File size: 25,235 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
import numpy as np

"""
# 2023 - ported from minpack2.dcsrch, dcstep (Fortran) to Python
c     MINPACK-1 Project. June 1983.
c     Argonne National Laboratory.
c     Jorge J. More' and David J. Thuente.
c
c     MINPACK-2 Project. November 1993.
c     Argonne National Laboratory and University of Minnesota.
c     Brett M. Averick, Richard G. Carter, and Jorge J. More'.
"""

# NOTE this file was linted by black on first commit, and can be kept that way.


class DCSRCH:
    """
    Parameters
    ----------
    phi : callable phi(alpha)
        Function at point `alpha`
    derphi : callable phi'(alpha)
        Objective function derivative. Returns a scalar.
    ftol : float
        A nonnegative tolerance for the sufficient decrease condition.
    gtol : float
        A nonnegative tolerance for the curvature condition.
    xtol : float
        A nonnegative relative tolerance for an acceptable step. The
        subroutine exits with a warning if the relative difference between
        sty and stx is less than xtol.
    stpmin : float
        A nonnegative lower bound for the step.
    stpmax :
        A nonnegative upper bound for the step.

    Notes
    -----

    This subroutine finds a step that satisfies a sufficient
    decrease condition and a curvature condition.

    Each call of the subroutine updates an interval with
    endpoints stx and sty. The interval is initially chosen
    so that it contains a minimizer of the modified function

           psi(stp) = f(stp) - f(0) - ftol*stp*f'(0).

    If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the
    interval is chosen so that it contains a minimizer of f.

    The algorithm is designed to find a step that satisfies
    the sufficient decrease condition

           f(stp) <= f(0) + ftol*stp*f'(0),

    and the curvature condition

           abs(f'(stp)) <= gtol*abs(f'(0)).

    If ftol is less than gtol and if, for example, the function
    is bounded below, then there is always a step which satisfies
    both conditions.

    If no step can be found that satisfies both conditions, then
    the algorithm stops with a warning. In this case stp only
    satisfies the sufficient decrease condition.

    A typical invocation of dcsrch has the following outline:

    Evaluate the function at stp = 0.0d0; store in f.
    Evaluate the gradient at stp = 0.0d0; store in g.
    Choose a starting step stp.

    task = 'START'
    10 continue
        call dcsrch(stp,f,g,ftol,gtol,xtol,task,stpmin,stpmax,
                   isave,dsave)
        if (task .eq. 'FG') then
           Evaluate the function and the gradient at stp
           go to 10
           end if

    NOTE: The user must not alter work arrays between calls.

    The subroutine statement is

        subroutine dcsrch(f,g,stp,ftol,gtol,xtol,stpmin,stpmax,
                         task,isave,dsave)
        where

    stp is a double precision variable.
        On entry stp is the current estimate of a satisfactory
            step. On initial entry, a positive initial estimate
            must be provided.
        On exit stp is the current estimate of a satisfactory step
            if task = 'FG'. If task = 'CONV' then stp satisfies
            the sufficient decrease and curvature condition.

    f is a double precision variable.
        On initial entry f is the value of the function at 0.
        On subsequent entries f is the value of the
            function at stp.
        On exit f is the value of the function at stp.

    g is a double precision variable.
        On initial entry g is the derivative of the function at 0.
        On subsequent entries g is the derivative of the
           function at stp.
        On exit g is the derivative of the function at stp.

    ftol is a double precision variable.
        On entry ftol specifies a nonnegative tolerance for the
           sufficient decrease condition.
        On exit ftol is unchanged.

    gtol is a double precision variable.
        On entry gtol specifies a nonnegative tolerance for the
           curvature condition.
        On exit gtol is unchanged.

    xtol is a double precision variable.
        On entry xtol specifies a nonnegative relative tolerance
          for an acceptable step. The subroutine exits with a
          warning if the relative difference between sty and stx
          is less than xtol.

        On exit xtol is unchanged.

    task is a character variable of length at least 60.
        On initial entry task must be set to 'START'.
        On exit task indicates the required action:

           If task(1:2) = 'FG' then evaluate the function and
           derivative at stp and call dcsrch again.

           If task(1:4) = 'CONV' then the search is successful.

           If task(1:4) = 'WARN' then the subroutine is not able
           to satisfy the convergence conditions. The exit value of
           stp contains the best point found during the search.

          If task(1:5) = 'ERROR' then there is an error in the
          input arguments.

        On exit with convergence, a warning or an error, the
           variable task contains additional information.

    stpmin is a double precision variable.
        On entry stpmin is a nonnegative lower bound for the step.
        On exit stpmin is unchanged.

    stpmax is a double precision variable.
        On entry stpmax is a nonnegative upper bound for the step.
        On exit stpmax is unchanged.

    isave is an integer work array of dimension 2.

    dsave is a double precision work array of dimension 13.

    Subprograms called

      MINPACK-2 ... dcstep
    MINPACK-1 Project. June 1983.
    Argonne National Laboratory.
    Jorge J. More' and David J. Thuente.

    MINPACK-2 Project. November 1993.
    Argonne National Laboratory and University of Minnesota.
    Brett M. Averick, Richard G. Carter, and Jorge J. More'.
    """

    def __init__(self, phi, derphi, ftol, gtol, xtol, stpmin, stpmax):
        self.stage = None
        self.ginit = None
        self.gtest = None
        self.gx = None
        self.gy = None
        self.finit = None
        self.fx = None
        self.fy = None
        self.stx = None
        self.sty = None
        self.stmin = None
        self.stmax = None
        self.width = None
        self.width1 = None

        # leave all assessment of tolerances/limits to the first call of
        # this object
        self.ftol = ftol
        self.gtol = gtol
        self.xtol = xtol
        self.stpmin = stpmin
        self.stpmax = stpmax

        self.phi = phi
        self.derphi = derphi

    def __call__(self, alpha1, phi0=None, derphi0=None, maxiter=100):
        """
        Parameters
        ----------
        alpha1 : float
            alpha1 is the current estimate of a satisfactory
            step. A positive initial estimate must be provided.
        phi0 : float
            the value of `phi` at 0 (if known).
        derphi0 : float
            the derivative of `derphi` at 0 (if known).
        maxiter : int

        Returns
        -------
        alpha : float
            Step size, or None if no suitable step was found.
        phi : float
            Value of `phi` at the new point `alpha`.
        phi0 : float
            Value of `phi` at `alpha=0`.
        task : bytes
            On exit task indicates status information.

           If task[:4] == b'CONV' then the search is successful.

           If task[:4] == b'WARN' then the subroutine is not able
           to satisfy the convergence conditions. The exit value of
           stp contains the best point found during the search.

           If task[:5] == b'ERROR' then there is an error in the
           input arguments.
        """
        if phi0 is None:
            phi0 = self.phi(0.0)
        if derphi0 is None:
            derphi0 = self.derphi(0.0)

        phi1 = phi0
        derphi1 = derphi0

        task = b"START"
        for i in range(maxiter):
            stp, phi1, derphi1, task = self._iterate(
                alpha1, phi1, derphi1, task
            )

            if not np.isfinite(stp):
                task = b"WARN"
                stp = None
                break

            if task[:2] == b"FG":
                alpha1 = stp
                phi1 = self.phi(stp)
                derphi1 = self.derphi(stp)
            else:
                break
        else:
            # maxiter reached, the line search did not converge
            stp = None
            task = b"WARNING: dcsrch did not converge within max iterations"

        if task[:5] == b"ERROR" or task[:4] == b"WARN":
            stp = None  # failed

        return stp, phi1, phi0, task

    def _iterate(self, stp, f, g, task):
        """
        Parameters
        ----------
        stp : float
            The current estimate of a satisfactory step. On initial entry, a
            positive initial estimate must be provided.
        f : float
            On first call f is the value of the function at 0. On subsequent
            entries f should be the value of the function at stp.
        g : float
            On initial entry g is the derivative of the function at 0. On
            subsequent entries g is the derivative of the function at stp.
        task : bytes
            On initial entry task must be set to 'START'.

        On exit with convergence, a warning or an error, the
           variable task contains additional information.


        Returns
        -------
        stp, f, g, task: tuple

            stp : float
                the current estimate of a satisfactory step if task = 'FG'. If
                task = 'CONV' then stp satisfies the sufficient decrease and
                curvature condition.
            f : float
                the value of the function at stp.
            g : float
                the derivative of the function at stp.
            task : bytes
                On exit task indicates the required action:

               If task(1:2) == b'FG' then evaluate the function and
               derivative at stp and call dcsrch again.

               If task(1:4) == b'CONV' then the search is successful.

               If task(1:4) == b'WARN' then the subroutine is not able
               to satisfy the convergence conditions. The exit value of
               stp contains the best point found during the search.

              If task(1:5) == b'ERROR' then there is an error in the
              input arguments.
        """
        p5 = 0.5
        p66 = 0.66
        xtrapl = 1.1
        xtrapu = 4.0

        if task[:5] == b"START":
            if stp < self.stpmin:
                task = b"ERROR: STP .LT. STPMIN"
            if stp > self.stpmax:
                task = b"ERROR: STP .GT. STPMAX"
            if g >= 0:
                task = b"ERROR: INITIAL G .GE. ZERO"
            if self.ftol < 0:
                task = b"ERROR: FTOL .LT. ZERO"
            if self.gtol < 0:
                task = b"ERROR: GTOL .LT. ZERO"
            if self.xtol < 0:
                task = b"ERROR: XTOL .LT. ZERO"
            if self.stpmin < 0:
                task = b"ERROR: STPMIN .LT. ZERO"
            if self.stpmax < self.stpmin:
                task = b"ERROR: STPMAX .LT. STPMIN"

            if task[:5] == b"ERROR":
                return stp, f, g, task

            # Initialize local variables.

            self.brackt = False
            self.stage = 1
            self.finit = f
            self.ginit = g
            self.gtest = self.ftol * self.ginit
            self.width = self.stpmax - self.stpmin
            self.width1 = self.width / p5

            # The variables stx, fx, gx contain the values of the step,
            # function, and derivative at the best step.
            # The variables sty, fy, gy contain the value of the step,
            # function, and derivative at sty.
            # The variables stp, f, g contain the values of the step,
            # function, and derivative at stp.

            self.stx = 0.0
            self.fx = self.finit
            self.gx = self.ginit
            self.sty = 0.0
            self.fy = self.finit
            self.gy = self.ginit
            self.stmin = 0
            self.stmax = stp + xtrapu * stp
            task = b"FG"
            return stp, f, g, task

        # in the original Fortran this was a location to restore variables
        # we don't need to do that because they're attributes.

        # If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the
        # algorithm enters the second stage.
        ftest = self.finit + stp * self.gtest

        if self.stage == 1 and f <= ftest and g >= 0:
            self.stage = 2

        # test for warnings
        if self.brackt and (stp <= self.stmin or stp >= self.stmax):
            task = b"WARNING: ROUNDING ERRORS PREVENT PROGRESS"
        if self.brackt and self.stmax - self.stmin <= self.xtol * self.stmax:
            task = b"WARNING: XTOL TEST SATISFIED"
        if stp == self.stpmax and f <= ftest and g <= self.gtest:
            task = b"WARNING: STP = STPMAX"
        if stp == self.stpmin and (f > ftest or g >= self.gtest):
            task = b"WARNING: STP = STPMIN"

        # test for convergence
        if f <= ftest and abs(g) <= self.gtol * -self.ginit:
            task = b"CONVERGENCE"

        # test for termination
        if task[:4] == b"WARN" or task[:4] == b"CONV":
            return stp, f, g, task

        # A modified function is used to predict the step during the
        # first stage if a lower function value has been obtained but
        # the decrease is not sufficient.
        if self.stage == 1 and f <= self.fx and f > ftest:
            # Define the modified function and derivative values.
            fm = f - stp * self.gtest
            fxm = self.fx - self.stx * self.gtest
            fym = self.fy - self.sty * self.gtest
            gm = g - self.gtest
            gxm = self.gx - self.gtest
            gym = self.gy - self.gtest

            # Call dcstep to update stx, sty, and to compute the new step.
            # dcstep can have several operations which can produce NaN
            # e.g. inf/inf. Filter these out.
            with np.errstate(invalid="ignore", over="ignore"):
                tup = dcstep(
                    self.stx,
                    fxm,
                    gxm,
                    self.sty,
                    fym,
                    gym,
                    stp,
                    fm,
                    gm,
                    self.brackt,
                    self.stmin,
                    self.stmax,
                )
                self.stx, fxm, gxm, self.sty, fym, gym, stp, self.brackt = tup

            # Reset the function and derivative values for f
            self.fx = fxm + self.stx * self.gtest
            self.fy = fym + self.sty * self.gtest
            self.gx = gxm + self.gtest
            self.gy = gym + self.gtest

        else:
            # Call dcstep to update stx, sty, and to compute the new step.
            # dcstep can have several operations which can produce NaN
            # e.g. inf/inf. Filter these out.

            with np.errstate(invalid="ignore", over="ignore"):
                tup = dcstep(
                    self.stx,
                    self.fx,
                    self.gx,
                    self.sty,
                    self.fy,
                    self.gy,
                    stp,
                    f,
                    g,
                    self.brackt,
                    self.stmin,
                    self.stmax,
                )
            (
                self.stx,
                self.fx,
                self.gx,
                self.sty,
                self.fy,
                self.gy,
                stp,
                self.brackt,
            ) = tup

        # Decide if a bisection step is needed
        if self.brackt:
            if abs(self.sty - self.stx) >= p66 * self.width1:
                stp = self.stx + p5 * (self.sty - self.stx)
            self.width1 = self.width
            self.width = abs(self.sty - self.stx)

        # Set the minimum and maximum steps allowed for stp.
        if self.brackt:
            self.stmin = min(self.stx, self.sty)
            self.stmax = max(self.stx, self.sty)
        else:
            self.stmin = stp + xtrapl * (stp - self.stx)
            self.stmax = stp + xtrapu * (stp - self.stx)

        # Force the step to be within the bounds stpmax and stpmin.
        stp = np.clip(stp, self.stpmin, self.stpmax)

        # If further progress is not possible, let stp be the best
        # point obtained during the search.
        if (
            self.brackt
            and (stp <= self.stmin or stp >= self.stmax)
            or (
                self.brackt
                and self.stmax - self.stmin <= self.xtol * self.stmax
            )
        ):
            stp = self.stx

        # Obtain another function and derivative
        task = b"FG"
        return stp, f, g, task


def dcstep(stx, fx, dx, sty, fy, dy, stp, fp, dp, brackt, stpmin, stpmax):
    """
    Subroutine dcstep

    This subroutine computes a safeguarded step for a search
    procedure and updates an interval that contains a step that
    satisfies a sufficient decrease and a curvature condition.

    The parameter stx contains the step with the least function
    value. If brackt is set to .true. then a minimizer has
    been bracketed in an interval with endpoints stx and sty.
    The parameter stp contains the current step.
    The subroutine assumes that if brackt is set to .true. then

        min(stx,sty) < stp < max(stx,sty),

    and that the derivative at stx is negative in the direction
    of the step.

    The subroutine statement is

      subroutine dcstep(stx,fx,dx,sty,fy,dy,stp,fp,dp,brackt,
                        stpmin,stpmax)

    where

    stx is a double precision variable.
        On entry stx is the best step obtained so far and is an
          endpoint of the interval that contains the minimizer.
        On exit stx is the updated best step.

    fx is a double precision variable.
        On entry fx is the function at stx.
        On exit fx is the function at stx.

    dx is a double precision variable.
        On entry dx is the derivative of the function at
          stx. The derivative must be negative in the direction of
          the step, that is, dx and stp - stx must have opposite
          signs.
        On exit dx is the derivative of the function at stx.

    sty is a double precision variable.
        On entry sty is the second endpoint of the interval that
          contains the minimizer.
        On exit sty is the updated endpoint of the interval that
          contains the minimizer.

    fy is a double precision variable.
        On entry fy is the function at sty.
        On exit fy is the function at sty.

    dy is a double precision variable.
        On entry dy is the derivative of the function at sty.
        On exit dy is the derivative of the function at the exit sty.

    stp is a double precision variable.
        On entry stp is the current step. If brackt is set to .true.
          then on input stp must be between stx and sty.
        On exit stp is a new trial step.

    fp is a double precision variable.
        On entry fp is the function at stp
        On exit fp is unchanged.

    dp is a double precision variable.
        On entry dp is the derivative of the function at stp.
        On exit dp is unchanged.

    brackt is an logical variable.
        On entry brackt specifies if a minimizer has been bracketed.
            Initially brackt must be set to .false.
        On exit brackt specifies if a minimizer has been bracketed.
            When a minimizer is bracketed brackt is set to .true.

    stpmin is a double precision variable.
        On entry stpmin is a lower bound for the step.
        On exit stpmin is unchanged.

    stpmax is a double precision variable.
        On entry stpmax is an upper bound for the step.
        On exit stpmax is unchanged.

    MINPACK-1 Project. June 1983
    Argonne National Laboratory.
    Jorge J. More' and David J. Thuente.

    MINPACK-2 Project. November 1993.
    Argonne National Laboratory and University of Minnesota.
    Brett M. Averick and Jorge J. More'.

    """
    sgn_dp = np.sign(dp)
    sgn_dx = np.sign(dx)

    # sgnd = dp * (dx / abs(dx))
    sgnd = sgn_dp * sgn_dx

    # First case: A higher function value. The minimum is bracketed.
    # If the cubic step is closer to stx than the quadratic step, the
    # cubic step is taken, otherwise the average of the cubic and
    # quadratic steps is taken.
    if fp > fx:
        theta = 3.0 * (fx - fp) / (stp - stx) + dx + dp
        s = max(abs(theta), abs(dx), abs(dp))
        gamma = s * np.sqrt((theta / s) ** 2 - (dx / s) * (dp / s))
        if stp < stx:
            gamma *= -1
        p = (gamma - dx) + theta
        q = ((gamma - dx) + gamma) + dp
        r = p / q
        stpc = stx + r * (stp - stx)
        stpq = stx + ((dx / ((fx - fp) / (stp - stx) + dx)) / 2.0) * (stp - stx)
        if abs(stpc - stx) <= abs(stpq - stx):
            stpf = stpc
        else:
            stpf = stpc + (stpq - stpc) / 2.0
        brackt = True
    elif sgnd < 0.0:
        # Second case: A lower function value and derivatives of opposite
        # sign. The minimum is bracketed. If the cubic step is farther from
        # stp than the secant step, the cubic step is taken, otherwise the
        # secant step is taken.
        theta = 3 * (fx - fp) / (stp - stx) + dx + dp
        s = max(abs(theta), abs(dx), abs(dp))
        gamma = s * np.sqrt((theta / s) ** 2 - (dx / s) * (dp / s))
        if stp > stx:
            gamma *= -1
        p = (gamma - dp) + theta
        q = ((gamma - dp) + gamma) + dx
        r = p / q
        stpc = stp + r * (stx - stp)
        stpq = stp + (dp / (dp - dx)) * (stx - stp)
        if abs(stpc - stp) > abs(stpq - stp):
            stpf = stpc
        else:
            stpf = stpq
        brackt = True
    elif abs(dp) < abs(dx):
        # Third case: A lower function value, derivatives of the same sign,
        # and the magnitude of the derivative decreases.

        # The cubic step is computed only if the cubic tends to infinity
        # in the direction of the step or if the minimum of the cubic
        # is beyond stp. Otherwise the cubic step is defined to be the
        # secant step.
        theta = 3 * (fx - fp) / (stp - stx) + dx + dp
        s = max(abs(theta), abs(dx), abs(dp))

        # The case gamma = 0 only arises if the cubic does not tend
        # to infinity in the direction of the step.
        gamma = s * np.sqrt(max(0, (theta / s) ** 2 - (dx / s) * (dp / s)))
        if stp > stx:
            gamma = -gamma
        p = (gamma - dp) + theta
        q = (gamma + (dx - dp)) + gamma
        r = p / q
        if r < 0 and gamma != 0:
            stpc = stp + r * (stx - stp)
        elif stp > stx:
            stpc = stpmax
        else:
            stpc = stpmin
        stpq = stp + (dp / (dp - dx)) * (stx - stp)

        if brackt:
            # A minimizer has been bracketed. If the cubic step is
            # closer to stp than the secant step, the cubic step is
            # taken, otherwise the secant step is taken.
            if abs(stpc - stp) < abs(stpq - stp):
                stpf = stpc
            else:
                stpf = stpq

            if stp > stx:
                stpf = min(stp + 0.66 * (sty - stp), stpf)
            else:
                stpf = max(stp + 0.66 * (sty - stp), stpf)
        else:
            # A minimizer has not been bracketed. If the cubic step is
            # farther from stp than the secant step, the cubic step is
            # taken, otherwise the secant step is taken.
            if abs(stpc - stp) > abs(stpq - stp):
                stpf = stpc
            else:
                stpf = stpq
            stpf = np.clip(stpf, stpmin, stpmax)

    else:
        # Fourth case: A lower function value, derivatives of the same sign,
        # and the magnitude of the derivative does not decrease. If the
        # minimum is not bracketed, the step is either stpmin or stpmax,
        # otherwise the cubic step is taken.
        if brackt:
            theta = 3.0 * (fp - fy) / (sty - stp) + dy + dp
            s = max(abs(theta), abs(dy), abs(dp))
            gamma = s * np.sqrt((theta / s) ** 2 - (dy / s) * (dp / s))
            if stp > sty:
                gamma = -gamma
            p = (gamma - dp) + theta
            q = ((gamma - dp) + gamma) + dy
            r = p / q
            stpc = stp + r * (sty - stp)
            stpf = stpc
        elif stp > stx:
            stpf = stpmax
        else:
            stpf = stpmin

    # Update the interval which contains a minimizer.
    if fp > fx:
        sty = stp
        fy = fp
        dy = dp
    else:
        if sgnd < 0:
            sty = stx
            fy = fx
            dy = dx
        stx = stp
        fx = fp
        dx = dp

    # Compute the new step.
    stp = stpf

    return stx, fx, dx, sty, fy, dy, stp, brackt