File size: 44,841 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
"""
Unit tests for optimization routines from minpack.py.
"""
import warnings
import pytest
import threading

from numpy.testing import (assert_, assert_almost_equal, assert_array_equal,
                           assert_array_almost_equal, assert_allclose,
                           assert_warns, suppress_warnings)
from pytest import raises as assert_raises
import numpy as np
from numpy import array, float64
from multiprocessing.pool import ThreadPool

from scipy import optimize, linalg
from scipy.special import lambertw
from scipy.optimize._minpack_py import leastsq, curve_fit, fixed_point
from scipy.optimize import OptimizeWarning
from scipy.optimize._minimize import Bounds


class ReturnShape:
    """This class exists to create a callable that does not have a '__name__' attribute.

    __init__ takes the argument 'shape', which should be a tuple of ints.
    When an instance is called with a single argument 'x', it returns numpy.ones(shape).
    """

    def __init__(self, shape):
        self.shape = shape

    def __call__(self, x):
        return np.ones(self.shape)


def dummy_func(x, shape):
    """A function that returns an array of ones of the given shape.
    `x` is ignored.
    """
    return np.ones(shape)


def sequence_parallel(fs):
    with ThreadPool(len(fs)) as pool:
        return pool.map(lambda f: f(), fs)


# Function and Jacobian for tests of solvers for systems of nonlinear
# equations


def pressure_network(flow_rates, Qtot, k):
    """Evaluate non-linear equation system representing
    the pressures and flows in a system of n parallel pipes::

        f_i = P_i - P_0, for i = 1..n
        f_0 = sum(Q_i) - Qtot

    where Q_i is the flow rate in pipe i and P_i the pressure in that pipe.
    Pressure is modeled as a P=kQ**2 where k is a valve coefficient and
    Q is the flow rate.

    Parameters
    ----------
    flow_rates : float
        A 1-D array of n flow rates [kg/s].
    k : float
        A 1-D array of n valve coefficients [1/kg m].
    Qtot : float
        A scalar, the total input flow rate [kg/s].

    Returns
    -------
    F : float
        A 1-D array, F[i] == f_i.

    """
    P = k * flow_rates**2
    F = np.hstack((P[1:] - P[0], flow_rates.sum() - Qtot))
    return F


def pressure_network_jacobian(flow_rates, Qtot, k):
    """Return the jacobian of the equation system F(flow_rates)
    computed by `pressure_network` with respect to
    *flow_rates*. See `pressure_network` for the detailed
    description of parameters.

    Returns
    -------
    jac : float
        *n* by *n* matrix ``df_i/dQ_i`` where ``n = len(flow_rates)``
        and *f_i* and *Q_i* are described in the doc for `pressure_network`
    """
    n = len(flow_rates)
    pdiff = np.diag(flow_rates[1:] * 2 * k[1:] - 2 * flow_rates[0] * k[0])

    jac = np.empty((n, n))
    jac[:n-1, :n-1] = pdiff * 0
    jac[:n-1, n-1] = 0
    jac[n-1, :] = np.ones(n)

    return jac


def pressure_network_fun_and_grad(flow_rates, Qtot, k):
    return (pressure_network(flow_rates, Qtot, k),
            pressure_network_jacobian(flow_rates, Qtot, k))


class TestFSolve:
    def test_pressure_network_no_gradient(self):
        # fsolve without gradient, equal pipes -> equal flows.
        k = np.full(4, 0.5)
        Qtot = 4
        initial_guess = array([2., 0., 2., 0.])
        final_flows, info, ier, mesg = optimize.fsolve(
            pressure_network, initial_guess, args=(Qtot, k),
            full_output=True)
        assert_array_almost_equal(final_flows, np.ones(4))
        assert_(ier == 1, mesg)

    def test_pressure_network_with_gradient(self):
        # fsolve with gradient, equal pipes -> equal flows
        k = np.full(4, 0.5)
        Qtot = 4
        initial_guess = array([2., 0., 2., 0.])
        final_flows = optimize.fsolve(
            pressure_network, initial_guess, args=(Qtot, k),
            fprime=pressure_network_jacobian)
        assert_array_almost_equal(final_flows, np.ones(4))

    def test_wrong_shape_func_callable(self):
        func = ReturnShape(1)
        # x0 is a list of two elements, but func will return an array with
        # length 1, so this should result in a TypeError.
        x0 = [1.5, 2.0]
        assert_raises(TypeError, optimize.fsolve, func, x0)

    def test_wrong_shape_func_function(self):
        # x0 is a list of two elements, but func will return an array with
        # length 1, so this should result in a TypeError.
        x0 = [1.5, 2.0]
        assert_raises(TypeError, optimize.fsolve, dummy_func, x0, args=((1,),))

    def test_wrong_shape_fprime_callable(self):
        func = ReturnShape(1)
        deriv_func = ReturnShape((2,2))
        assert_raises(TypeError, optimize.fsolve, func, x0=[0,1], fprime=deriv_func)

    def test_wrong_shape_fprime_function(self):
        def func(x):
            return dummy_func(x, (2,))
        def deriv_func(x):
            return dummy_func(x, (3, 3))
        assert_raises(TypeError, optimize.fsolve, func, x0=[0,1], fprime=deriv_func)

    def test_func_can_raise(self):
        def func(*args):
            raise ValueError('I raised')

        with assert_raises(ValueError, match='I raised'):
            optimize.fsolve(func, x0=[0])

    def test_Dfun_can_raise(self):
        def func(x):
            return x - np.array([10])

        def deriv_func(*args):
            raise ValueError('I raised')

        with assert_raises(ValueError, match='I raised'):
            optimize.fsolve(func, x0=[0], fprime=deriv_func)

    def test_float32(self):
        def func(x):
            return np.array([x[0] - 100, x[1] - 1000], dtype=np.float32) ** 2
        p = optimize.fsolve(func, np.array([1, 1], np.float32))
        assert_allclose(func(p), [0, 0], atol=1e-3)

    def test_reentrant_func(self):
        def func(*args):
            self.test_pressure_network_no_gradient()
            return pressure_network(*args)

        # fsolve without gradient, equal pipes -> equal flows.
        k = np.full(4, 0.5)
        Qtot = 4
        initial_guess = array([2., 0., 2., 0.])
        final_flows, info, ier, mesg = optimize.fsolve(
            func, initial_guess, args=(Qtot, k),
            full_output=True)
        assert_array_almost_equal(final_flows, np.ones(4))
        assert_(ier == 1, mesg)

    def test_reentrant_Dfunc(self):
        def deriv_func(*args):
            self.test_pressure_network_with_gradient()
            return pressure_network_jacobian(*args)

        # fsolve with gradient, equal pipes -> equal flows
        k = np.full(4, 0.5)
        Qtot = 4
        initial_guess = array([2., 0., 2., 0.])
        final_flows = optimize.fsolve(
            pressure_network, initial_guess, args=(Qtot, k),
            fprime=deriv_func)
        assert_array_almost_equal(final_flows, np.ones(4))

    def test_concurrent_no_gradient(self):
        v = sequence_parallel([self.test_pressure_network_no_gradient] * 10)
        assert all([result is None for result in v])

    def test_concurrent_with_gradient(self):
        v = sequence_parallel([self.test_pressure_network_with_gradient] * 10)
        assert all([result is None for result in v])


class TestRootHybr:
    def test_pressure_network_no_gradient(self):
        # root/hybr without gradient, equal pipes -> equal flows
        k = np.full(4, 0.5)
        Qtot = 4
        initial_guess = array([2., 0., 2., 0.])
        final_flows = optimize.root(pressure_network, initial_guess,
                                    method='hybr', args=(Qtot, k)).x
        assert_array_almost_equal(final_flows, np.ones(4))

    def test_pressure_network_with_gradient(self):
        # root/hybr with gradient, equal pipes -> equal flows
        k = np.full(4, 0.5)
        Qtot = 4
        initial_guess = array([[2., 0., 2., 0.]])
        final_flows = optimize.root(pressure_network, initial_guess,
                                    args=(Qtot, k), method='hybr',
                                    jac=pressure_network_jacobian).x
        assert_array_almost_equal(final_flows, np.ones(4))

    def test_pressure_network_with_gradient_combined(self):
        # root/hybr with gradient and function combined, equal pipes -> equal
        # flows
        k = np.full(4, 0.5)
        Qtot = 4
        initial_guess = array([2., 0., 2., 0.])
        final_flows = optimize.root(pressure_network_fun_and_grad,
                                    initial_guess, args=(Qtot, k),
                                    method='hybr', jac=True).x
        assert_array_almost_equal(final_flows, np.ones(4))


class TestRootLM:
    def test_pressure_network_no_gradient(self):
        # root/lm without gradient, equal pipes -> equal flows
        k = np.full(4, 0.5)
        Qtot = 4
        initial_guess = array([2., 0., 2., 0.])
        final_flows = optimize.root(pressure_network, initial_guess,
                                    method='lm', args=(Qtot, k)).x
        assert_array_almost_equal(final_flows, np.ones(4))


class TestNfev:
    def setup_method(self):
        self.nfev = threading.local()

    def zero_f(self, y):
        if not hasattr(self.nfev, 'c'):
            self.nfev.c = 0
        self.nfev.c += 1
        return y**2-3

    @pytest.mark.parametrize('method', ['hybr', 'lm', 'broyden1',
                                        'broyden2', 'anderson',
                                        'linearmixing', 'diagbroyden',
                                        'excitingmixing', 'krylov',
                                        'df-sane'])
    def test_root_nfev(self, method):
        self.nfev.c = 0
        solution = optimize.root(self.zero_f, 100, method=method)
        assert solution.nfev == self.nfev.c

    def test_fsolve_nfev(self):
        self.nfev.c = 0
        x, info, ier, mesg = optimize.fsolve(self.zero_f, 100, full_output=True)
        assert info['nfev'] == self.nfev.c


class TestLeastSq:
    def setup_method(self):
        x = np.linspace(0, 10, 40)
        a,b,c = 3.1, 42, -304.2
        self.x = x
        self.abc = a,b,c
        y_true = a*x**2 + b*x + c
        np.random.seed(0)
        self.y_meas = y_true + 0.01*np.random.standard_normal(y_true.shape)

    def residuals(self, p, y, x):
        a,b,c = p
        err = y-(a*x**2 + b*x + c)
        return err

    def residuals_jacobian(self, _p, _y, x):
        return -np.vstack([x**2, x, np.ones_like(x)]).T

    def test_basic(self):
        p0 = array([0,0,0])
        params_fit, ier = leastsq(self.residuals, p0,
                                  args=(self.y_meas, self.x))
        assert_(ier in (1,2,3,4), 'solution not found (ier=%d)' % ier)
        # low precision due to random
        assert_array_almost_equal(params_fit, self.abc, decimal=2)

    def test_basic_with_gradient(self):
        p0 = array([0,0,0])
        params_fit, ier = leastsq(self.residuals, p0,
                                  args=(self.y_meas, self.x),
                                  Dfun=self.residuals_jacobian)
        assert_(ier in (1,2,3,4), 'solution not found (ier=%d)' % ier)
        # low precision due to random
        assert_array_almost_equal(params_fit, self.abc, decimal=2)

    def test_full_output(self):
        p0 = array([[0,0,0]])
        full_output = leastsq(self.residuals, p0,
                              args=(self.y_meas, self.x),
                              full_output=True)
        params_fit, cov_x, infodict, mesg, ier = full_output
        assert_(ier in (1,2,3,4), f'solution not found: {mesg}')

    def test_input_untouched(self):
        p0 = array([0,0,0],dtype=float64)
        p0_copy = array(p0, copy=True)
        full_output = leastsq(self.residuals, p0,
                              args=(self.y_meas, self.x),
                              full_output=True)
        params_fit, cov_x, infodict, mesg, ier = full_output
        assert_(ier in (1,2,3,4), f'solution not found: {mesg}')
        assert_array_equal(p0, p0_copy)

    def test_wrong_shape_func_callable(self):
        func = ReturnShape(1)
        # x0 is a list of two elements, but func will return an array with
        # length 1, so this should result in a TypeError.
        x0 = [1.5, 2.0]
        assert_raises(TypeError, optimize.leastsq, func, x0)

    def test_wrong_shape_func_function(self):
        # x0 is a list of two elements, but func will return an array with
        # length 1, so this should result in a TypeError.
        x0 = [1.5, 2.0]
        assert_raises(TypeError, optimize.leastsq, dummy_func, x0, args=((1,),))

    def test_wrong_shape_Dfun_callable(self):
        func = ReturnShape(1)
        deriv_func = ReturnShape((2,2))
        assert_raises(TypeError, optimize.leastsq, func, x0=[0,1], Dfun=deriv_func)

    def test_wrong_shape_Dfun_function(self):
        def func(x):
            return dummy_func(x, (2,))
        def deriv_func(x):
            return dummy_func(x, (3, 3))
        assert_raises(TypeError, optimize.leastsq, func, x0=[0,1], Dfun=deriv_func)

    def test_float32(self):
        # Regression test for gh-1447
        def func(p,x,y):
            q = p[0]*np.exp(-(x-p[1])**2/(2.0*p[2]**2))+p[3]
            return q - y

        x = np.array([1.475,1.429,1.409,1.419,1.455,1.519,1.472, 1.368,1.286,
                       1.231], dtype=np.float32)
        y = np.array([0.0168,0.0193,0.0211,0.0202,0.0171,0.0151,0.0185,0.0258,
                      0.034,0.0396], dtype=np.float32)
        p0 = np.array([1.0,1.0,1.0,1.0])
        p1, success = optimize.leastsq(func, p0, args=(x,y))

        assert_(success in [1,2,3,4])
        assert_((func(p1,x,y)**2).sum() < 1e-4 * (func(p0,x,y)**2).sum())

    def test_func_can_raise(self):
        def func(*args):
            raise ValueError('I raised')

        with assert_raises(ValueError, match='I raised'):
            optimize.leastsq(func, x0=[0])

    def test_Dfun_can_raise(self):
        def func(x):
            return x - np.array([10])

        def deriv_func(*args):
            raise ValueError('I raised')

        with assert_raises(ValueError, match='I raised'):
            optimize.leastsq(func, x0=[0], Dfun=deriv_func)

    def test_reentrant_func(self):
        def func(*args):
            self.test_basic()
            return self.residuals(*args)

        p0 = array([0,0,0])
        params_fit, ier = leastsq(func, p0,
                                  args=(self.y_meas, self.x))
        assert_(ier in (1,2,3,4), 'solution not found (ier=%d)' % ier)
        # low precision due to random
        assert_array_almost_equal(params_fit, self.abc, decimal=2)

    def test_reentrant_Dfun(self):
        def deriv_func(*args):
            self.test_basic()
            return self.residuals_jacobian(*args)

        p0 = array([0,0,0])
        params_fit, ier = leastsq(self.residuals, p0,
                                  args=(self.y_meas, self.x),
                                  Dfun=deriv_func)
        assert_(ier in (1,2,3,4), 'solution not found (ier=%d)' % ier)
        # low precision due to random
        assert_array_almost_equal(params_fit, self.abc, decimal=2)

    def test_concurrent_no_gradient(self):
        v = sequence_parallel([self.test_basic] * 10)
        assert all([result is None for result in v])

    def test_concurrent_with_gradient(self):
        v = sequence_parallel([self.test_basic_with_gradient] * 10)
        assert all([result is None for result in v])

    def test_func_input_output_length_check(self):

        def func(x):
            return 2 * (x[0] - 3) ** 2 + 1

        with assert_raises(TypeError,
                           match='Improper input: func input vector length N='):
            optimize.leastsq(func, x0=[0, 1])


class TestCurveFit:
    def setup_method(self):
        self.y = array([1.0, 3.2, 9.5, 13.7])
        self.x = array([1.0, 2.0, 3.0, 4.0])

    def test_one_argument(self):
        def func(x,a):
            return x**a
        popt, pcov = curve_fit(func, self.x, self.y)
        assert_(len(popt) == 1)
        assert_(pcov.shape == (1,1))
        assert_almost_equal(popt[0], 1.9149, decimal=4)
        assert_almost_equal(pcov[0,0], 0.0016, decimal=4)

        # Test if we get the same with full_output. Regression test for #1415.
        # Also test if check_finite can be turned off.
        res = curve_fit(func, self.x, self.y,
                        full_output=1, check_finite=False)
        (popt2, pcov2, infodict, errmsg, ier) = res
        assert_array_almost_equal(popt, popt2)

    def test_two_argument(self):
        def func(x, a, b):
            return b*x**a
        popt, pcov = curve_fit(func, self.x, self.y)
        assert_(len(popt) == 2)
        assert_(pcov.shape == (2,2))
        assert_array_almost_equal(popt, [1.7989, 1.1642], decimal=4)
        assert_array_almost_equal(pcov, [[0.0852, -0.1260], [-0.1260, 0.1912]],
                                  decimal=4)

    def test_func_is_classmethod(self):
        class test_self:
            """This class tests if curve_fit passes the correct number of
               arguments when the model function is a class instance method.
            """

            def func(self, x, a, b):
                return b * x**a

        test_self_inst = test_self()
        popt, pcov = curve_fit(test_self_inst.func, self.x, self.y)
        assert_(pcov.shape == (2,2))
        assert_array_almost_equal(popt, [1.7989, 1.1642], decimal=4)
        assert_array_almost_equal(pcov, [[0.0852, -0.1260], [-0.1260, 0.1912]],
                                  decimal=4)

    def test_regression_2639(self):
        # This test fails if epsfcn in leastsq is too large.
        x = [574.14200000000005, 574.154, 574.16499999999996,
             574.17700000000002, 574.18799999999999, 574.19899999999996,
             574.21100000000001, 574.22199999999998, 574.23400000000004,
             574.245]
        y = [859.0, 997.0, 1699.0, 2604.0, 2013.0, 1964.0, 2435.0,
             1550.0, 949.0, 841.0]
        guess = [574.1861428571428, 574.2155714285715, 1302.0, 1302.0,
                 0.0035019999999983615, 859.0]
        good = [5.74177150e+02, 5.74209188e+02, 1.74187044e+03, 1.58646166e+03,
                1.0068462e-02, 8.57450661e+02]

        def f_double_gauss(x, x0, x1, A0, A1, sigma, c):
            return (A0*np.exp(-(x-x0)**2/(2.*sigma**2))
                    + A1*np.exp(-(x-x1)**2/(2.*sigma**2)) + c)
        popt, pcov = curve_fit(f_double_gauss, x, y, guess, maxfev=10000)
        assert_allclose(popt, good, rtol=1e-5)

    def test_pcov(self):
        xdata = np.array([0, 1, 2, 3, 4, 5])
        ydata = np.array([1, 1, 5, 7, 8, 12])
        sigma = np.array([1, 2, 1, 2, 1, 2])

        def f(x, a, b):
            return a*x + b

        for method in ['lm', 'trf', 'dogbox']:
            popt, pcov = curve_fit(f, xdata, ydata, p0=[2, 0], sigma=sigma,
                                   method=method)
            perr_scaled = np.sqrt(np.diag(pcov))
            assert_allclose(perr_scaled, [0.20659803, 0.57204404], rtol=1e-3)

            popt, pcov = curve_fit(f, xdata, ydata, p0=[2, 0], sigma=3*sigma,
                                   method=method)
            perr_scaled = np.sqrt(np.diag(pcov))
            assert_allclose(perr_scaled, [0.20659803, 0.57204404], rtol=1e-3)

            popt, pcov = curve_fit(f, xdata, ydata, p0=[2, 0], sigma=sigma,
                                   absolute_sigma=True, method=method)
            perr = np.sqrt(np.diag(pcov))
            assert_allclose(perr, [0.30714756, 0.85045308], rtol=1e-3)

            popt, pcov = curve_fit(f, xdata, ydata, p0=[2, 0], sigma=3*sigma,
                                   absolute_sigma=True, method=method)
            perr = np.sqrt(np.diag(pcov))
            assert_allclose(perr, [3*0.30714756, 3*0.85045308], rtol=1e-3)

        # infinite variances

        def f_flat(x, a, b):
            return a*x

        pcov_expected = np.array([np.inf]*4).reshape(2, 2)

        with suppress_warnings() as sup:
            sup.filter(OptimizeWarning,
                       "Covariance of the parameters could not be estimated")
            popt, pcov = curve_fit(f_flat, xdata, ydata, p0=[2, 0], sigma=sigma)
            popt1, pcov1 = curve_fit(f, xdata[:2], ydata[:2], p0=[2, 0])

        assert_(pcov.shape == (2, 2))
        assert_array_equal(pcov, pcov_expected)

        assert_(pcov1.shape == (2, 2))
        assert_array_equal(pcov1, pcov_expected)

    def test_array_like(self):
        # Test sequence input. Regression test for gh-3037.
        def f_linear(x, a, b):
            return a*x + b

        x = [1, 2, 3, 4]
        y = [3, 5, 7, 9]
        assert_allclose(curve_fit(f_linear, x, y)[0], [2, 1], atol=1e-10)

    @pytest.mark.thread_unsafe
    def test_indeterminate_covariance(self):
        # Test that a warning is returned when pcov is indeterminate
        xdata = np.array([1, 2, 3, 4, 5, 6])
        ydata = np.array([1, 2, 3, 4, 5.5, 6])
        assert_warns(OptimizeWarning, curve_fit,
                     lambda x, a, b: a*x, xdata, ydata)

    def test_NaN_handling(self):
        # Test for correct handling of NaNs in input data: gh-3422

        # create input with NaNs
        xdata = np.array([1, np.nan, 3])
        ydata = np.array([1, 2, 3])

        assert_raises(ValueError, curve_fit,
                      lambda x, a, b: a*x + b, xdata, ydata)
        assert_raises(ValueError, curve_fit,
                      lambda x, a, b: a*x + b, ydata, xdata)

        assert_raises(ValueError, curve_fit, lambda x, a, b: a*x + b,
                      xdata, ydata, **{"check_finite": True})

    @staticmethod
    def _check_nan_policy(f, xdata_with_nan, xdata_without_nan,
                          ydata_with_nan, ydata_without_nan, method):
        kwargs = {'f': f, 'xdata': xdata_with_nan, 'ydata': ydata_with_nan,
                  'method': method, 'check_finite': False}
        # propagate test
        error_msg = ("`nan_policy='propagate'` is not supported "
                     "by this function.")
        with assert_raises(ValueError, match=error_msg):
            curve_fit(**kwargs, nan_policy="propagate", maxfev=2000)

        # raise test
        with assert_raises(ValueError, match="The input contains nan"):
            curve_fit(**kwargs, nan_policy="raise")

        # omit test
        result_with_nan, _ = curve_fit(**kwargs, nan_policy="omit")
        kwargs['xdata'] = xdata_without_nan
        kwargs['ydata'] = ydata_without_nan
        result_without_nan, _ = curve_fit(**kwargs)
        assert_allclose(result_with_nan, result_without_nan)

        # not valid policy test
        # check for argument names in any order
        error_msg = (r"nan_policy must be one of \{(?:'raise'|'omit'|None)"
                     r"(?:, ?(?:'raise'|'omit'|None))*\}")
        with assert_raises(ValueError, match=error_msg):
            curve_fit(**kwargs, nan_policy="hi")

    @pytest.mark.parametrize('method', ["lm", "trf", "dogbox"])
    def test_nan_policy_1d(self, method):
        def f(x, a, b):
            return a*x + b

        xdata_with_nan = np.array([2, 3, np.nan, 4, 4, np.nan])
        ydata_with_nan = np.array([1, 2, 5, 3, np.nan, 7])
        xdata_without_nan = np.array([2, 3, 4])
        ydata_without_nan = np.array([1, 2, 3])

        self._check_nan_policy(f, xdata_with_nan, xdata_without_nan,
                               ydata_with_nan, ydata_without_nan, method)

    @pytest.mark.parametrize('method', ["lm", "trf", "dogbox"])
    def test_nan_policy_2d(self, method):
        def f(x, a, b):
            x1 = x[0, :]
            x2 = x[1, :]
            return a*x1 + b + x2

        xdata_with_nan = np.array([[2, 3, np.nan, 4, 4, np.nan, 5],
                                   [2, 3, np.nan, np.nan, 4, np.nan, 7]])
        ydata_with_nan = np.array([1, 2, 5, 3, np.nan, 7, 10])
        xdata_without_nan = np.array([[2, 3, 5], [2, 3, 7]])
        ydata_without_nan = np.array([1, 2, 10])

        self._check_nan_policy(f, xdata_with_nan, xdata_without_nan,
                               ydata_with_nan, ydata_without_nan, method)

    @pytest.mark.parametrize('n', [2, 3])
    @pytest.mark.parametrize('method', ["lm", "trf", "dogbox"])
    def test_nan_policy_2_3d(self, n, method):
        def f(x, a, b):
            x1 = x[..., 0, :].squeeze()
            x2 = x[..., 1, :].squeeze()
            return a*x1 + b + x2

        xdata_with_nan = np.array([[[2, 3, np.nan, 4, 4, np.nan, 5],
                                   [2, 3, np.nan, np.nan, 4, np.nan, 7]]])
        xdata_with_nan = xdata_with_nan.squeeze() if n == 2 else xdata_with_nan
        ydata_with_nan = np.array([1, 2, 5, 3, np.nan, 7, 10])
        xdata_without_nan = np.array([[[2, 3, 5], [2, 3, 7]]])
        ydata_without_nan = np.array([1, 2, 10])

        self._check_nan_policy(f, xdata_with_nan, xdata_without_nan,
                               ydata_with_nan, ydata_without_nan, method)

    def test_empty_inputs(self):
        # Test both with and without bounds (regression test for gh-9864)
        assert_raises(ValueError, curve_fit, lambda x, a: a*x, [], [])
        assert_raises(ValueError, curve_fit, lambda x, a: a*x, [], [],
                      bounds=(1, 2))
        assert_raises(ValueError, curve_fit, lambda x, a: a*x, [1], [])
        assert_raises(ValueError, curve_fit, lambda x, a: a*x, [2], [],
                      bounds=(1, 2))

    def test_function_zero_params(self):
        # Fit args is zero, so "Unable to determine number of fit parameters."
        assert_raises(ValueError, curve_fit, lambda x: x, [1, 2], [3, 4])

    def test_None_x(self):  # Added in GH10196
        popt, pcov = curve_fit(lambda _, a: a * np.arange(10),
                               None, 2 * np.arange(10))
        assert_allclose(popt, [2.])

    def test_method_argument(self):
        def f(x, a, b):
            return a * np.exp(-b*x)

        xdata = np.linspace(0, 1, 11)
        ydata = f(xdata, 2., 2.)

        for method in ['trf', 'dogbox', 'lm', None]:
            popt, pcov = curve_fit(f, xdata, ydata, method=method)
            assert_allclose(popt, [2., 2.])

        assert_raises(ValueError, curve_fit, f, xdata, ydata, method='unknown')

    def test_full_output(self):
        def f(x, a, b):
            return a * np.exp(-b * x)

        xdata = np.linspace(0, 1, 11)
        ydata = f(xdata, 2., 2.)

        for method in ['trf', 'dogbox', 'lm', None]:
            popt, pcov, infodict, errmsg, ier = curve_fit(
                f, xdata, ydata, method=method, full_output=True)
            assert_allclose(popt, [2., 2.])
            assert "nfev" in infodict
            assert "fvec" in infodict
            if method == 'lm' or method is None:
                assert "fjac" in infodict
                assert "ipvt" in infodict
                assert "qtf" in infodict
            assert isinstance(errmsg, str)
            assert ier in (1, 2, 3, 4)

    def test_bounds(self):
        def f(x, a, b):
            return a * np.exp(-b*x)

        xdata = np.linspace(0, 1, 11)
        ydata = f(xdata, 2., 2.)

        # The minimum w/out bounds is at [2., 2.],
        # and with bounds it's at [1.5, smth].
        lb = [1., 0]
        ub = [1.5, 3.]

        # Test that both variants of the bounds yield the same result
        bounds = (lb, ub)
        bounds_class = Bounds(lb, ub)
        for method in [None, 'trf', 'dogbox']:
            popt, pcov = curve_fit(f, xdata, ydata, bounds=bounds,
                                   method=method)
            assert_allclose(popt[0], 1.5)

            popt_class, pcov_class = curve_fit(f, xdata, ydata,
                                               bounds=bounds_class,
                                               method=method)
            assert_allclose(popt_class, popt)

        # With bounds, the starting estimate is feasible.
        popt, pcov = curve_fit(f, xdata, ydata, method='trf',
                               bounds=([0., 0], [0.6, np.inf]))
        assert_allclose(popt[0], 0.6)

        # method='lm' doesn't support bounds.
        assert_raises(ValueError, curve_fit, f, xdata, ydata, bounds=bounds,
                      method='lm')

    def test_bounds_p0(self):
        # This test is for issue #5719. The problem was that an initial guess
        # was ignored when 'trf' or 'dogbox' methods were invoked.
        def f(x, a):
            return np.sin(x + a)

        xdata = np.linspace(-2*np.pi, 2*np.pi, 40)
        ydata = np.sin(xdata)
        bounds = (-3 * np.pi, 3 * np.pi)
        for method in ['trf', 'dogbox']:
            popt_1, _ = curve_fit(f, xdata, ydata, p0=2.1*np.pi)
            popt_2, _ = curve_fit(f, xdata, ydata, p0=2.1*np.pi,
                                  bounds=bounds, method=method)

            # If the initial guess is ignored, then popt_2 would be close 0.
            assert_allclose(popt_1, popt_2)

    def test_jac(self):
        # Test that Jacobian callable is handled correctly and
        # weighted if sigma is provided.
        def f(x, a, b):
            return a * np.exp(-b*x)

        def jac(x, a, b):
            e = np.exp(-b*x)
            return np.vstack((e, -a * x * e)).T

        xdata = np.linspace(0, 1, 11)
        ydata = f(xdata, 2., 2.)

        # Test numerical options for least_squares backend.
        for method in ['trf', 'dogbox']:
            for scheme in ['2-point', '3-point', 'cs']:
                popt, pcov = curve_fit(f, xdata, ydata, jac=scheme,
                                       method=method)
                assert_allclose(popt, [2, 2])

        # Test the analytic option.
        for method in ['lm', 'trf', 'dogbox']:
            popt, pcov = curve_fit(f, xdata, ydata, method=method, jac=jac)
            assert_allclose(popt, [2, 2])

        # Now add an outlier and provide sigma.
        ydata[5] = 100
        sigma = np.ones(xdata.shape[0])
        sigma[5] = 200
        for method in ['lm', 'trf', 'dogbox']:
            popt, pcov = curve_fit(f, xdata, ydata, sigma=sigma, method=method,
                                   jac=jac)
            # Still the optimization process is influenced somehow,
            # have to set rtol=1e-3.
            assert_allclose(popt, [2, 2], rtol=1e-3)

    def test_maxfev_and_bounds(self):
        # gh-6340: with no bounds, curve_fit accepts parameter maxfev (via leastsq)
        # but with bounds, the parameter is `max_nfev` (via least_squares)
        x = np.arange(0, 10)
        y = 2*x
        popt1, _ = curve_fit(lambda x,p: p*x, x, y, bounds=(0, 3), maxfev=100)
        popt2, _ = curve_fit(lambda x,p: p*x, x, y, bounds=(0, 3), max_nfev=100)

        assert_allclose(popt1, 2, atol=1e-14)
        assert_allclose(popt2, 2, atol=1e-14)

    @pytest.mark.parametrize("sigma_dim", [0, 1, 2])
    def test_curvefit_omitnan(self, sigma_dim):
        def exponential(x, a, b):
            return b * np.exp(a * x)

        rng = np.random.default_rng(578285731148908)
        N = 100
        x = np.linspace(1, 10, N)
        y = exponential(x, 0.2, 0.5)

        if (sigma_dim == 0):
            sigma = 0.05
            y += rng.normal(0, sigma, N)

        elif (sigma_dim == 1):
            sigma = x * 0.05
            y += rng.normal(0, sigma, N)

        elif (sigma_dim == 2):
            # The covariance matrix must be symmetric positive-semidefinite
            a = rng.normal(0, 2, (N, N))
            sigma = a @ a.T
            y += rng.multivariate_normal(np.zeros_like(x), sigma)
        else:
            assert False, "The sigma must be a scalar, 1D array or 2D array."

        p0 = [0.1, 1.0]

        # Choose indices to place NaNs.
        i_x = rng.integers(N, size=5)
        i_y = rng.integers(N, size=5)

        # Add NaNs and compute result using `curve_fit`
        x[i_x] = np.nan
        y[i_y] = np.nan
        res_opt, res_cov = curve_fit(exponential, x, y, p0=p0, sigma=sigma,
                                     nan_policy="omit")

        # Manually remove elements that should be eliminated, and
        # calculate reference using `curve_fit`
        i_delete = np.unique(np.concatenate((i_x, i_y)))
        x = np.delete(x, i_delete, axis=0)
        y = np.delete(y, i_delete, axis=0)

        sigma = np.asarray(sigma)
        if sigma.ndim == 1:
            sigma = np.delete(sigma, i_delete)
        elif sigma.ndim == 2:
            sigma = np.delete(sigma, i_delete, axis=0)
            sigma = np.delete(sigma, i_delete, axis=1)
        ref_opt, ref_cov = curve_fit(exponential, x, y, p0=p0, sigma=sigma)

        assert_allclose(res_opt, ref_opt, atol=1e-14)
        assert_allclose(res_cov, ref_cov, atol=1e-14)

    def test_curvefit_simplecovariance(self):

        def func(x, a, b):
            return a * np.exp(-b*x)

        def jac(x, a, b):
            e = np.exp(-b*x)
            return np.vstack((e, -a * x * e)).T

        np.random.seed(0)
        xdata = np.linspace(0, 4, 50)
        y = func(xdata, 2.5, 1.3)
        ydata = y + 0.2 * np.random.normal(size=len(xdata))

        sigma = np.zeros(len(xdata)) + 0.2
        covar = np.diag(sigma**2)

        for jac1, jac2 in [(jac, jac), (None, None)]:
            for absolute_sigma in [False, True]:
                popt1, pcov1 = curve_fit(func, xdata, ydata, sigma=sigma,
                        jac=jac1, absolute_sigma=absolute_sigma)
                popt2, pcov2 = curve_fit(func, xdata, ydata, sigma=covar,
                        jac=jac2, absolute_sigma=absolute_sigma)

                assert_allclose(popt1, popt2, atol=1e-14)
                assert_allclose(pcov1, pcov2, atol=1e-14)

    def test_curvefit_covariance(self):

        def funcp(x, a, b):
            rotn = np.array([[1./np.sqrt(2), -1./np.sqrt(2), 0],
                             [1./np.sqrt(2), 1./np.sqrt(2), 0],
                             [0, 0, 1.0]])
            return rotn.dot(a * np.exp(-b*x))

        def jacp(x, a, b):
            rotn = np.array([[1./np.sqrt(2), -1./np.sqrt(2), 0],
                             [1./np.sqrt(2), 1./np.sqrt(2), 0],
                             [0, 0, 1.0]])
            e = np.exp(-b*x)
            return rotn.dot(np.vstack((e, -a * x * e)).T)

        def func(x, a, b):
            return a * np.exp(-b*x)

        def jac(x, a, b):
            e = np.exp(-b*x)
            return np.vstack((e, -a * x * e)).T

        rng = np.random.RandomState(0)
        xdata = np.arange(1, 4)
        y = func(xdata, 2.5, 1.0)
        ydata = y + 0.2 * rng.normal(size=len(xdata))
        sigma = np.zeros(len(xdata)) + 0.2
        covar = np.diag(sigma**2)
        # Get a rotation matrix, and obtain ydatap = R ydata
        # Chisq = ydata^T C^{-1} ydata
        #       = ydata^T R^T R C^{-1} R^T R ydata
        #       = ydatap^T Cp^{-1} ydatap
        # Cp^{-1} = R C^{-1} R^T
        # Cp      = R C R^T, since R^-1 = R^T
        rotn = np.array([[1./np.sqrt(2), -1./np.sqrt(2), 0],
                         [1./np.sqrt(2), 1./np.sqrt(2), 0],
                         [0, 0, 1.0]])
        ydatap = rotn.dot(ydata)
        covarp = rotn.dot(covar).dot(rotn.T)

        for jac1, jac2 in [(jac, jacp), (None, None)]:
            for absolute_sigma in [False, True]:
                popt1, pcov1 = curve_fit(func, xdata, ydata, sigma=sigma,
                        jac=jac1, absolute_sigma=absolute_sigma)
                popt2, pcov2 = curve_fit(funcp, xdata, ydatap, sigma=covarp,
                        jac=jac2, absolute_sigma=absolute_sigma)

                assert_allclose(popt1, popt2, rtol=1.2e-7, atol=1e-14)
                assert_allclose(pcov1, pcov2, rtol=1.2e-7, atol=1e-14)

    @pytest.mark.parametrize("absolute_sigma", [False, True])
    def test_curvefit_scalar_sigma(self, absolute_sigma):
        def func(x, a, b):
            return a * x + b

        x, y = self.x, self.y
        _, pcov1 = curve_fit(func, x, y, sigma=2, absolute_sigma=absolute_sigma)
        # Explicitly building the sigma 1D array
        _, pcov2 = curve_fit(
                func, x, y, sigma=np.full_like(y, 2), absolute_sigma=absolute_sigma
        )
        assert np.all(pcov1 == pcov2)

    def test_dtypes(self):
        # regression test for gh-9581: curve_fit fails if x and y dtypes differ
        x = np.arange(-3, 5)
        y = 1.5*x + 3.0 + 0.5*np.sin(x)

        def func(x, a, b):
            return a*x + b

        for method in ['lm', 'trf', 'dogbox']:
            for dtx in [np.float32, np.float64]:
                for dty in [np.float32, np.float64]:
                    x = x.astype(dtx)
                    y = y.astype(dty)

                with warnings.catch_warnings():
                    warnings.simplefilter("error", OptimizeWarning)
                    p, cov = curve_fit(func, x, y, method=method)

                    assert np.isfinite(cov).all()
                    assert not np.allclose(p, 1)   # curve_fit's initial value

    def test_dtypes2(self):
        # regression test for gh-7117: curve_fit fails if
        # both inputs are float32
        def hyperbola(x, s_1, s_2, o_x, o_y, c):
            b_2 = (s_1 + s_2) / 2
            b_1 = (s_2 - s_1) / 2
            return o_y + b_1*(x-o_x) + b_2*np.sqrt((x-o_x)**2 + c**2/4)

        min_fit = np.array([-3.0, 0.0, -2.0, -10.0, 0.0])
        max_fit = np.array([0.0, 3.0, 3.0, 0.0, 10.0])
        guess = np.array([-2.5/3.0, 4/3.0, 1.0, -4.0, 0.5])

        params = [-2, .4, -1, -5, 9.5]
        xdata = np.array([-32, -16, -8, 4, 4, 8, 16, 32])
        ydata = hyperbola(xdata, *params)

        # run optimization twice, with xdata being float32 and float64
        popt_64, _ = curve_fit(f=hyperbola, xdata=xdata, ydata=ydata, p0=guess,
                               bounds=(min_fit, max_fit))

        xdata = xdata.astype(np.float32)
        ydata = hyperbola(xdata, *params)

        popt_32, _ = curve_fit(f=hyperbola, xdata=xdata, ydata=ydata, p0=guess,
                               bounds=(min_fit, max_fit))

        assert_allclose(popt_32, popt_64, atol=2e-5)

    def test_broadcast_y(self):
        xdata = np.arange(10)
        target = 4.7 * xdata ** 2 + 3.5 * xdata + np.random.rand(len(xdata))
        def fit_func(x, a, b):
            return a * x ** 2 + b * x - target
        for method in ['lm', 'trf', 'dogbox']:
            popt0, pcov0 = curve_fit(fit_func,
                                     xdata=xdata,
                                     ydata=np.zeros_like(xdata),
                                     method=method)
            popt1, pcov1 = curve_fit(fit_func,
                                     xdata=xdata,
                                     ydata=0,
                                     method=method)
            assert_allclose(pcov0, pcov1)

    def test_args_in_kwargs(self):
        # Ensure that `args` cannot be passed as keyword argument to `curve_fit`

        def func(x, a, b):
            return a * x + b

        with assert_raises(ValueError):
            curve_fit(func,
                      xdata=[1, 2, 3, 4],
                      ydata=[5, 9, 13, 17],
                      p0=[1],
                      args=(1,))

    def test_data_point_number_validation(self):
        def func(x, a, b, c, d, e):
            return a * np.exp(-b * x) + c + d + e

        with assert_raises(TypeError, match="The number of func parameters="):
            curve_fit(func,
                      xdata=[1, 2, 3, 4],
                      ydata=[5, 9, 13, 17])

    @pytest.mark.filterwarnings('ignore::RuntimeWarning')
    def test_gh4555(self):
        # gh-4555 reported that covariance matrices returned by `leastsq`
        # can have negative diagonal elements and eigenvalues. (In fact,
        # they can also be asymmetric.) This shows up in the output of
        # `scipy.optimize.curve_fit`. Check that it has been resolved.giit
        def f(x, a, b, c, d, e):
            return a*np.log(x + 1 + b) + c*np.log(x + 1 + d) + e

        rng = np.random.default_rng(408113519974467917)
        n = 100
        x = np.arange(n)
        y = np.linspace(2, 7, n) + rng.random(n)
        p, cov = optimize.curve_fit(f, x, y, maxfev=100000)
        assert np.all(np.diag(cov) > 0)
        eigs = linalg.eigh(cov)[0]  # separate line for debugging
        # some platforms see a small negative eigevenvalue
        assert np.all(eigs > -1e-2)
        assert_allclose(cov, cov.T)

    def test_gh4555b(self):
        # check that PR gh-17247 did not significantly change covariance matrix
        # for simple cases
        rng = np.random.default_rng(408113519974467917)

        def func(x, a, b, c):
            return a * np.exp(-b * x) + c

        xdata = np.linspace(0, 4, 50)
        y = func(xdata, 2.5, 1.3, 0.5)
        y_noise = 0.2 * rng.normal(size=xdata.size)
        ydata = y + y_noise
        _, res = curve_fit(func, xdata, ydata)
        # reference from commit 1d80a2f254380d2b45733258ca42eb6b55c8755b
        ref = [[+0.0158972536486215, 0.0069207183284242, -0.0007474400714749],
               [+0.0069207183284242, 0.0205057958128679, +0.0053997711275403],
               [-0.0007474400714749, 0.0053997711275403, +0.0027833930320877]]
        # Linux_Python_38_32bit_full fails with default tolerance
        assert_allclose(res, ref, 2e-7)

    def test_gh13670(self):
        # gh-13670 reported that `curve_fit` executes callables
        # with the same values of the parameters at the beginning of
        # optimization. Check that this has been resolved.

        rng = np.random.default_rng(8250058582555444926)
        x = np.linspace(0, 3, 101)
        y = 2 * x + 1 + rng.normal(size=101) * 0.5

        def line(x, *p):
            assert not np.all(line.last_p == p)
            line.last_p = p
            return x * p[0] + p[1]

        def jac(x, *p):
            assert not np.all(jac.last_p == p)
            jac.last_p = p
            return np.array([x, np.ones_like(x)]).T

        line.last_p = None
        jac.last_p = None
        p0 = np.array([1.0, 5.0])
        curve_fit(line, x, y, p0, method='lm', jac=jac)

    @pytest.mark.parametrize('method', ['trf', 'dogbox'])
    def test_gh20155_error_mentions_x0(self, method):
        # `curve_fit` produced an error message that referred to an undocumented
        # variable `x0`, which was really `p0`. Check that this is resolved.
        def func(x,a):
            return x**a
        message = "Initial guess is outside of provided bounds"
        with pytest.raises(ValueError, match=message):
            curve_fit(func, self.x, self.y, p0=[1], bounds=(1000, 1001),
                      method=method)


class TestFixedPoint:

    def test_scalar_trivial(self):
        # f(x) = 2x; fixed point should be x=0
        def func(x):
            return 2.0*x
        x0 = 1.0
        x = fixed_point(func, x0)
        assert_almost_equal(x, 0.0)

    def test_scalar_basic1(self):
        # f(x) = x**2; x0=1.05; fixed point should be x=1
        def func(x):
            return x**2
        x0 = 1.05
        x = fixed_point(func, x0)
        assert_almost_equal(x, 1.0)

    def test_scalar_basic2(self):
        # f(x) = x**0.5; x0=1.05; fixed point should be x=1
        def func(x):
            return x**0.5
        x0 = 1.05
        x = fixed_point(func, x0)
        assert_almost_equal(x, 1.0)

    def test_array_trivial(self):
        def func(x):
            return 2.0*x
        x0 = [0.3, 0.15]
        with np.errstate(all='ignore'):
            x = fixed_point(func, x0)
        assert_almost_equal(x, [0.0, 0.0])

    def test_array_basic1(self):
        # f(x) = c * x**2; fixed point should be x=1/c
        def func(x, c):
            return c * x**2
        c = array([0.75, 1.0, 1.25])
        x0 = [1.1, 1.15, 0.9]
        with np.errstate(all='ignore'):
            x = fixed_point(func, x0, args=(c,))
        assert_almost_equal(x, 1.0/c)

    def test_array_basic2(self):
        # f(x) = c * x**0.5; fixed point should be x=c**2
        def func(x, c):
            return c * x**0.5
        c = array([0.75, 1.0, 1.25])
        x0 = [0.8, 1.1, 1.1]
        x = fixed_point(func, x0, args=(c,))
        assert_almost_equal(x, c**2)

    def test_lambertw(self):
        # python-list/2010-December/594592.html
        xxroot = fixed_point(lambda xx: np.exp(-2.0*xx)/2.0, 1.0,
                args=(), xtol=1e-12, maxiter=500)
        assert_allclose(xxroot, np.exp(-2.0*xxroot)/2.0)
        assert_allclose(xxroot, lambertw(1)/2)

    def test_no_acceleration(self):
        # GitHub issue 5460
        ks = 2
        kl = 6
        m = 1.3
        n0 = 1.001
        i0 = ((m-1)/m)*(kl/ks/m)**(1/(m-1))

        def func(n):
            return np.log(kl/ks/n) / np.log(i0*n/(n - 1)) + 1

        n = fixed_point(func, n0, method='iteration')
        assert_allclose(n, m)