ith
    variable.
    If any of the entries in lb/ub are -np.inf/np.inf they are replaced by
    None.
    """
    lb = np.broadcast_to(lb, n)
    ub = np.broadcast_to(ub, n)

    lb = [float(x) if x > -np.inf else None for x in lb]
    ub = [float(x) if x < np.inf else None for x in ub]

    return list(zip(lb, ub))


def old_bound_to_new(bounds):
    """Convert the old bounds representation to the new one.

    The new representation is a tuple (lb, ub) and the old one is a list
    containing n tuples, ith containing lower and upper bound on a ith
    variable.
    If any of the entries in lb/ub are None they are replaced by
    -np.inf/np.inf.
    """
    lb, ub = zip(*bounds)

    # Convert occurrences of None to -inf or inf, and replace occurrences of
    # any numpy array x with x.item(). Then wrap the results in numpy arrays.
    lb = np.array([float(_arr_to_scalar(x)) if x is not None else -np.inf
                   for x in lb])
    ub = np.array([float(_arr_to_scalar(x)) if x is not None else np.inf
                   for x in ub])

    return lb, ub


def strict_bounds(lb, ub, keep_feasible, n_vars):
    """Remove bounds which are not asked to be kept feasible."""
    strict_lb = np.resize(lb, n_vars).astype(float)
    strict_ub = np.resize(ub, n_vars).astype(float)
    keep_feasible = np.resize(keep_feasible, n_vars)
    strict_lb[~keep_feasible] = -np.inf
    strict_ub[~keep_feasible] = np.inf
    return strict_lb, strict_ub


def new_constraint_to_old(con, x0):
    """
    Converts new-style constraint objects to old-style constraint dictionaries.
    """
    if isinstance(con, NonlinearConstraint):
        if (con.finite_diff_jac_sparsity is not None or
                con.finite_diff_rel_step is not None or
                not isinstance(con.hess, BFGS) or  # misses user specified BFGS
                con.keep_feasible):
            warn("Constraint options `finite_diff_jac_sparsity`, "
                 "`finite_diff_rel_step`, `keep_feasible`, and `hess`"
                 "are ignored by this method.",
                 OptimizeWarning, stacklevel=3)

        fun = con.fun
        if callable(con.jac):
            jac = con.jac
        else:
            jac = None

    else:  # LinearConstraint
        if np.any(con.keep_feasible):
            warn("Constraint option `keep_feasible` is ignored by this method.",
                 OptimizeWarning, stacklevel=3)

        A = con.A
        if issparse(A):
            A = A.toarray()
        def fun(x):
            return np.dot(A, x)
        def jac(x):
            return A

    # FIXME: when bugs in VectorFunction/LinearVectorFunction are worked out,
    # use pcon.fun.fun and pcon.fun.jac. Until then, get fun/jac above.
    pcon = PreparedConstraint(con, x0)
    lb, ub = pcon.bounds

    i_eq = lb == ub
    i_bound_below = np.logical_xor(lb != -np.inf, i_eq)
    i_bound_above = np.logical_xor(ub != np.inf, i_eq)
    i_unbounded = np.logical_and(lb == -np.inf, ub == np.inf)

    if np.any(i_unbounded):
        warn("At least one constraint is unbounded above and below. Such "
             "constraints are ignored.",
             OptimizeWarning, stacklevel=3)

    ceq = []
    if np.any(i_eq):
        def f_eq(x):
            y = np.array(fun(x)).flatten()
            return y[i_eq] - lb[i_eq]
        ceq = [{"type": "eq", "fun": f_eq}]

        if jac is not None:
            def j_eq(x):
                dy = jac(x)
                if issparse(dy):
                    dy = dy.toarray()
                dy = np.atleast_2d(dy)
                return dy[i_eq, :]
            ceq[0]["jac"] = j_eq

    cineq = []
    n_bound_below = np.sum(i_bound_below)
    n_bound_above = np.sum(i_bound_above)
    if n_bound_below + n_bound_above:
        def f_ineq(x):
            y = np.zeros(n_bound_below + n_bound_above)
            y_all = np.array(fun(x)).flatten()
            y[:n_bound_below] = y_all[i_bound_below] - lb[i_bound_below]
            y[n_bound_below:] = -(y_all[i_bound_above] - ub[i_bound_above])
            return y
        cineq = [{"type": "ineq", "fun": f_ineq}]

        if jac is not None:
            def j_ineq(x):
                dy = np.zeros((n_bound_below + n_bound_above, len(x0)))
                dy_all = jac(x)
                if issparse(dy_all):
                    dy_all = dy_all.toarray()
                dy_all = np.atleast_2d(dy_all)
                dy[:n_bound_below, :] = dy_all[i_bound_below]
                dy[n_bound_below:, :] = -dy_all[i_bound_above]
                return dy
            cineq[0]["jac"] = j_ineq

    old_constraints = ceq + cineq

    if len(old_constraints) > 1:
        warn("Equality and inequality constraints are specified in the same "
             "element of the constraint list. For efficient use with this "
             "method, equality and inequality constraints should be specified "
             "in separate elements of the constraint list. ",
             OptimizeWarning, stacklevel=3)
    return old_constraints


def old_constraint_to_new(ic, con):
    """
    Converts old-style constraint dictionaries to new-style constraint objects.
    """
    # check type
    try:
        ctype = con['type'].lower()
    except KeyError as e:
        raise KeyError('Constraint %d has no type defined.' % ic) from e
    except TypeError as e:
        raise TypeError(
            'Constraints must be a sequence of dictionaries.'
        ) from e
    except AttributeError as e:
        raise TypeError("Constraint's type must be a string.") from e
    else:
        if ctype not in ['eq', 'ineq']:
            raise ValueError(f"Unknown constraint type '{con['type']}'.")
    if 'fun' not in con:
        raise ValueError('Constraint %d has no function defined.' % ic)

    lb = 0
    if ctype == 'eq':
        ub = 0
    else:
        ub = np.inf

    jac = '2-point'
    if 'args' in con:
        args = con['args']
        def fun(x):
            return con["fun"](x, *args)
        if 'jac' in con:
            def jac(x):
                return con["jac"](x, *args)
    else:
        fun = con['fun']
        if 'jac' in con:
            jac = con['jac']

    return NonlinearConstraint(fun, lb, ub, jac)