File size: 86,506 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
"""
differential_evolution: The differential evolution global optimization algorithm
Added by Andrew Nelson 2014
"""
import warnings

import numpy as np
from scipy.optimize import OptimizeResult, minimize
from scipy.optimize._optimize import _status_message, _wrap_callback
from scipy._lib._util import (check_random_state, MapWrapper, _FunctionWrapper,
                              rng_integers, _transition_to_rng)

from scipy.optimize._constraints import (Bounds, new_bounds_to_old,
                                         NonlinearConstraint, LinearConstraint)
from scipy.sparse import issparse

__all__ = ['differential_evolution']


_MACHEPS = np.finfo(np.float64).eps


@_transition_to_rng("seed", position_num=9)
def differential_evolution(func, bounds, args=(), strategy='best1bin',
                           maxiter=1000, popsize=15, tol=0.01,
                           mutation=(0.5, 1), recombination=0.7, rng=None,
                           callback=None, disp=False, polish=True,
                           init='latinhypercube', atol=0, updating='immediate',
                           workers=1, constraints=(), x0=None, *,
                           integrality=None, vectorized=False):
    r"""Finds the global minimum of a multivariate function.

    The differential evolution method [1]_ is stochastic in nature. It does
    not use gradient methods to find the minimum, and can search large areas
    of candidate space, but often requires larger numbers of function
    evaluations than conventional gradient-based techniques.

    The algorithm is due to Storn and Price [2]_.

    Parameters
    ----------
    func : callable
        The objective function to be minimized. Must be in the form
        ``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
        and ``args`` is a tuple of any additional fixed parameters needed to
        completely specify the function. The number of parameters, N, is equal
        to ``len(x)``.
    bounds : sequence or `Bounds`
        Bounds for variables. There are two ways to specify the bounds:

        1. Instance of `Bounds` class.
        2. ``(min, max)`` pairs for each element in ``x``, defining the
           finite lower and upper bounds for the optimizing argument of
           `func`.

        The total number of bounds is used to determine the number of
        parameters, N. If there are parameters whose bounds are equal the total
        number of free parameters is ``N - N_equal``.

    args : tuple, optional
        Any additional fixed parameters needed to
        completely specify the objective function.
    strategy : {str, callable}, optional
        The differential evolution strategy to use. Should be one of:

        - 'best1bin'
        - 'best1exp'
        - 'rand1bin'
        - 'rand1exp'
        - 'rand2bin'
        - 'rand2exp'
        - 'randtobest1bin'
        - 'randtobest1exp'
        - 'currenttobest1bin'
        - 'currenttobest1exp'
        - 'best2exp'
        - 'best2bin'

        The default is 'best1bin'. Strategies that may be implemented are
        outlined in 'Notes'.
        Alternatively the differential evolution strategy can be customized by
        providing a callable that constructs a trial vector. The callable must
        have the form ``strategy(candidate: int, population: np.ndarray, rng=None)``,
        where ``candidate`` is an integer specifying which entry of the
        population is being evolved, ``population`` is an array of shape
        ``(S, N)`` containing all the population members (where S is the
        total population size), and ``rng`` is the random number generator
        being used within the solver.
        ``candidate`` will be in the range ``[0, S)``.
        ``strategy`` must return a trial vector with shape ``(N,)``. The
        fitness of this trial vector is compared against the fitness of
        ``population[candidate]``.

        .. versionchanged:: 1.12.0
            Customization of evolution strategy via a callable.

    maxiter : int, optional
        The maximum number of generations over which the entire population is
        evolved. The maximum number of function evaluations (with no polishing)
        is: ``(maxiter + 1) * popsize * (N - N_equal)``
    popsize : int, optional
        A multiplier for setting the total population size. The population has
        ``popsize * (N - N_equal)`` individuals. This keyword is overridden if
        an initial population is supplied via the `init` keyword. When using
        ``init='sobol'`` the population size is calculated as the next power
        of 2 after ``popsize * (N - N_equal)``.
    tol : float, optional
        Relative tolerance for convergence, the solving stops when
        ``np.std(population_energies) <= atol + tol * np.abs(np.mean(population_energies))``,
        where and `atol` and `tol` are the absolute and relative tolerance
        respectively.
    mutation : float or tuple(float, float), optional
        The mutation constant. In the literature this is also known as
        differential weight, being denoted by :math:`F`.
        If specified as a float it should be in the range [0, 2).
        If specified as a tuple ``(min, max)`` dithering is employed. Dithering
        randomly changes the mutation constant on a generation by generation
        basis. The mutation constant for that generation is taken from
        ``U[min, max)``. Dithering can help speed convergence significantly.
        Increasing the mutation constant increases the search radius, but will
        slow down convergence.
    recombination : float, optional
        The recombination constant, should be in the range [0, 1]. In the
        literature this is also known as the crossover probability, being
        denoted by CR. Increasing this value allows a larger number of mutants
        to progress into the next generation, but at the risk of population
        stability.
    rng : `numpy.random.Generator`, optional
        Pseudorandom number generator state. When `rng` is None, a new
        `numpy.random.Generator` is created using entropy from the
        operating system. Types other than `numpy.random.Generator` are
        passed to `numpy.random.default_rng` to instantiate a ``Generator``.
    disp : bool, optional
        Prints the evaluated `func` at every iteration.
    callback : callable, optional
        A callable called after each iteration. Has the signature::

            callback(intermediate_result: OptimizeResult)

        where ``intermediate_result`` is a keyword parameter containing an
        `OptimizeResult` with attributes ``x`` and ``fun``, the best solution
        found so far and the objective function. Note that the name
        of the parameter must be ``intermediate_result`` for the callback
        to be passed an `OptimizeResult`.

        The callback also supports a signature like::

            callback(x, convergence: float=val)

        ``val`` represents the fractional value of the population convergence.
        When ``val`` is greater than ``1.0``, the function halts.

        Introspection is used to determine which of the signatures is invoked.

        Global minimization will halt if the callback raises ``StopIteration``
        or returns ``True``; any polishing is still carried out.

        .. versionchanged:: 1.12.0
            callback accepts the ``intermediate_result`` keyword.

    polish : bool, optional
        If True (default), then `scipy.optimize.minimize` with the `L-BFGS-B`
        method is used to polish the best population member at the end, which
        can improve the minimization slightly. If a constrained problem is
        being studied then the `trust-constr` method is used instead. For large
        problems with many constraints, polishing can take a long time due to
        the Jacobian computations.

        .. versionchanged:: 1.15.0
            If `workers` is specified then the map-like callable that wraps
            `func` is supplied to `minimize` instead of it using `func`
            directly. This allows the caller to control how and where the
            invocations actually run.

    init : str or array-like, optional
        Specify which type of population initialization is performed. Should be
        one of:

        - 'latinhypercube'
        - 'sobol'
        - 'halton'
        - 'random'
        - array specifying the initial population. The array should have
          shape ``(S, N)``, where S is the total population size and N is
          the number of parameters.

        `init` is clipped to `bounds` before use.

        The default is 'latinhypercube'. Latin Hypercube sampling tries to
        maximize coverage of the available parameter space.

        'sobol' and 'halton' are superior alternatives and maximize even more
        the parameter space. 'sobol' will enforce an initial population
        size which is calculated as the next power of 2 after
        ``popsize * (N - N_equal)``. 'halton' has no requirements but is a bit
        less efficient. See `scipy.stats.qmc` for more details.

        'random' initializes the population randomly - this has the drawback
        that clustering can occur, preventing the whole of parameter space
        being covered. Use of an array to specify a population could be used,
        for example, to create a tight bunch of initial guesses in an location
        where the solution is known to exist, thereby reducing time for
        convergence.
    atol : float, optional
        Absolute tolerance for convergence, the solving stops when
        ``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
        where and `atol` and `tol` are the absolute and relative tolerance
        respectively.
    updating : {'immediate', 'deferred'}, optional
        If ``'immediate'``, the best solution vector is continuously updated
        within a single generation [4]_. This can lead to faster convergence as
        trial vectors can take advantage of continuous improvements in the best
        solution.
        With ``'deferred'``, the best solution vector is updated once per
        generation. Only ``'deferred'`` is compatible with parallelization or
        vectorization, and the `workers` and `vectorized` keywords can
        over-ride this option.

        .. versionadded:: 1.2.0

    workers : int or map-like callable, optional
        If `workers` is an int the population is subdivided into `workers`
        sections and evaluated in parallel
        (uses `multiprocessing.Pool <multiprocessing>`).
        Supply -1 to use all available CPU cores.
        Alternatively supply a map-like callable, such as
        `multiprocessing.Pool.map` for evaluating the population in parallel.
        This evaluation is carried out as ``workers(func, iterable)``.
        This option will override the `updating` keyword to
        ``updating='deferred'`` if ``workers != 1``.
        This option overrides the `vectorized` keyword if ``workers != 1``.
        Requires that `func` be pickleable.

        .. versionadded:: 1.2.0

    constraints : {NonLinearConstraint, LinearConstraint, Bounds}
        Constraints on the solver, over and above those applied by the `bounds`
        kwd. Uses the approach by Lampinen [5]_.

        .. versionadded:: 1.4.0

    x0 : None or array-like, optional
        Provides an initial guess to the minimization. Once the population has
        been initialized this vector replaces the first (best) member. This
        replacement is done even if `init` is given an initial population.
        ``x0.shape == (N,)``.

        .. versionadded:: 1.7.0

    integrality : 1-D array, optional
        For each decision variable, a boolean value indicating whether the
        decision variable is constrained to integer values. The array is
        broadcast to ``(N,)``.
        If any decision variables are constrained to be integral, they will not
        be changed during polishing.
        Only integer values lying between the lower and upper bounds are used.
        If there are no integer values lying between the bounds then a
        `ValueError` is raised.

        .. versionadded:: 1.9.0

    vectorized : bool, optional
        If ``vectorized is True``, `func` is sent an `x` array with
        ``x.shape == (N, S)``, and is expected to return an array of shape
        ``(S,)``, where `S` is the number of solution vectors to be calculated.
        If constraints are applied, each of the functions used to construct
        a `Constraint` object should accept an `x` array with
        ``x.shape == (N, S)``, and return an array of shape ``(M, S)``, where
        `M` is the number of constraint components.
        This option is an alternative to the parallelization offered by
        `workers`, and may help in optimization speed by reducing interpreter
        overhead from multiple function calls. This keyword is ignored if
        ``workers != 1``.
        This option will override the `updating` keyword to
        ``updating='deferred'``.
        See the notes section for further discussion on when to use
        ``'vectorized'``, and when to use ``'workers'``.

        .. versionadded:: 1.9.0

    Returns
    -------
    res : OptimizeResult
        The optimization result represented as a `OptimizeResult` object.
        Important attributes are: ``x`` the solution array, ``success`` a
        Boolean flag indicating if the optimizer exited successfully,
        ``message`` which describes the cause of the termination,
        ``population`` the solution vectors present in the population, and
        ``population_energies`` the value of the objective function for each
        entry in ``population``.
        See `OptimizeResult` for a description of other attributes. If `polish`
        was employed, and a lower minimum was obtained by the polishing, then
        OptimizeResult also contains the ``jac`` attribute.
        If the eventual solution does not satisfy the applied constraints
        ``success`` will be `False`.

    Notes
    -----
    Differential evolution is a stochastic population based method that is
    useful for global optimization problems. At each pass through the
    population the algorithm mutates each candidate solution by mixing with
    other candidate solutions to create a trial candidate. There are several
    strategies [3]_ for creating trial candidates, which suit some problems
    more than others. The 'best1bin' strategy is a good starting point for
    many systems. In this strategy two members of the population are randomly
    chosen. Their difference is used to mutate the best member (the 'best' in
    'best1bin'), :math:`x_0`, so far:

    .. math::

        b' = x_0 + F \cdot (x_{r_0} - x_{r_1})

    where :math:`F` is the `mutation` parameter.
    A trial vector is then constructed. Starting with a randomly chosen ith
    parameter the trial is sequentially filled (in modulo) with parameters
    from ``b'`` or the original candidate. The choice of whether to use ``b'``
    or the original candidate is made with a binomial distribution (the 'bin'
    in 'best1bin') - a random number in [0, 1) is generated. If this number is
    less than the `recombination` constant then the parameter is loaded from
    ``b'``, otherwise it is loaded from the original candidate. The final
    parameter is always loaded from ``b'``. Once the trial candidate is built
    its fitness is assessed. If the trial is better than the original candidate
    then it takes its place. If it is also better than the best overall
    candidate it also replaces that.

    The other strategies available are outlined in Qiang and
    Mitchell (2014) [3]_.


    - ``rand1`` : :math:`b' = x_{r_0} + F \cdot (x_{r_1} - x_{r_2})`
    - ``rand2`` : :math:`b' = x_{r_0} + F \cdot (x_{r_1} + x_{r_2} - x_{r_3} - x_{r_4})`
    - ``best1`` : :math:`b' = x_0 + F \cdot (x_{r_0} - x_{r_1})`
    - ``best2`` : :math:`b' = x_0 + F \cdot (x_{r_0} + x_{r_1} - x_{r_2} - x_{r_3})`
    - ``currenttobest1`` : :math:`b' = x_i + F \cdot (x_0 - x_i + x_{r_0} - x_{r_1})`
    - ``randtobest1`` : :math:`b' = x_{r_0} + F \cdot (x_0 - x_{r_0} + x_{r_1} - x_{r_2})`

    where the integers :math:`r_0, r_1, r_2, r_3, r_4` are chosen randomly
    from the interval [0, NP) with `NP` being the total population size and
    the original candidate having index `i`. The user can fully customize the
    generation of the trial candidates by supplying a callable to ``strategy``.

    To improve your chances of finding a global minimum use higher `popsize`
    values, with higher `mutation` and (dithering), but lower `recombination`
    values. This has the effect of widening the search radius, but slowing
    convergence.

    By default the best solution vector is updated continuously within a single
    iteration (``updating='immediate'``). This is a modification [4]_ of the
    original differential evolution algorithm which can lead to faster
    convergence as trial vectors can immediately benefit from improved
    solutions. To use the original Storn and Price behaviour, updating the best
    solution once per iteration, set ``updating='deferred'``.
    The ``'deferred'`` approach is compatible with both parallelization and
    vectorization (``'workers'`` and ``'vectorized'`` keywords). These may
    improve minimization speed by using computer resources more efficiently.
    The ``'workers'`` distribute calculations over multiple processors. By
    default the Python `multiprocessing` module is used, but other approaches
    are also possible, such as the Message Passing Interface (MPI) used on
    clusters [6]_ [7]_. The overhead from these approaches (creating new
    Processes, etc) may be significant, meaning that computational speed
    doesn't necessarily scale with the number of processors used.
    Parallelization is best suited to computationally expensive objective
    functions. If the objective function is less expensive, then
    ``'vectorized'`` may aid by only calling the objective function once per
    iteration, rather than multiple times for all the population members; the
    interpreter overhead is reduced.

    .. versionadded:: 0.15.0

    References
    ----------
    .. [1] Differential evolution, Wikipedia,
           http://en.wikipedia.org/wiki/Differential_evolution
    .. [2] Storn, R and Price, K, Differential Evolution - a Simple and
           Efficient Heuristic for Global Optimization over Continuous Spaces,
           Journal of Global Optimization, 1997, 11, 341 - 359.
    .. [3] Qiang, J., Mitchell, C., A Unified Differential Evolution Algorithm
            for Global Optimization, 2014, https://www.osti.gov/servlets/purl/1163659
    .. [4] Wormington, M., Panaccione, C., Matney, K. M., Bowen, D. K., -
           Characterization of structures from X-ray scattering data using
           genetic algorithms, Phil. Trans. R. Soc. Lond. A, 1999, 357,
           2827-2848
    .. [5] Lampinen, J., A constraint handling approach for the differential
           evolution algorithm. Proceedings of the 2002 Congress on
           Evolutionary Computation. CEC'02 (Cat. No. 02TH8600). Vol. 2. IEEE,
           2002.
    .. [6] https://mpi4py.readthedocs.io/en/stable/
    .. [7] https://schwimmbad.readthedocs.io/en/latest/
 

    Examples
    --------
    Let us consider the problem of minimizing the Rosenbrock function. This
    function is implemented in `rosen` in `scipy.optimize`.

    >>> import numpy as np
    >>> from scipy.optimize import rosen, differential_evolution
    >>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)]
    >>> result = differential_evolution(rosen, bounds)
    >>> result.x, result.fun
    (array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19)

    Now repeat, but with parallelization.

    >>> result = differential_evolution(rosen, bounds, updating='deferred',
    ...                                 workers=2)
    >>> result.x, result.fun
    (array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19)

    Let's do a constrained minimization.

    >>> from scipy.optimize import LinearConstraint, Bounds

    We add the constraint that the sum of ``x[0]`` and ``x[1]`` must be less
    than or equal to 1.9.  This is a linear constraint, which may be written
    ``A @ x <= 1.9``, where ``A = array([[1, 1]])``.  This can be encoded as
    a `LinearConstraint` instance:

    >>> lc = LinearConstraint([[1, 1]], -np.inf, 1.9)

    Specify limits using a `Bounds` object.

    >>> bounds = Bounds([0., 0.], [2., 2.])
    >>> result = differential_evolution(rosen, bounds, constraints=lc,
    ...                                 rng=1)
    >>> result.x, result.fun
    (array([0.96632622, 0.93367155]), 0.0011352416852625719)

    Next find the minimum of the Ackley function
    (https://en.wikipedia.org/wiki/Test_functions_for_optimization).

    >>> def ackley(x):
    ...     arg1 = -0.2 * np.sqrt(0.5 * (x[0] ** 2 + x[1] ** 2))
    ...     arg2 = 0.5 * (np.cos(2. * np.pi * x[0]) + np.cos(2. * np.pi * x[1]))
    ...     return -20. * np.exp(arg1) - np.exp(arg2) + 20. + np.e
    >>> bounds = [(-5, 5), (-5, 5)]
    >>> result = differential_evolution(ackley, bounds, rng=1)
    >>> result.x, result.fun
    (array([0., 0.]), 4.440892098500626e-16)

    The Ackley function is written in a vectorized manner, so the
    ``'vectorized'`` keyword can be employed. Note the reduced number of
    function evaluations.

    >>> result = differential_evolution(
    ...     ackley, bounds, vectorized=True, updating='deferred', rng=1
    ... )
    >>> result.x, result.fun
    (array([0., 0.]), 4.440892098500626e-16)

    The following custom strategy function mimics 'best1bin':

    >>> def custom_strategy_fn(candidate, population, rng=None):
    ...     parameter_count = population.shape(-1)
    ...     mutation, recombination = 0.7, 0.9
    ...     trial = np.copy(population[candidate])
    ...     fill_point = rng.choice(parameter_count)
    ...
    ...     pool = np.arange(len(population))
    ...     rng.shuffle(pool)
    ...
    ...     # two unique random numbers that aren't the same, and
    ...     # aren't equal to candidate.
    ...     idxs = []
    ...     while len(idxs) < 2 and len(pool) > 0:
    ...         idx = pool[0]
    ...         pool = pool[1:]
    ...         if idx != candidate:
    ...             idxs.append(idx)
    ...
    ...     r0, r1 = idxs[:2]
    ...
    ...     bprime = (population[0] + mutation *
    ...               (population[r0] - population[r1]))
    ...
    ...     crossovers = rng.uniform(size=parameter_count)
    ...     crossovers = crossovers < recombination
    ...     crossovers[fill_point] = True
    ...     trial = np.where(crossovers, bprime, trial)
    ...     return trial

    """# noqa: E501

    # using a context manager means that any created Pool objects are
    # cleared up.
    with DifferentialEvolutionSolver(func, bounds, args=args,
                                     strategy=strategy,
                                     maxiter=maxiter,
                                     popsize=popsize, tol=tol,
                                     mutation=mutation,
                                     recombination=recombination,
                                     rng=rng, polish=polish,
                                     callback=callback,
                                     disp=disp, init=init, atol=atol,
                                     updating=updating,
                                     workers=workers,
                                     constraints=constraints,
                                     x0=x0,
                                     integrality=integrality,
                                     vectorized=vectorized) as solver:
        ret = solver.solve()

    return ret


class DifferentialEvolutionSolver:

    """This class implements the differential evolution solver

    Parameters
    ----------
    func : callable
        The objective function to be minimized. Must be in the form
        ``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
        and ``args`` is a tuple of any additional fixed parameters needed to
        completely specify the function. The number of parameters, N, is equal
        to ``len(x)``.
    bounds : sequence or `Bounds`
        Bounds for variables. There are two ways to specify the bounds:

            1. Instance of `Bounds` class.
            2. ``(min, max)`` pairs for each element in ``x``, defining the
               finite lower and upper bounds for the optimizing argument of
               `func`.

        The total number of bounds is used to determine the number of
        parameters, N. If there are parameters whose bounds are equal the total
        number of free parameters is ``N - N_equal``.
    args : tuple, optional
        Any additional fixed parameters needed to
        completely specify the objective function.
    strategy : {str, callable}, optional
        The differential evolution strategy to use. Should be one of:

            - 'best1bin'
            - 'best1exp'
            - 'rand1bin'
            - 'rand1exp'
            - 'rand2bin'
            - 'rand2exp'
            - 'randtobest1bin'
            - 'randtobest1exp'
            - 'currenttobest1bin'
            - 'currenttobest1exp'
            - 'best2exp'
            - 'best2bin'

        The default is 'best1bin'. Strategies that may be
        implemented are outlined in 'Notes'.

        Alternatively the differential evolution strategy can be customized
        by providing a callable that constructs a trial vector. The callable
        must have the form
        ``strategy(candidate: int, population: np.ndarray, rng=None)``,
        where ``candidate`` is an integer specifying which entry of the
        population is being evolved, ``population`` is an array of shape
        ``(S, N)`` containing all the population members (where S is the
        total population size), and ``rng`` is the random number generator
        being used within the solver.
        ``candidate`` will be in the range ``[0, S)``.
        ``strategy`` must return a trial vector with shape ``(N,)``. The
        fitness of this trial vector is compared against the fitness of
        ``population[candidate]``.
    maxiter : int, optional
        The maximum number of generations over which the entire population is
        evolved. The maximum number of function evaluations (with no polishing)
        is: ``(maxiter + 1) * popsize * (N - N_equal)``
    popsize : int, optional
        A multiplier for setting the total population size. The population has
        ``popsize * (N - N_equal)`` individuals. This keyword is overridden if
        an initial population is supplied via the `init` keyword. When using
        ``init='sobol'`` the population size is calculated as the next power
        of 2 after ``popsize * (N - N_equal)``.
    tol : float, optional
        Relative tolerance for convergence, the solving stops when
        ``np.std(population_energies) <= atol + tol * np.abs(np.mean(population_energies))``,
        where and `atol` and `tol` are the absolute and relative tolerance
        respectively.
    mutation : float or tuple(float, float), optional
        The mutation constant. In the literature this is also known as
        differential weight, being denoted by F.
        If specified as a float it should be in the range [0, 2].
        If specified as a tuple ``(min, max)`` dithering is employed. Dithering
        randomly changes the mutation constant on a generation by generation
        basis. The mutation constant for that generation is taken from
        U[min, max). Dithering can help speed convergence significantly.
        Increasing the mutation constant increases the search radius, but will
        slow down convergence.
    recombination : float, optional
        The recombination constant, should be in the range [0, 1]. In the
        literature this is also known as the crossover probability, being
        denoted by CR. Increasing this value allows a larger number of mutants
        to progress into the next generation, but at the risk of population
        stability.

    rng : {None, int, `numpy.random.Generator`}, optional
        
        ..versionchanged:: 1.15.0
            As part of the `SPEC-007 <https://scientific-python.org/specs/spec-0007/>`_
            transition from use of `numpy.random.RandomState` to
            `numpy.random.Generator` this keyword was changed from `seed` to `rng`.
            For an interim period both keywords will continue to work (only specify
            one of them). After the interim period using the `seed` keyword will emit
            warnings. The behavior of the `seed` and `rng` keywords is outlined below.

        If `rng` is passed by keyword, types other than `numpy.random.Generator` are
        passed to `numpy.random.default_rng` to instantiate a `Generator`.
        If `rng` is already a `Generator` instance, then the provided instance is
        used.
        
        If this argument is passed by position or `seed` is passed by keyword, the
        behavior is:
        
        - If `seed` is None (or `np.random`), the `numpy.random.RandomState`
          singleton is used.
        - If `seed` is an int, a new `RandomState` instance is used,
          seeded with `seed`.
        - If `seed` is already a `Generator` or `RandomState` instance then
          that instance is used.
        
        Specify `seed`/`rng` for repeatable minimizations.
    disp : bool, optional
        Prints the evaluated `func` at every iteration.
    callback : callable, optional
        A callable called after each iteration. Has the signature:

            ``callback(intermediate_result: OptimizeResult)``

        where ``intermediate_result`` is a keyword parameter containing an
        `OptimizeResult` with attributes ``x`` and ``fun``, the best solution
        found so far and the objective function. Note that the name
        of the parameter must be ``intermediate_result`` for the callback
        to be passed an `OptimizeResult`.

        The callback also supports a signature like:

            ``callback(x, convergence: float=val)``

        ``val`` represents the fractional value of the population convergence.
         When ``val`` is greater than ``1.0``, the function halts.

        Introspection is used to determine which of the signatures is invoked.

        Global minimization will halt if the callback raises ``StopIteration``
        or returns ``True``; any polishing is still carried out.

        .. versionchanged:: 1.12.0
            callback accepts the ``intermediate_result`` keyword.

    polish : bool, optional
        If True (default), then `scipy.optimize.minimize` with the `L-BFGS-B`
        method is used to polish the best population member at the end, which
        can improve the minimization slightly. If a constrained problem is
        being studied then the `trust-constr` method is used instead. For large
        problems with many constraints, polishing can take a long time due to
        the Jacobian computations.
    maxfun : int, optional
        Set the maximum number of function evaluations. However, it probably
        makes more sense to set `maxiter` instead.
    init : str or array-like, optional
        Specify which type of population initialization is performed. Should be
        one of:

            - 'latinhypercube'
            - 'sobol'
            - 'halton'
            - 'random'
            - array specifying the initial population. The array should have
              shape ``(S, N)``, where S is the total population size and
              N is the number of parameters.
              `init` is clipped to `bounds` before use.

        The default is 'latinhypercube'. Latin Hypercube sampling tries to
        maximize coverage of the available parameter space.

        'sobol' and 'halton' are superior alternatives and maximize even more
        the parameter space. 'sobol' will enforce an initial population
        size which is calculated as the next power of 2 after
        ``popsize * (N - N_equal)``. 'halton' has no requirements but is a bit
        less efficient. See `scipy.stats.qmc` for more details.

        'random' initializes the population randomly - this has the drawback
        that clustering can occur, preventing the whole of parameter space
        being covered. Use of an array to specify a population could be used,
        for example, to create a tight bunch of initial guesses in an location
        where the solution is known to exist, thereby reducing time for
        convergence.
    atol : float, optional
        Absolute tolerance for convergence, the solving stops when
        ``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
        where and `atol` and `tol` are the absolute and relative tolerance
        respectively.
    updating : {'immediate', 'deferred'}, optional
        If ``'immediate'``, the best solution vector is continuously updated
        within a single generation [4]_. This can lead to faster convergence as
        trial vectors can take advantage of continuous improvements in the best
        solution.
        With ``'deferred'``, the best solution vector is updated once per
        generation. Only ``'deferred'`` is compatible with parallelization or
        vectorization, and the `workers` and `vectorized` keywords can
        over-ride this option.
    workers : int or map-like callable, optional
        If `workers` is an int the population is subdivided into `workers`
        sections and evaluated in parallel
        (uses `multiprocessing.Pool <multiprocessing>`).
        Supply `-1` to use all cores available to the Process.
        Alternatively supply a map-like callable, such as
        `multiprocessing.Pool.map` for evaluating the population in parallel.
        This evaluation is carried out as ``workers(func, iterable)``.
        This option will override the `updating` keyword to
        `updating='deferred'` if `workers != 1`.
        Requires that `func` be pickleable.
    constraints : {NonLinearConstraint, LinearConstraint, Bounds}
        Constraints on the solver, over and above those applied by the `bounds`
        kwd. Uses the approach by Lampinen.
    x0 : None or array-like, optional
        Provides an initial guess to the minimization. Once the population has
        been initialized this vector replaces the first (best) member. This
        replacement is done even if `init` is given an initial population.
        ``x0.shape == (N,)``.
    integrality : 1-D array, optional
        For each decision variable, a boolean value indicating whether the
        decision variable is constrained to integer values. The array is
        broadcast to ``(N,)``.
        If any decision variables are constrained to be integral, they will not
        be changed during polishing.
        Only integer values lying between the lower and upper bounds are used.
        If there are no integer values lying between the bounds then a
        `ValueError` is raised.
    vectorized : bool, optional
        If ``vectorized is True``, `func` is sent an `x` array with
        ``x.shape == (N, S)``, and is expected to return an array of shape
        ``(S,)``, where `S` is the number of solution vectors to be calculated.
        If constraints are applied, each of the functions used to construct
        a `Constraint` object should accept an `x` array with
        ``x.shape == (N, S)``, and return an array of shape ``(M, S)``, where
        `M` is the number of constraint components.
        This option is an alternative to the parallelization offered by
        `workers`, and may help in optimization speed. This keyword is
        ignored if ``workers != 1``.
        This option will override the `updating` keyword to
        ``updating='deferred'``.
    """ # noqa: E501

    # Dispatch of mutation strategy method (binomial or exponential).
    _binomial = {'best1bin': '_best1',
                 'randtobest1bin': '_randtobest1',
                 'currenttobest1bin': '_currenttobest1',
                 'best2bin': '_best2',
                 'rand2bin': '_rand2',
                 'rand1bin': '_rand1'}
    _exponential = {'best1exp': '_best1',
                    'rand1exp': '_rand1',
                    'randtobest1exp': '_randtobest1',
                    'currenttobest1exp': '_currenttobest1',
                    'best2exp': '_best2',
                    'rand2exp': '_rand2'}

    __init_error_msg = ("The population initialization method must be one of "
                        "'latinhypercube' or 'random', or an array of shape "
                        "(S, N) where N is the number of parameters and S>5")

    def __init__(self, func, bounds, args=(),
                 strategy='best1bin', maxiter=1000, popsize=15,
                 tol=0.01, mutation=(0.5, 1), recombination=0.7, rng=None,
                 maxfun=np.inf, callback=None, disp=False, polish=True,
                 init='latinhypercube', atol=0, updating='immediate',
                 workers=1, constraints=(), x0=None, *, integrality=None,
                 vectorized=False):

        if callable(strategy):
            # a callable strategy is going to be stored in self.strategy anyway
            pass
        elif strategy in self._binomial:
            self.mutation_func = getattr(self, self._binomial[strategy])
        elif strategy in self._exponential:
            self.mutation_func = getattr(self, self._exponential[strategy])
        else:
            raise ValueError("Please select a valid mutation strategy")
        self.strategy = strategy

        self.callback = _wrap_callback(callback, "differential_evolution")
        self.polish = polish

        # set the updating / parallelisation options
        if updating in ['immediate', 'deferred']:
            self._updating = updating

        self.vectorized = vectorized

        # want to use parallelisation, but updating is immediate
        if workers != 1 and updating == 'immediate':
            warnings.warn("differential_evolution: the 'workers' keyword has"
                          " overridden updating='immediate' to"
                          " updating='deferred'", UserWarning, stacklevel=2)
            self._updating = 'deferred'

        if vectorized and workers != 1:
            warnings.warn("differential_evolution: the 'workers' keyword"
                          " overrides the 'vectorized' keyword", stacklevel=2)
            self.vectorized = vectorized = False

        if vectorized and updating == 'immediate':
            warnings.warn("differential_evolution: the 'vectorized' keyword"
                          " has overridden updating='immediate' to updating"
                          "='deferred'", UserWarning, stacklevel=2)
            self._updating = 'deferred'

        # an object with a map method.
        if vectorized:
            def maplike_for_vectorized_func(func, x):
                # send an array (N, S) to the user func,
                # expect to receive (S,). Transposition is required because
                # internally the population is held as (S, N)
                return np.atleast_1d(func(x.T))
            workers = maplike_for_vectorized_func

        self._mapwrapper = MapWrapper(workers)

        # relative and absolute tolerances for convergence
        self.tol, self.atol = tol, atol

        # Mutation constant should be in [0, 2). If specified as a sequence
        # then dithering is performed.
        self.scale = mutation
        if (not np.all(np.isfinite(mutation)) or
                np.any(np.array(mutation) >= 2) or
                np.any(np.array(mutation) < 0)):
            raise ValueError('The mutation constant must be a float in '
                             'U[0, 2), or specified as a tuple(min, max)'
                             ' where min < max and min, max are in U[0, 2).')

        self.dither = None
        if hasattr(mutation, '__iter__') and len(mutation) > 1:
            self.dither = [mutation[0], mutation[1]]
            self.dither.sort()

        self.cross_over_probability = recombination

        # we create a wrapped function to allow the use of map (and Pool.map
        # in the future)
        self.func = _FunctionWrapper(func, args)
        self.args = args

        # convert tuple of lower and upper bounds to limits
        # [(low_0, high_0), ..., (low_n, high_n]
        #     -> [[low_0, ..., low_n], [high_0, ..., high_n]]
        if isinstance(bounds, Bounds):
            self.limits = np.array(new_bounds_to_old(bounds.lb,
                                                     bounds.ub,
                                                     len(bounds.lb)),
                                   dtype=float).T
        else:
            self.limits = np.array(bounds, dtype='float').T

        if (np.size(self.limits, 0) != 2 or not
                np.all(np.isfinite(self.limits))):
            raise ValueError('bounds should be a sequence containing finite '
                             'real valued (min, max) pairs for each value'
                             ' in x')

        if maxiter is None:  # the default used to be None
            maxiter = 1000
        self.maxiter = maxiter
        if maxfun is None:  # the default used to be None
            maxfun = np.inf
        self.maxfun = maxfun

        # population is scaled to between [0, 1].
        # We have to scale between parameter <-> population
        # save these arguments for _scale_parameter and
        # _unscale_parameter. This is an optimization
        self.__scale_arg1 = 0.5 * (self.limits[0] + self.limits[1])
        self.__scale_arg2 = np.fabs(self.limits[0] - self.limits[1])
        with np.errstate(divide='ignore'):
            # if lb == ub then the following line will be 1/0, which is why
            # we ignore the divide by zero warning. The result from 1/0 is
            # inf, so replace those values by 0.
            self.__recip_scale_arg2 = 1 / self.__scale_arg2
            self.__recip_scale_arg2[~np.isfinite(self.__recip_scale_arg2)] = 0

        self.parameter_count = np.size(self.limits, 1)

        self.random_number_generator = check_random_state(rng)

        # Which parameters are going to be integers?
        if np.any(integrality):
            # # user has provided a truth value for integer constraints
            integrality = np.broadcast_to(
                integrality,
                self.parameter_count
            )
            integrality = np.asarray(integrality, bool)
            # For integrality parameters change the limits to only allow
            # integer values lying between the limits.
            lb, ub = np.copy(self.limits)

            lb = np.ceil(lb)
            ub = np.floor(ub)
            if not (lb[integrality] <= ub[integrality]).all():
                # there's a parameter that doesn't have an integer value
                # lying between the limits
                raise ValueError("One of the integrality constraints does not"
                                 " have any possible integer values between"
                                 " the lower/upper bounds.")
            nlb = np.nextafter(lb[integrality] - 0.5, np.inf)
            nub = np.nextafter(ub[integrality] + 0.5, -np.inf)

            self.integrality = integrality
            self.limits[0, self.integrality] = nlb
            self.limits[1, self.integrality] = nub
        else:
            self.integrality = False

        # check for equal bounds
        eb = self.limits[0] == self.limits[1]
        eb_count = np.count_nonzero(eb)

        # default population initialization is a latin hypercube design, but
        # there are other population initializations possible.
        # the minimum is 5 because 'best2bin' requires a population that's at
        # least 5 long
        # 202301 - reduced population size to account for parameters with
        # equal bounds. If there are no varying parameters set N to at least 1
        self.num_population_members = max(
            5,
            popsize * max(1, self.parameter_count - eb_count)
        )
        self.population_shape = (self.num_population_members,
                                 self.parameter_count)

        self._nfev = 0
        # check first str otherwise will fail to compare str with array
        if isinstance(init, str):
            if init == 'latinhypercube':
                self.init_population_lhs()
            elif init == 'sobol':
                # must be Ns = 2**m for Sobol'
                n_s = int(2 ** np.ceil(np.log2(self.num_population_members)))
                self.num_population_members = n_s
                self.population_shape = (self.num_population_members,
                                         self.parameter_count)
                self.init_population_qmc(qmc_engine='sobol')
            elif init == 'halton':
                self.init_population_qmc(qmc_engine='halton')
            elif init == 'random':
                self.init_population_random()
            else:
                raise ValueError(self.__init_error_msg)
        else:
            self.init_population_array(init)

        if x0 is not None:
            # scale to within unit interval and
            # ensure parameters are within bounds.
            x0_scaled = self._unscale_parameters(np.asarray(x0))
            if ((x0_scaled > 1.0) | (x0_scaled < 0.0)).any():
                raise ValueError(
                    "Some entries in x0 lay outside the specified bounds"
                )
            self.population[0] = x0_scaled

        # infrastructure for constraints
        self.constraints = constraints
        self._wrapped_constraints = []

        if hasattr(constraints, '__len__'):
            # sequence of constraints, this will also deal with default
            # keyword parameter
            for c in constraints:
                self._wrapped_constraints.append(
                    _ConstraintWrapper(c, self.x)
                )
        else:
            self._wrapped_constraints = [
                _ConstraintWrapper(constraints, self.x)
            ]
        self.total_constraints = np.sum(
            [c.num_constr for c in self._wrapped_constraints]
        )
        self.constraint_violation = np.zeros((self.num_population_members, 1))
        self.feasible = np.ones(self.num_population_members, bool)

        # an array to shuffle when selecting candidates. Create it here
        # rather than repeatedly creating it in _select_samples.
        self._random_population_index = np.arange(self.num_population_members)
        self.disp = disp

    def init_population_lhs(self):
        """
        Initializes the population with Latin Hypercube Sampling.
        Latin Hypercube Sampling ensures that each parameter is uniformly
        sampled over its range.
        """
        rng = self.random_number_generator

        # Each parameter range needs to be sampled uniformly. The scaled
        # parameter range ([0, 1)) needs to be split into
        # `self.num_population_members` segments, each of which has the following
        # size:
        segsize = 1.0 / self.num_population_members

        # Within each segment we sample from a uniform random distribution.
        # We need to do this sampling for each parameter.
        samples = (segsize * rng.uniform(size=self.population_shape)

        # Offset each segment to cover the entire parameter range [0, 1)
                   + np.linspace(0., 1., self.num_population_members,
                                 endpoint=False)[:, np.newaxis])

        # Create an array for population of candidate solutions.
        self.population = np.zeros_like(samples)

        # Initialize population of candidate solutions by permutation of the
        # random samples.
        for j in range(self.parameter_count):
            order = rng.permutation(range(self.num_population_members))
            self.population[:, j] = samples[order, j]

        # reset population energies
        self.population_energies = np.full(self.num_population_members,
                                           np.inf)

        # reset number of function evaluations counter
        self._nfev = 0

    def init_population_qmc(self, qmc_engine):
        """Initializes the population with a QMC method.

        QMC methods ensures that each parameter is uniformly
        sampled over its range.

        Parameters
        ----------
        qmc_engine : str
            The QMC method to use for initialization. Can be one of
            ``latinhypercube``, ``sobol`` or ``halton``.

        """
        from scipy.stats import qmc

        rng = self.random_number_generator

        # Create an array for population of candidate solutions.
        if qmc_engine == 'latinhypercube':
            sampler = qmc.LatinHypercube(d=self.parameter_count, seed=rng)
        elif qmc_engine == 'sobol':
            sampler = qmc.Sobol(d=self.parameter_count, seed=rng)
        elif qmc_engine == 'halton':
            sampler = qmc.Halton(d=self.parameter_count, seed=rng)
        else:
            raise ValueError(self.__init_error_msg)

        self.population = sampler.random(n=self.num_population_members)

        # reset population energies
        self.population_energies = np.full(self.num_population_members,
                                           np.inf)

        # reset number of function evaluations counter
        self._nfev = 0

    def init_population_random(self):
        """
        Initializes the population at random. This type of initialization
        can possess clustering, Latin Hypercube sampling is generally better.
        """
        rng = self.random_number_generator
        self.population = rng.uniform(size=self.population_shape)

        # reset population energies
        self.population_energies = np.full(self.num_population_members,
                                           np.inf)

        # reset number of function evaluations counter
        self._nfev = 0

    def init_population_array(self, init):
        """
        Initializes the population with a user specified population.

        Parameters
        ----------
        init : np.ndarray
            Array specifying subset of the initial population. The array should
            have shape (S, N), where N is the number of parameters.
            The population is clipped to the lower and upper bounds.
        """
        # make sure you're using a float array
        popn = np.asarray(init, dtype=np.float64)

        if (np.size(popn, 0) < 5 or
                popn.shape[1] != self.parameter_count or
                len(popn.shape) != 2):
            raise ValueError("The population supplied needs to have shape"
                             " (S, len(x)), where S > 4.")

        # scale values and clip to bounds, assigning to population
        self.population = np.clip(self._unscale_parameters(popn), 0, 1)

        self.num_population_members = np.size(self.population, 0)

        self.population_shape = (self.num_population_members,
                                 self.parameter_count)

        # reset population energies
        self.population_energies = np.full(self.num_population_members,
                                           np.inf)

        # reset number of function evaluations counter
        self._nfev = 0

    @property
    def x(self):
        """
        The best solution from the solver
        """
        return self._scale_parameters(self.population[0])

    @property
    def convergence(self):
        """
        The standard deviation of the population energies divided by their
        mean.
        """
        if np.any(np.isinf(self.population_energies)):
            return np.inf
        return (np.std(self.population_energies) /
                (np.abs(np.mean(self.population_energies)) + _MACHEPS))

    def converged(self):
        """
        Return True if the solver has converged.
        """
        if np.any(np.isinf(self.population_energies)):
            return False

        return (np.std(self.population_energies) <=
                self.atol +
                self.tol * np.abs(np.mean(self.population_energies)))

    def solve(self):
        """
        Runs the DifferentialEvolutionSolver.

        Returns
        -------
        res : OptimizeResult
            The optimization result represented as a `OptimizeResult` object.
            Important attributes are: ``x`` the solution array, ``success`` a
            Boolean flag indicating if the optimizer exited successfully,
            ``message`` which describes the cause of the termination,
            ``population`` the solution vectors present in the population, and
            ``population_energies`` the value of the objective function for
            each entry in ``population``.
            See `OptimizeResult` for a description of other attributes. If
            `polish` was employed, and a lower minimum was obtained by the
            polishing, then OptimizeResult also contains the ``jac`` attribute.
            If the eventual solution does not satisfy the applied constraints
            ``success`` will be `False`.
        """
        nit, warning_flag = 0, False
        status_message = _status_message['success']

        # The population may have just been initialized (all entries are
        # np.inf). If it has you have to calculate the initial energies.
        # Although this is also done in the evolve generator it's possible
        # that someone can set maxiter=0, at which point we still want the
        # initial energies to be calculated (the following loop isn't run).
        if np.all(np.isinf(self.population_energies)):
            self.feasible, self.constraint_violation = (
                self._calculate_population_feasibilities(self.population))

            # only work out population energies for feasible solutions
            self.population_energies[self.feasible] = (
                self._calculate_population_energies(
                    self.population[self.feasible]))

            self._promote_lowest_energy()

        # do the optimization.
        for nit in range(1, self.maxiter + 1):
            # evolve the population by a generation
            try:
                next(self)
            except StopIteration:
                warning_flag = True
                if self._nfev > self.maxfun:
                    status_message = _status_message['maxfev']
                elif self._nfev == self.maxfun:
                    status_message = ('Maximum number of function evaluations'
                                      ' has been reached.')
                break

            if self.disp:
                print(f"differential_evolution step {nit}: f(x)="
                      f" {self.population_energies[0]}"
                      )

            if self.callback:
                c = self.tol / (self.convergence + _MACHEPS)
                res = self._result(nit=nit, message="in progress")
                res.convergence = c
                try:
                    warning_flag = bool(self.callback(res))
                except StopIteration:
                    warning_flag = True

                if warning_flag:
                    status_message = 'callback function requested stop early'

            # should the solver terminate?
            if warning_flag or self.converged():
                break

        else:
            status_message = _status_message['maxiter']
            warning_flag = True

        DE_result = self._result(
            nit=nit, message=status_message, warning_flag=warning_flag
        )

        if self.polish and not np.all(self.integrality):
            # can't polish if all the parameters are integers
            if np.any(self.integrality):
                # set the lower/upper bounds equal so that any integrality
                # constraints work.
                limits, integrality = self.limits, self.integrality
                limits[0, integrality] = DE_result.x[integrality]
                limits[1, integrality] = DE_result.x[integrality]

            polish_method = 'L-BFGS-B'

            if self._wrapped_constraints:
                polish_method = 'trust-constr'

                constr_violation = self._constraint_violation_fn(DE_result.x)
                if np.any(constr_violation > 0.):
                    warnings.warn("differential evolution didn't find a "
                                  "solution satisfying the constraints, "
                                  "attempting to polish from the least "
                                  "infeasible solution",
                                  UserWarning, stacklevel=2)
            if self.disp:
                print(f"Polishing solution with '{polish_method}'")
            result = minimize(lambda x:
                                list(self._mapwrapper(self.func, np.atleast_2d(x)))[0],
                              np.copy(DE_result.x),
                              method=polish_method,
                              bounds=self.limits.T,
                              constraints=self.constraints)

            self._nfev += result.nfev
            DE_result.nfev = self._nfev

            # Polishing solution is only accepted if there is an improvement in
            # cost function, the polishing was successful and the solution lies
            # within the bounds.
            if (result.fun < DE_result.fun and
                    result.success and
                    np.all(result.x <= self.limits[1]) and
                    np.all(self.limits[0] <= result.x)):
                DE_result.fun = result.fun
                DE_result.x = result.x
                DE_result.jac = result.jac
                # to keep internal state consistent
                self.population_energies[0] = result.fun
                self.population[0] = self._unscale_parameters(result.x)

        if self._wrapped_constraints:
            DE_result.constr = [c.violation(DE_result.x) for
                                c in self._wrapped_constraints]
            DE_result.constr_violation = np.max(
                np.concatenate(DE_result.constr))
            DE_result.maxcv = DE_result.constr_violation
            if DE_result.maxcv > 0:
                # if the result is infeasible then success must be False
                DE_result.success = False
                DE_result.message = ("The solution does not satisfy the "
                                     f"constraints, MAXCV = {DE_result.maxcv}")

        return DE_result

    def _result(self, **kwds):
        # form an intermediate OptimizeResult
        nit = kwds.get('nit', None)
        message = kwds.get('message', None)
        warning_flag = kwds.get('warning_flag', False)
        result = OptimizeResult(
            x=self.x,
            fun=self.population_energies[0],
            nfev=self._nfev,
            nit=nit,
            message=message,
            success=(warning_flag is not True),
            population=self._scale_parameters(self.population),
            population_energies=self.population_energies
        )
        if self._wrapped_constraints:
            result.constr = [c.violation(result.x)
                             for c in self._wrapped_constraints]
            result.constr_violation = np.max(np.concatenate(result.constr))
            result.maxcv = result.constr_violation
            if result.maxcv > 0:
                result.success = False

        return result

    def _calculate_population_energies(self, population):
        """
        Calculate the energies of a population.

        Parameters
        ----------
        population : ndarray
            An array of parameter vectors normalised to [0, 1] using lower
            and upper limits. Has shape ``(np.size(population, 0), N)``.

        Returns
        -------
        energies : ndarray
            An array of energies corresponding to each population member. If
            maxfun will be exceeded during this call, then the number of
            function evaluations will be reduced and energies will be
            right-padded with np.inf. Has shape ``(np.size(population, 0),)``
        """
        num_members = np.size(population, 0)
        # S is the number of function evals left to stay under the
        # maxfun budget
        S = min(num_members, self.maxfun - self._nfev)

        energies = np.full(num_members, np.inf)

        parameters_pop = self._scale_parameters(population)
        try:
            calc_energies = list(
                self._mapwrapper(self.func, parameters_pop[0:S])
            )
            calc_energies = np.squeeze(calc_energies)
        except (TypeError, ValueError) as e:
            # wrong number of arguments for _mapwrapper
            # or wrong length returned from the mapper
            raise RuntimeError(
                "The map-like callable must be of the form f(func, iterable), "
                "returning a sequence of numbers the same length as 'iterable'"
            ) from e

        if calc_energies.size != S:
            if self.vectorized:
                raise RuntimeError("The vectorized function must return an"
                                   " array of shape (S,) when given an array"
                                   " of shape (len(x), S)")
            raise RuntimeError("func(x, *args) must return a scalar value")

        energies[0:S] = calc_energies

        if self.vectorized:
            self._nfev += 1
        else:
            self._nfev += S

        return energies

    def _promote_lowest_energy(self):
        # swaps 'best solution' into first population entry

        idx = np.arange(self.num_population_members)
        feasible_solutions = idx[self.feasible]
        if feasible_solutions.size:
            # find the best feasible solution
            idx_t = np.argmin(self.population_energies[feasible_solutions])
            l = feasible_solutions[idx_t]
        else:
            # no solution was feasible, use 'best' infeasible solution, which
            # will violate constraints the least
            l = np.argmin(np.sum(self.constraint_violation, axis=1))

        self.population_energies[[0, l]] = self.population_energies[[l, 0]]
        self.population[[0, l], :] = self.population[[l, 0], :]
        self.feasible[[0, l]] = self.feasible[[l, 0]]
        self.constraint_violation[[0, l], :] = (
        self.constraint_violation[[l, 0], :])

    def _constraint_violation_fn(self, x):
        """
        Calculates total constraint violation for all the constraints, for a
        set of solutions.

        Parameters
        ----------
        x : ndarray
            Solution vector(s). Has shape (S, N), or (N,), where S is the
            number of solutions to investigate and N is the number of
            parameters.

        Returns
        -------
        cv : ndarray
            Total violation of constraints. Has shape ``(S, M)``, where M is
            the total number of constraint components (which is not necessarily
            equal to len(self._wrapped_constraints)).
        """
        # how many solution vectors you're calculating constraint violations
        # for
        S = np.size(x) // self.parameter_count
        _out = np.zeros((S, self.total_constraints))
        offset = 0
        for con in self._wrapped_constraints:
            # the input/output of the (vectorized) constraint function is
            # {(N, S), (N,)} --> (M, S)
            # The input to _constraint_violation_fn is (S, N) or (N,), so
            # transpose to pass it to the constraint. The output is transposed
            # from (M, S) to (S, M) for further use.
            c = con.violation(x.T).T

            # The shape of c should be (M,), (1, M), or (S, M). Check for
            # those shapes, as an incorrect shape indicates that the
            # user constraint function didn't return the right thing, and
            # the reshape operation will fail. Intercept the wrong shape
            # to give a reasonable error message. I'm not sure what failure
            # modes an inventive user will come up with.
            if c.shape[-1] != con.num_constr or (S > 1 and c.shape[0] != S):
                raise RuntimeError("An array returned from a Constraint has"
                                   " the wrong shape. If `vectorized is False`"
                                   " the Constraint should return an array of"
                                   " shape (M,). If `vectorized is True` then"
                                   " the Constraint must return an array of"
                                   " shape (M, S), where S is the number of"
                                   " solution vectors and M is the number of"
                                   " constraint components in a given"
                                   " Constraint object.")

            # the violation function may return a 1D array, but is it a
            # sequence of constraints for one solution (S=1, M>=1), or the
            # value of a single constraint for a sequence of solutions
            # (S>=1, M=1)
            c = np.reshape(c, (S, con.num_constr))
            _out[:, offset:offset + con.num_constr] = c
            offset += con.num_constr

        return _out

    def _calculate_population_feasibilities(self, population):
        """
        Calculate the feasibilities of a population.

        Parameters
        ----------
        population : ndarray
            An array of parameter vectors normalised to [0, 1] using lower
            and upper limits. Has shape ``(np.size(population, 0), N)``.

        Returns
        -------
        feasible, constraint_violation : ndarray, ndarray
            Boolean array of feasibility for each population member, and an
            array of the constraint violation for each population member.
            constraint_violation has shape ``(np.size(population, 0), M)``,
            where M is the number of constraints.
        """
        num_members = np.size(population, 0)
        if not self._wrapped_constraints:
            # shortcut for no constraints
            return np.ones(num_members, bool), np.zeros((num_members, 1))

        # (S, N)
        parameters_pop = self._scale_parameters(population)

        if self.vectorized:
            # (S, M)
            constraint_violation = np.array(
                self._constraint_violation_fn(parameters_pop)
            )
        else:
            # (S, 1, M)
            constraint_violation = np.array([self._constraint_violation_fn(x)
                                             for x in parameters_pop])
            # if you use the list comprehension in the line above it will
            # create an array of shape (S, 1, M), because each iteration
            # generates an array of (1, M). In comparison the vectorized
            # version returns (S, M). It's therefore necessary to remove axis 1
            constraint_violation = constraint_violation[:, 0]

        feasible = ~(np.sum(constraint_violation, axis=1) > 0)

        return feasible, constraint_violation

    def __iter__(self):
        return self

    def __enter__(self):
        return self

    def __exit__(self, *args):
        return self._mapwrapper.__exit__(*args)

    def _accept_trial(self, energy_trial, feasible_trial, cv_trial,
                      energy_orig, feasible_orig, cv_orig):
        """
        Trial is accepted if:
        * it satisfies all constraints and provides a lower or equal objective
          function value, while both the compared solutions are feasible
        - or -
        * it is feasible while the original solution is infeasible,
        - or -
        * it is infeasible, but provides a lower or equal constraint violation
          for all constraint functions.

        This test corresponds to section III of Lampinen [1]_.

        Parameters
        ----------
        energy_trial : float
            Energy of the trial solution
        feasible_trial : float
            Feasibility of trial solution
        cv_trial : array-like
            Excess constraint violation for the trial solution
        energy_orig : float
            Energy of the original solution
        feasible_orig : float
            Feasibility of original solution
        cv_orig : array-like
            Excess constraint violation for the original solution

        Returns
        -------
        accepted : bool

        """
        if feasible_orig and feasible_trial:
            return energy_trial <= energy_orig
        elif feasible_trial and not feasible_orig:
            return True
        elif not feasible_trial and (cv_trial <= cv_orig).all():
            # cv_trial < cv_orig would imply that both trial and orig are not
            # feasible
            return True

        return False

    def __next__(self):
        """
        Evolve the population by a single generation

        Returns
        -------
        x : ndarray
            The best solution from the solver.
        fun : float
            Value of objective function obtained from the best solution.
        """
        # the population may have just been initialized (all entries are
        # np.inf). If it has you have to calculate the initial energies
        if np.all(np.isinf(self.population_energies)):
            self.feasible, self.constraint_violation = (
                self._calculate_population_feasibilities(self.population))

            # only need to work out population energies for those that are
            # feasible
            self.population_energies[self.feasible] = (
                self._calculate_population_energies(
                    self.population[self.feasible]))

            self._promote_lowest_energy()

        if self.dither is not None:
            self.scale = self.random_number_generator.uniform(self.dither[0],
                                                              self.dither[1])

        if self._updating == 'immediate':
            # update best solution immediately
            for candidate in range(self.num_population_members):
                if self._nfev > self.maxfun:
                    raise StopIteration

                # create a trial solution
                trial = self._mutate(candidate)

                # ensuring that it's in the range [0, 1)
                self._ensure_constraint(trial)

                # scale from [0, 1) to the actual parameter value
                parameters = self._scale_parameters(trial)

                # determine the energy of the objective function
                if self._wrapped_constraints:
                    cv = self._constraint_violation_fn(parameters)
                    feasible = False
                    energy = np.inf
                    if not np.sum(cv) > 0:
                        # solution is feasible
                        feasible = True
                        energy = self.func(parameters)
                        self._nfev += 1
                else:
                    feasible = True
                    cv = np.atleast_2d([0.])
                    energy = self.func(parameters)
                    self._nfev += 1

                # compare trial and population member
                if self._accept_trial(energy, feasible, cv,
                                      self.population_energies[candidate],
                                      self.feasible[candidate],
                                      self.constraint_violation[candidate]):
                    self.population[candidate] = trial
                    self.population_energies[candidate] = np.squeeze(energy)
                    self.feasible[candidate] = feasible
                    self.constraint_violation[candidate] = cv

                    # if the trial candidate is also better than the best
                    # solution then promote it.
                    if self._accept_trial(energy, feasible, cv,
                                          self.population_energies[0],
                                          self.feasible[0],
                                          self.constraint_violation[0]):
                        self._promote_lowest_energy()

        elif self._updating == 'deferred':
            # update best solution once per generation
            if self._nfev >= self.maxfun:
                raise StopIteration

            # 'deferred' approach, vectorised form.
            # create trial solutions
            trial_pop = self._mutate_many(
                np.arange(self.num_population_members)
            )

            # enforce bounds
            self._ensure_constraint(trial_pop)

            # determine the energies of the objective function, but only for
            # feasible trials
            feasible, cv = self._calculate_population_feasibilities(trial_pop)
            trial_energies = np.full(self.num_population_members, np.inf)

            # only calculate for feasible entries
            trial_energies[feasible] = self._calculate_population_energies(
                trial_pop[feasible])

            # which solutions are 'improved'?
            loc = [self._accept_trial(*val) for val in
                   zip(trial_energies, feasible, cv, self.population_energies,
                       self.feasible, self.constraint_violation)]
            loc = np.array(loc)
            self.population = np.where(loc[:, np.newaxis],
                                       trial_pop,
                                       self.population)
            self.population_energies = np.where(loc,
                                                trial_energies,
                                                self.population_energies)
            self.feasible = np.where(loc,
                                     feasible,
                                     self.feasible)
            self.constraint_violation = np.where(loc[:, np.newaxis],
                                                 cv,
                                                 self.constraint_violation)

            # make sure the best solution is updated if updating='deferred'.
            # put the lowest energy into the best solution position.
            self._promote_lowest_energy()

        return self.x, self.population_energies[0]

    def _scale_parameters(self, trial):
        """Scale from a number between 0 and 1 to parameters."""
        # trial either has shape (N, ) or (L, N), where L is the number of
        # solutions being scaled
        scaled = self.__scale_arg1 + (trial - 0.5) * self.__scale_arg2
        if np.count_nonzero(self.integrality):
            i = np.broadcast_to(self.integrality, scaled.shape)
            scaled[i] = np.round(scaled[i])
        return scaled

    def _unscale_parameters(self, parameters):
        """Scale from parameters to a number between 0 and 1."""
        return (parameters - self.__scale_arg1) * self.__recip_scale_arg2 + 0.5

    def _ensure_constraint(self, trial):
        """Make sure the parameters lie between the limits."""
        mask = np.bitwise_or(trial > 1, trial < 0)
        if oob := np.count_nonzero(mask):
            trial[mask] = self.random_number_generator.uniform(size=oob)

    def _mutate_custom(self, candidate):
        rng = self.random_number_generator
        msg = (
            "strategy must have signature"
            " f(candidate: int, population: np.ndarray, rng=None) returning an"
            " array of shape (N,)"
        )
        _population = self._scale_parameters(self.population)
        if not len(np.shape(candidate)):
            # single entry in population
            trial = self.strategy(candidate, _population, rng=rng)
            if trial.shape != (self.parameter_count,):
                raise RuntimeError(msg)
        else:
            S = candidate.shape[0]
            trial = np.array(
                [self.strategy(c, _population, rng=rng) for c in candidate],
                dtype=float
            )
            if trial.shape != (S, self.parameter_count):
                raise RuntimeError(msg)
        return self._unscale_parameters(trial)

    def _mutate_many(self, candidates):
        """Create trial vectors based on a mutation strategy."""
        rng = self.random_number_generator

        S = len(candidates)
        if callable(self.strategy):
            return self._mutate_custom(candidates)

        trial = np.copy(self.population[candidates])
        samples = np.array([self._select_samples(c, 5) for c in candidates])

        if self.strategy in ['currenttobest1exp', 'currenttobest1bin']:
            bprime = self.mutation_func(candidates, samples)
        else:
            bprime = self.mutation_func(samples)

        fill_point = rng_integers(rng, self.parameter_count, size=S)
        crossovers = rng.uniform(size=(S, self.parameter_count))
        crossovers = crossovers < self.cross_over_probability
        if self.strategy in self._binomial:
            # the last one is always from the bprime vector for binomial
            # If you fill in modulo with a loop you have to set the last one to
            # true. If you don't use a loop then you can have any random entry
            # be True.
            i = np.arange(S)
            crossovers[i, fill_point[i]] = True
            trial = np.where(crossovers, bprime, trial)
            return trial

        elif self.strategy in self._exponential:
            crossovers[..., 0] = True
            for j in range(S):
                i = 0
                init_fill = fill_point[j]
                while (i < self.parameter_count and crossovers[j, i]):
                    trial[j, init_fill] = bprime[j, init_fill]
                    init_fill = (init_fill + 1) % self.parameter_count
                    i += 1

            return trial

    def _mutate(self, candidate):
        """Create a trial vector based on a mutation strategy."""
        rng = self.random_number_generator

        if callable(self.strategy):
            return self._mutate_custom(candidate)

        fill_point = rng_integers(rng, self.parameter_count)
        samples = self._select_samples(candidate, 5)

        trial = np.copy(self.population[candidate])

        if self.strategy in ['currenttobest1exp', 'currenttobest1bin']:
            bprime = self.mutation_func(candidate, samples)
        else:
            bprime = self.mutation_func(samples)

        crossovers = rng.uniform(size=self.parameter_count)
        crossovers = crossovers < self.cross_over_probability
        if self.strategy in self._binomial:
            # the last one is always from the bprime vector for binomial
            # If you fill in modulo with a loop you have to set the last one to
            # true. If you don't use a loop then you can have any random entry
            # be True.
            crossovers[fill_point] = True
            trial = np.where(crossovers, bprime, trial)
            return trial

        elif self.strategy in self._exponential:
            i = 0
            crossovers[0] = True
            while i < self.parameter_count and crossovers[i]:
                trial[fill_point] = bprime[fill_point]
                fill_point = (fill_point + 1) % self.parameter_count
                i += 1

            return trial

    def _best1(self, samples):
        """best1bin, best1exp"""
        # samples.shape == (S, 5)
        # or
        # samples.shape(5,)
        r0, r1 = samples[..., :2].T
        return (self.population[0] + self.scale *
                (self.population[r0] - self.population[r1]))

    def _rand1(self, samples):
        """rand1bin, rand1exp"""
        r0, r1, r2 = samples[..., :3].T
        return (self.population[r0] + self.scale *
                (self.population[r1] - self.population[r2]))

    def _randtobest1(self, samples):
        """randtobest1bin, randtobest1exp"""
        r0, r1, r2 = samples[..., :3].T
        bprime = np.copy(self.population[r0])
        bprime += self.scale * (self.population[0] - bprime)
        bprime += self.scale * (self.population[r1] -
                                self.population[r2])
        return bprime

    def _currenttobest1(self, candidate, samples):
        """currenttobest1bin, currenttobest1exp"""
        r0, r1 = samples[..., :2].T
        bprime = (self.population[candidate] + self.scale *
                  (self.population[0] - self.population[candidate] +
                   self.population[r0] - self.population[r1]))
        return bprime

    def _best2(self, samples):
        """best2bin, best2exp"""
        r0, r1, r2, r3 = samples[..., :4].T
        bprime = (self.population[0] + self.scale *
                  (self.population[r0] + self.population[r1] -
                   self.population[r2] - self.population[r3]))

        return bprime

    def _rand2(self, samples):
        """rand2bin, rand2exp"""
        r0, r1, r2, r3, r4 = samples[..., :5].T
        bprime = (self.population[r0] + self.scale *
                  (self.population[r1] + self.population[r2] -
                   self.population[r3] - self.population[r4]))

        return bprime

    def _select_samples(self, candidate, number_samples):
        """
        obtain random integers from range(self.num_population_members),
        without replacement. You can't have the original candidate either.
        """
        self.random_number_generator.shuffle(self._random_population_index)
        idxs = self._random_population_index[:number_samples + 1]
        return idxs[idxs != candidate][:number_samples]


class _ConstraintWrapper:
    """Object to wrap/evaluate user defined constraints.

    Very similar in practice to `PreparedConstraint`, except that no evaluation
    of jac/hess is performed (explicit or implicit).

    If created successfully, it will contain the attributes listed below.

    Parameters
    ----------
    constraint : {`NonlinearConstraint`, `LinearConstraint`, `Bounds`}
        Constraint to check and prepare.
    x0 : array_like
        Initial vector of independent variables, shape (N,)

    Attributes
    ----------
    fun : callable
        Function defining the constraint wrapped by one of the convenience
        classes.
    bounds : 2-tuple
        Contains lower and upper bounds for the constraints --- lb and ub.
        These are converted to ndarray and have a size equal to the number of
        the constraints.

    Notes
    -----
    _ConstraintWrapper.fun and _ConstraintWrapper.violation can get sent
    arrays of shape (N, S) or (N,), where S is the number of vectors of shape
    (N,) to consider constraints for.
    """
    def __init__(self, constraint, x0):
        self.constraint = constraint

        if isinstance(constraint, NonlinearConstraint):
            def fun(x):
                x = np.asarray(x)
                return np.atleast_1d(constraint.fun(x))
        elif isinstance(constraint, LinearConstraint):
            def fun(x):
                if issparse(constraint.A):
                    A = constraint.A
                else:
                    A = np.atleast_2d(constraint.A)

                res = A.dot(x)
                # x either has shape (N, S) or (N)
                # (M, N) x (N, S) --> (M, S)
                # (M, N) x (N,)   --> (M,)
                # However, if (M, N) is a matrix then:
                # (M, N) * (N,)   --> (M, 1), we need this to be (M,)
                if x.ndim == 1 and res.ndim == 2:
                    # deal with case that constraint.A is an np.matrix
                    # see gh20041
                    res = np.asarray(res)[:, 0]

                return res
        elif isinstance(constraint, Bounds):
            def fun(x):
                return np.asarray(x)
        else:
            raise ValueError("`constraint` of an unknown type is passed.")

        self.fun = fun

        lb = np.asarray(constraint.lb, dtype=float)
        ub = np.asarray(constraint.ub, dtype=float)

        x0 = np.asarray(x0)

        # find out the number of constraints
        f0 = fun(x0)
        self.num_constr = m = f0.size
        self.parameter_count = x0.size

        if lb.ndim == 0:
            lb = np.resize(lb, m)
        if ub.ndim == 0:
            ub = np.resize(ub, m)

        self.bounds = (lb, ub)

    def __call__(self, x):
        return np.atleast_1d(self.fun(x))

    def violation(self, x):
        """How much the constraint is exceeded by.

        Parameters
        ----------
        x : array-like
            Vector of independent variables, (N, S), where N is number of
            parameters and S is the number of solutions to be investigated.

        Returns
        -------
        excess : array-like
            How much the constraint is exceeded by, for each of the
            constraints specified by `_ConstraintWrapper.fun`.
            Has shape (M, S) where M is the number of constraint components.
        """
        # expect ev to have shape (num_constr, S) or (num_constr,)
        ev = self.fun(np.asarray(x))

        try:
            excess_lb = np.maximum(self.bounds[0] - ev.T, 0)
            excess_ub = np.maximum(ev.T - self.bounds[1], 0)
        except ValueError as e:
            raise RuntimeError("An array returned from a Constraint has"
                               " the wrong shape. If `vectorized is False`"
                               " the Constraint should return an array of"
                               " shape (M,). If `vectorized is True` then"
                               " the Constraint must return an array of"
                               " shape (M, S), where S is the number of"
                               " solution vectors and M is the number of"
                               " constraint components in a given"
                               " Constraint object.") from e

        v = (excess_lb + excess_ub).T
        return v