File size: 127,471 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
"""
Unit tests for optimization routines from optimize.py

Authors:
   Ed Schofield, Nov 2005
   Andrew Straw, April 2008

"""
import itertools
import platform
import threading
import numpy as np
from numpy.testing import (assert_allclose, assert_equal,
                           assert_almost_equal,
                           assert_no_warnings, assert_warns,
                           assert_array_less, suppress_warnings)
import pytest
from pytest import raises as assert_raises

import scipy
from scipy import optimize
from scipy.optimize._minimize import Bounds, NonlinearConstraint
from scipy.optimize._minimize import (MINIMIZE_METHODS,
                                      MINIMIZE_METHODS_NEW_CB,
                                      MINIMIZE_SCALAR_METHODS)
from scipy.optimize._linprog import LINPROG_METHODS
from scipy.optimize._root import ROOT_METHODS
from scipy.optimize._root_scalar import ROOT_SCALAR_METHODS
from scipy.optimize._qap import QUADRATIC_ASSIGNMENT_METHODS
from scipy.optimize._differentiable_functions import ScalarFunction, FD_METHODS
from scipy.optimize._optimize import MemoizeJac, show_options, OptimizeResult
from scipy.optimize import rosen, rosen_der, rosen_hess

from scipy.sparse import (coo_matrix, csc_matrix, csr_matrix, coo_array,
                          csr_array, csc_array)
from scipy.conftest import array_api_compatible
from scipy._lib._array_api_no_0d import xp_assert_equal, array_namespace

skip_xp_backends = pytest.mark.skip_xp_backends


def test_check_grad():
    # Verify if check_grad is able to estimate the derivative of the
    # expit (logistic sigmoid) function.

    def expit(x):
        return 1 / (1 + np.exp(-x))

    def der_expit(x):
        return np.exp(-x) / (1 + np.exp(-x))**2

    x0 = np.array([1.5])

    r = optimize.check_grad(expit, der_expit, x0)
    assert_almost_equal(r, 0)
    # SPEC-007 leave one call with seed to check it still works
    r = optimize.check_grad(expit, der_expit, x0,
                            direction='random', seed=1234)
    assert_almost_equal(r, 0)

    r = optimize.check_grad(expit, der_expit, x0, epsilon=1e-6)
    assert_almost_equal(r, 0)
    r = optimize.check_grad(expit, der_expit, x0, epsilon=1e-6,
                            direction='random', rng=1234)
    assert_almost_equal(r, 0)

    # Check if the epsilon parameter is being considered.
    r = abs(optimize.check_grad(expit, der_expit, x0, epsilon=1e-1) - 0)
    assert r > 1e-7
    r = abs(optimize.check_grad(expit, der_expit, x0, epsilon=1e-1,
                                direction='random', rng=1234) - 0)
    assert r > 1e-7

    def x_sinx(x):
        return (x*np.sin(x)).sum()

    def der_x_sinx(x):
        return np.sin(x) + x*np.cos(x)

    x0 = np.arange(0, 2, 0.2)

    r = optimize.check_grad(x_sinx, der_x_sinx, x0,
                            direction='random', rng=1234)
    assert_almost_equal(r, 0)

    assert_raises(ValueError, optimize.check_grad,
                  x_sinx, der_x_sinx, x0,
                  direction='random_projection', rng=1234)

    # checking can be done for derivatives of vector valued functions
    r = optimize.check_grad(himmelblau_grad, himmelblau_hess, himmelblau_x0,
                            direction='all', rng=1234)
    assert r < 5e-7


class CheckOptimize:
    """ Base test case for a simple constrained entropy maximization problem
    (the machine translation example of Berger et al in
    Computational Linguistics, vol 22, num 1, pp 39--72, 1996.)
    """

    def setup_method(self):
        self.F = np.array([[1, 1, 1],
                           [1, 1, 0],
                           [1, 0, 1],
                           [1, 0, 0],
                           [1, 0, 0]])
        self.K = np.array([1., 0.3, 0.5])
        self.startparams = np.zeros(3, np.float64)
        self.solution = np.array([0., -0.524869316, 0.487525860])
        self.maxiter = 1000
        self.funccalls = threading.local()
        self.gradcalls = threading.local()
        self.trace = threading.local()

    def func(self, x):
        if not hasattr(self.funccalls, 'c'):
            self.funccalls.c = 0

        if not hasattr(self.gradcalls, 'c'):
            self.gradcalls.c = 0

        self.funccalls.c += 1
        if self.funccalls.c > 6000:
            raise RuntimeError("too many iterations in optimization routine")
        log_pdot = np.dot(self.F, x)
        logZ = np.log(sum(np.exp(log_pdot)))
        f = logZ - np.dot(self.K, x)
        if not hasattr(self.trace, 't'):
            self.trace.t = []
        self.trace.t.append(np.copy(x))
        return f

    def grad(self, x):
        if not hasattr(self.gradcalls, 'c'):
            self.gradcalls.c = 0
        self.gradcalls.c += 1
        log_pdot = np.dot(self.F, x)
        logZ = np.log(sum(np.exp(log_pdot)))
        p = np.exp(log_pdot - logZ)
        return np.dot(self.F.transpose(), p) - self.K

    def hess(self, x):
        log_pdot = np.dot(self.F, x)
        logZ = np.log(sum(np.exp(log_pdot)))
        p = np.exp(log_pdot - logZ)
        return np.dot(self.F.T,
                      np.dot(np.diag(p), self.F - np.dot(self.F.T, p)))

    def hessp(self, x, p):
        return np.dot(self.hess(x), p)


class CheckOptimizeParameterized(CheckOptimize):

    def test_cg(self):
        # conjugate gradient optimization routine
        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': self.disp,
                    'return_all': False}
            res = optimize.minimize(self.func, self.startparams, args=(),
                                    method='CG', jac=self.grad,
                                    options=opts)
            params, fopt, func_calls, grad_calls, warnflag = \
                res['x'], res['fun'], res['nfev'], res['njev'], res['status']
        else:
            retval = optimize.fmin_cg(self.func, self.startparams,
                                      self.grad, (), maxiter=self.maxiter,
                                      full_output=True, disp=self.disp,
                                      retall=False)
            (params, fopt, func_calls, grad_calls, warnflag) = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.7.0. Don't allow them to increase.
        assert self.funccalls.c == 9, self.funccalls.c
        assert self.gradcalls.c == 7, self.gradcalls.c

        # Ensure that the function behaves the same; this is from SciPy 0.7.0
        assert_allclose(self.trace.t[2:4],
                        [[0, -0.5, 0.5],
                         [0, -5.05700028e-01, 4.95985862e-01]],
                        atol=1e-14, rtol=1e-7)

    def test_cg_cornercase(self):
        def f(r):
            return 2.5 * (1 - np.exp(-1.5*(r - 0.5)))**2

        # Check several initial guesses. (Too far away from the
        # minimum, the function ends up in the flat region of exp.)
        for x0 in np.linspace(-0.75, 3, 71):
            sol = optimize.minimize(f, [x0], method='CG')
            assert sol.success
            assert_allclose(sol.x, [0.5], rtol=1e-5)

    def test_bfgs(self):
        # Broyden-Fletcher-Goldfarb-Shanno optimization routine
        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': self.disp,
                    'return_all': False}
            res = optimize.minimize(self.func, self.startparams,
                                    jac=self.grad, method='BFGS', args=(),
                                    options=opts)

            params, fopt, gopt, Hopt, func_calls, grad_calls, warnflag = (
                    res['x'], res['fun'], res['jac'], res['hess_inv'],
                    res['nfev'], res['njev'], res['status'])
        else:
            retval = optimize.fmin_bfgs(self.func, self.startparams, self.grad,
                                        args=(), maxiter=self.maxiter,
                                        full_output=True, disp=self.disp,
                                        retall=False)
            (params, fopt, gopt, Hopt,
             func_calls, grad_calls, warnflag) = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.7.0. Don't allow them to increase.
        assert self.funccalls.c == 10, self.funccalls.c
        assert self.gradcalls.c == 8, self.gradcalls.c

        # Ensure that the function behaves the same; this is from SciPy 0.7.0
        assert_allclose(self.trace.t[6:8],
                        [[0, -5.25060743e-01, 4.87748473e-01],
                         [0, -5.24885582e-01, 4.87530347e-01]],
                        atol=1e-14, rtol=1e-7)

    def test_bfgs_hess_inv0_neg(self):
        # Ensure that BFGS does not accept neg. def. initial inverse
        # Hessian estimate.
        with pytest.raises(ValueError, match="'hess_inv0' matrix isn't "
                           "positive definite."):
            x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])
            opts = {'disp': self.disp, 'hess_inv0': -np.eye(5)}
            optimize.minimize(optimize.rosen, x0=x0, method='BFGS', args=(),
                              options=opts)

    def test_bfgs_hess_inv0_semipos(self):
        # Ensure that BFGS does not accept semi pos. def. initial inverse
        # Hessian estimate.
        with pytest.raises(ValueError, match="'hess_inv0' matrix isn't "
                           "positive definite."):
            x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])
            hess_inv0 = np.eye(5)
            hess_inv0[0, 0] = 0
            opts = {'disp': self.disp, 'hess_inv0': hess_inv0}
            optimize.minimize(optimize.rosen, x0=x0, method='BFGS', args=(),
                              options=opts)

    def test_bfgs_hess_inv0_sanity(self):
        # Ensure that BFGS handles `hess_inv0` parameter correctly.
        fun = optimize.rosen
        x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])
        opts = {'disp': self.disp, 'hess_inv0': 1e-2 * np.eye(5)}
        res = optimize.minimize(fun, x0=x0, method='BFGS', args=(),
                                options=opts)
        res_true = optimize.minimize(fun, x0=x0, method='BFGS', args=(),
                                     options={'disp': self.disp})
        assert_allclose(res.fun, res_true.fun, atol=1e-6)

    @pytest.mark.filterwarnings('ignore::UserWarning')
    def test_bfgs_infinite(self):
        # Test corner case where -Inf is the minimum.  See gh-2019.
        def func(x):
            return -np.e ** (-x)
        def fprime(x):
            return -func(x)
        x0 = [0]
        with np.errstate(over='ignore'):
            if self.use_wrapper:
                opts = {'disp': self.disp}
                x = optimize.minimize(func, x0, jac=fprime, method='BFGS',
                                      args=(), options=opts)['x']
            else:
                x = optimize.fmin_bfgs(func, x0, fprime, disp=self.disp)
            assert not np.isfinite(func(x))

    def test_bfgs_xrtol(self):
        # test for #17345 to test xrtol parameter
        x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
        res = optimize.minimize(optimize.rosen,
                                x0, method='bfgs', options={'xrtol': 1e-3})
        ref = optimize.minimize(optimize.rosen,
                                x0, method='bfgs', options={'gtol': 1e-3})
        assert res.nit != ref.nit

    def test_bfgs_c1(self):
        # test for #18977 insufficiently low value of c1 leads to precision loss
        # for poor starting parameters
        x0 = [10.3, 20.7, 10.8, 1.9, -1.2]
        res_c1_small = optimize.minimize(optimize.rosen,
                                         x0, method='bfgs', options={'c1': 1e-8})
        res_c1_big = optimize.minimize(optimize.rosen,
                                       x0, method='bfgs', options={'c1': 1e-1})

        assert res_c1_small.nfev > res_c1_big.nfev

    def test_bfgs_c2(self):
        # test that modification of c2 parameter
        # results in different number of iterations
        x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
        res_default = optimize.minimize(optimize.rosen,
                                        x0, method='bfgs', options={'c2': .9})
        res_mod = optimize.minimize(optimize.rosen,
                                    x0, method='bfgs', options={'c2': 1e-2})
        assert res_default.nit > res_mod.nit

    @pytest.mark.parametrize(["c1", "c2"], [[0.5, 2],
                                            [-0.1, 0.1],
                                            [0.2, 0.1]])
    def test_invalid_c1_c2(self, c1, c2):
        with pytest.raises(ValueError, match="'c1' and 'c2'"):
            x0 = [10.3, 20.7, 10.8, 1.9, -1.2]
            optimize.minimize(optimize.rosen, x0, method='cg',
                              options={'c1': c1, 'c2': c2})

    def test_powell(self):
        # Powell (direction set) optimization routine
        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': self.disp,
                    'return_all': False}
            res = optimize.minimize(self.func, self.startparams, args=(),
                                    method='Powell', options=opts)
            params, fopt, direc, numiter, func_calls, warnflag = (
                    res['x'], res['fun'], res['direc'], res['nit'],
                    res['nfev'], res['status'])
        else:
            retval = optimize.fmin_powell(self.func, self.startparams,
                                          args=(), maxiter=self.maxiter,
                                          full_output=True, disp=self.disp,
                                          retall=False)
            (params, fopt, direc, numiter, func_calls, warnflag) = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)
        # params[0] does not affect the objective function
        assert_allclose(params[1:], self.solution[1:], atol=5e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.7.0. Don't allow them to increase.
        #
        # However, some leeway must be added: the exact evaluation
        # count is sensitive to numerical error, and floating-point
        # computations are not bit-for-bit reproducible across
        # machines, and when using e.g., MKL, data alignment
        # etc., affect the rounding error.
        #
        assert self.funccalls.c <= 116 + 20, self.funccalls.c
        assert self.gradcalls.c == 0, self.gradcalls.c

    @pytest.mark.xfail(reason="This part of test_powell fails on some "
                       "platforms, but the solution returned by powell is "
                       "still valid.")
    def test_powell_gh14014(self):
        # This part of test_powell started failing on some CI platforms;
        # see gh-14014. Since the solution is still correct and the comments
        # in test_powell suggest that small differences in the bits are known
        # to change the "trace" of the solution, seems safe to xfail to get CI
        # green now and investigate later.

        # Powell (direction set) optimization routine
        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': self.disp,
                    'return_all': False}
            res = optimize.minimize(self.func, self.startparams, args=(),
                                    method='Powell', options=opts)
            params, fopt, direc, numiter, func_calls, warnflag = (
                    res['x'], res['fun'], res['direc'], res['nit'],
                    res['nfev'], res['status'])
        else:
            retval = optimize.fmin_powell(self.func, self.startparams,
                                          args=(), maxiter=self.maxiter,
                                          full_output=True, disp=self.disp,
                                          retall=False)
            (params, fopt, direc, numiter, func_calls, warnflag) = retval

        # Ensure that the function behaves the same; this is from SciPy 0.7.0
        assert_allclose(self.trace[34:39],
                        [[0.72949016, -0.44156936, 0.47100962],
                         [0.72949016, -0.44156936, 0.48052496],
                         [1.45898031, -0.88313872, 0.95153458],
                         [0.72949016, -0.44156936, 0.47576729],
                         [1.72949016, -0.44156936, 0.47576729]],
                        atol=1e-14, rtol=1e-7)

    def test_powell_bounded(self):
        # Powell (direction set) optimization routine
        # same as test_powell above, but with bounds
        bounds = [(-np.pi, np.pi) for _ in self.startparams]
        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': self.disp,
                    'return_all': False}
            res = optimize.minimize(self.func, self.startparams, args=(),
                                    bounds=bounds,
                                    method='Powell', options=opts)
            params, func_calls = (res['x'], res['nfev'])

            assert func_calls == self.funccalls.c
            assert_allclose(self.func(params), self.func(self.solution),
                            atol=1e-6, rtol=1e-5)

            # The exact evaluation count is sensitive to numerical error, and
            # floating-point computations are not bit-for-bit reproducible
            # across machines, and when using e.g. MKL, data alignment etc.
            # affect the rounding error.
            # It takes 155 calls on my machine, but we can add the same +20
            # margin as is used in `test_powell`
            assert self.funccalls.c <= 155 + 20
            assert self.gradcalls.c == 0

    def test_neldermead(self):
        # Nelder-Mead simplex algorithm
        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': self.disp,
                    'return_all': False}
            res = optimize.minimize(self.func, self.startparams, args=(),
                                    method='Nelder-mead', options=opts)
            params, fopt, numiter, func_calls, warnflag = (
                    res['x'], res['fun'], res['nit'], res['nfev'],
                    res['status'])
        else:
            retval = optimize.fmin(self.func, self.startparams,
                                   args=(), maxiter=self.maxiter,
                                   full_output=True, disp=self.disp,
                                   retall=False)
            (params, fopt, numiter, func_calls, warnflag) = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.7.0. Don't allow them to increase.
        assert self.funccalls.c == 167, self.funccalls.c
        assert self.gradcalls.c == 0, self.gradcalls.c

        # Ensure that the function behaves the same; this is from SciPy 0.7.0
        assert_allclose(self.trace.t[76:78],
                        [[0.1928968, -0.62780447, 0.35166118],
                         [0.19572515, -0.63648426, 0.35838135]],
                        atol=1e-14, rtol=1e-7)

    def test_neldermead_initial_simplex(self):
        # Nelder-Mead simplex algorithm
        simplex = np.zeros((4, 3))
        simplex[...] = self.startparams
        for j in range(3):
            simplex[j+1, j] += 0.1

        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': False,
                    'return_all': True, 'initial_simplex': simplex}
            res = optimize.minimize(self.func, self.startparams, args=(),
                                    method='Nelder-mead', options=opts)
            params, fopt, numiter, func_calls, warnflag = (res['x'],
                                                           res['fun'],
                                                           res['nit'],
                                                           res['nfev'],
                                                           res['status'])
            assert_allclose(res['allvecs'][0], simplex[0])
        else:
            retval = optimize.fmin(self.func, self.startparams,
                                   args=(), maxiter=self.maxiter,
                                   full_output=True, disp=False, retall=False,
                                   initial_simplex=simplex)

            (params, fopt, numiter, func_calls, warnflag) = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.17.0. Don't allow them to increase.
        assert self.funccalls.c == 100, self.funccalls.c
        assert self.gradcalls.c == 0, self.gradcalls.c

        # Ensure that the function behaves the same; this is from SciPy 0.15.0
        assert_allclose(self.trace.t[50:52],
                        [[0.14687474, -0.5103282, 0.48252111],
                         [0.14474003, -0.5282084, 0.48743951]],
                        atol=1e-14, rtol=1e-7)

    def test_neldermead_initial_simplex_bad(self):
        # Check it fails with a bad simplices
        bad_simplices = []

        simplex = np.zeros((3, 2))
        simplex[...] = self.startparams[:2]
        for j in range(2):
            simplex[j+1, j] += 0.1
        bad_simplices.append(simplex)

        simplex = np.zeros((3, 3))
        bad_simplices.append(simplex)

        for simplex in bad_simplices:
            if self.use_wrapper:
                opts = {'maxiter': self.maxiter, 'disp': False,
                        'return_all': False, 'initial_simplex': simplex}
                assert_raises(ValueError,
                              optimize.minimize,
                              self.func,
                              self.startparams,
                              args=(),
                              method='Nelder-mead',
                              options=opts)
            else:
                assert_raises(ValueError, optimize.fmin,
                              self.func, self.startparams,
                              args=(), maxiter=self.maxiter,
                              full_output=True, disp=False, retall=False,
                              initial_simplex=simplex)

    def test_neldermead_x0_ub(self):
        # checks whether minimisation occurs correctly for entries where
        # x0 == ub
        # gh19991
        def quad(x):
            return np.sum(x**2)

        res = optimize.minimize(
            quad,
            [1],
            bounds=[(0, 1.)],
            method='nelder-mead'
        )
        assert_allclose(res.x, [0])

        res = optimize.minimize(
            quad,
            [1, 2],
            bounds=[(0, 1.), (1, 3.)],
            method='nelder-mead'
        )
        assert_allclose(res.x, [0, 1])

    def test_ncg_negative_maxiter(self):
        # Regression test for gh-8241
        opts = {'maxiter': -1}
        result = optimize.minimize(self.func, self.startparams,
                                   method='Newton-CG', jac=self.grad,
                                   args=(), options=opts)
        assert result.status == 1

    def test_ncg_zero_xtol(self):
        # Regression test for gh-20214
        def cosine(x):
            return np.cos(x[0])

        def jac(x):
            return -np.sin(x[0])

        x0 = [0.1]
        xtol = 0
        result = optimize.minimize(cosine,
                                   x0=x0,
                                   jac=jac,
                                   method="newton-cg",
                                   options=dict(xtol=xtol))
        assert result.status == 0
        assert_almost_equal(result.x[0], np.pi)

    def test_ncg(self):
        # line-search Newton conjugate gradient optimization routine
        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': self.disp,
                    'return_all': False}
            retval = optimize.minimize(self.func, self.startparams,
                                       method='Newton-CG', jac=self.grad,
                                       args=(), options=opts)['x']
        else:
            retval = optimize.fmin_ncg(self.func, self.startparams, self.grad,
                                       args=(), maxiter=self.maxiter,
                                       full_output=False, disp=self.disp,
                                       retall=False)

        params = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.7.0. Don't allow them to increase.
        assert self.funccalls.c == 7, self.funccalls.c
        assert self.gradcalls.c <= 22, self.gradcalls.c  # 0.13.0
        # assert self.gradcalls <= 18, self.gradcalls  # 0.9.0
        # assert self.gradcalls == 18, self.gradcalls  # 0.8.0
        # assert self.gradcalls == 22, self.gradcalls  # 0.7.0

        # Ensure that the function behaves the same; this is from SciPy 0.7.0
        assert_allclose(self.trace.t[3:5],
                        [[-4.35700753e-07, -5.24869435e-01, 4.87527480e-01],
                         [-4.35700753e-07, -5.24869401e-01, 4.87527774e-01]],
                        atol=1e-6, rtol=1e-7)

    def test_ncg_hess(self):
        # Newton conjugate gradient with Hessian
        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': self.disp,
                    'return_all': False}
            retval = optimize.minimize(self.func, self.startparams,
                                       method='Newton-CG', jac=self.grad,
                                       hess=self.hess,
                                       args=(), options=opts)['x']
        else:
            retval = optimize.fmin_ncg(self.func, self.startparams, self.grad,
                                       fhess=self.hess,
                                       args=(), maxiter=self.maxiter,
                                       full_output=False, disp=self.disp,
                                       retall=False)

        params = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.7.0. Don't allow them to increase.
        assert self.funccalls.c <= 7, self.funccalls.c  # gh10673
        assert self.gradcalls.c <= 18, self.gradcalls.c  # 0.9.0
        # assert self.gradcalls == 18, self.gradcalls  # 0.8.0
        # assert self.gradcalls == 22, self.gradcalls  # 0.7.0

        # Ensure that the function behaves the same; this is from SciPy 0.7.0
        assert_allclose(self.trace.t[3:5],
                        [[-4.35700753e-07, -5.24869435e-01, 4.87527480e-01],
                         [-4.35700753e-07, -5.24869401e-01, 4.87527774e-01]],
                        atol=1e-6, rtol=1e-7)

    def test_ncg_hessp(self):
        # Newton conjugate gradient with Hessian times a vector p.
        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': self.disp,
                    'return_all': False}
            retval = optimize.minimize(self.func, self.startparams,
                                       method='Newton-CG', jac=self.grad,
                                       hessp=self.hessp,
                                       args=(), options=opts)['x']
        else:
            retval = optimize.fmin_ncg(self.func, self.startparams, self.grad,
                                       fhess_p=self.hessp,
                                       args=(), maxiter=self.maxiter,
                                       full_output=False, disp=self.disp,
                                       retall=False)

        params = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.7.0. Don't allow them to increase.
        assert self.funccalls.c <= 7, self.funccalls.c  # gh10673
        assert self.gradcalls.c <= 18, self.gradcalls.c  # 0.9.0
        # assert self.gradcalls == 18, self.gradcalls  # 0.8.0
        # assert self.gradcalls == 22, self.gradcalls  # 0.7.0

        # Ensure that the function behaves the same; this is from SciPy 0.7.0
        assert_allclose(self.trace.t[3:5],
                        [[-4.35700753e-07, -5.24869435e-01, 4.87527480e-01],
                         [-4.35700753e-07, -5.24869401e-01, 4.87527774e-01]],
                        atol=1e-6, rtol=1e-7)

    def test_cobyqa(self):
        # COBYQA method.
        if self.use_wrapper:
            res = optimize.minimize(
                self.func,
                self.startparams,
                method='cobyqa',
                options={'maxiter': self.maxiter, 'disp': self.disp},
            )
            assert_allclose(res.fun, self.func(self.solution), atol=1e-6)

            # Ensure that function call counts are 'known good'; these are from
            # SciPy 1.14.0. Don't allow them to increase. The exact evaluation
            # count is sensitive to numerical error and floating-point
            # computations are not bit-for-bit reproducible across machines. It
            # takes 45 calls on my machine, but we can add the same +20 margin
            # as is used in `test_powell`
            assert self.funccalls.c <= 45 + 20, self.funccalls.c


def test_maxfev_test():
    rng = np.random.default_rng(271707100830272976862395227613146332411)

    def cost(x):
        return rng.random(1) * 1000  # never converged problem

    for imaxfev in [1, 10, 50]:
        # "TNC" and "L-BFGS-B" also supports max function evaluation, but
        # these may violate the limit because of evaluating gradients
        # by numerical differentiation. See the discussion in PR #14805.
        for method in ['Powell', 'Nelder-Mead']:
            result = optimize.minimize(cost, rng.random(10),
                                       method=method,
                                       options={'maxfev': imaxfev})
            assert result["nfev"] == imaxfev


def test_wrap_scalar_function_with_validation():

    def func_(x):
        return x

    fcalls, func = optimize._optimize.\
        _wrap_scalar_function_maxfun_validation(func_, np.asarray(1), 5)

    for i in range(5):
        func(np.asarray(i))
        assert fcalls[0] == i+1

    msg = "Too many function calls"
    with assert_raises(optimize._optimize._MaxFuncCallError, match=msg):
        func(np.asarray(i))  # exceeded maximum function call

    fcalls, func = optimize._optimize.\
        _wrap_scalar_function_maxfun_validation(func_, np.asarray(1), 5)

    msg = "The user-provided objective function must return a scalar value."
    with assert_raises(ValueError, match=msg):
        func(np.array([1, 1]))


def test_obj_func_returns_scalar():
    match = ("The user-provided "
             "objective function must "
             "return a scalar value.")
    with assert_raises(ValueError, match=match):
        optimize.minimize(lambda x: x, np.array([1, 1]), method='BFGS')


def test_neldermead_iteration_num():
    x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])
    res = optimize._minimize._minimize_neldermead(optimize.rosen, x0,
                                                  xatol=1e-8)
    assert res.nit <= 339


def test_neldermead_respect_fp():
    # Nelder-Mead should respect the fp type of the input + function
    x0 = np.array([5.0, 4.0]).astype(np.float32)
    def rosen_(x):
        assert x.dtype == np.float32
        return optimize.rosen(x)

    optimize.minimize(rosen_, x0, method='Nelder-Mead')


def test_neldermead_xatol_fatol():
    # gh4484
    # test we can call with fatol, xatol specified
    def func(x):
        return x[0] ** 2 + x[1] ** 2

    optimize._minimize._minimize_neldermead(func, [1, 1], maxiter=2,
                                            xatol=1e-3, fatol=1e-3)


def test_neldermead_adaptive():
    def func(x):
        return np.sum(x ** 2)
    p0 = [0.15746215, 0.48087031, 0.44519198, 0.4223638, 0.61505159,
          0.32308456, 0.9692297, 0.4471682, 0.77411992, 0.80441652,
          0.35994957, 0.75487856, 0.99973421, 0.65063887, 0.09626474]

    res = optimize.minimize(func, p0, method='Nelder-Mead')
    assert_equal(res.success, False)

    res = optimize.minimize(func, p0, method='Nelder-Mead',
                            options={'adaptive': True})
    assert_equal(res.success, True)


@pytest.mark.thread_unsafe
def test_bounded_powell_outsidebounds():
    # With the bounded Powell method if you start outside the bounds the final
    # should still be within the bounds (provided that the user doesn't make a
    # bad choice for the `direc` argument).
    def func(x):
        return np.sum(x ** 2)
    bounds = (-1, 1), (-1, 1), (-1, 1)
    x0 = [-4, .5, -.8]

    # we're starting outside the bounds, so we should get a warning
    with assert_warns(optimize.OptimizeWarning):
        res = optimize.minimize(func, x0, bounds=bounds, method="Powell")
    assert_allclose(res.x, np.array([0.] * len(x0)), atol=1e-6)
    assert_equal(res.success, True)
    assert_equal(res.status, 0)

    # However, now if we change the `direc` argument such that the
    # set of vectors does not span the parameter space, then we may
    # not end up back within the bounds. Here we see that the first
    # parameter cannot be updated!
    direc = [[0, 0, 0], [0, 1, 0], [0, 0, 1]]
    # we're starting outside the bounds, so we should get a warning
    with assert_warns(optimize.OptimizeWarning):
        res = optimize.minimize(func, x0,
                                bounds=bounds, method="Powell",
                                options={'direc': direc})
    assert_allclose(res.x, np.array([-4., 0, 0]), atol=1e-6)
    assert_equal(res.success, False)
    assert_equal(res.status, 4)


@pytest.mark.thread_unsafe
def test_bounded_powell_vs_powell():
    # here we test an example where the bounded Powell method
    # will return a different result than the standard Powell
    # method.

    # first we test a simple example where the minimum is at
    # the origin and the minimum that is within the bounds is
    # larger than the minimum at the origin.
    def func(x):
        return np.sum(x ** 2)
    bounds = (-5, -1), (-10, -0.1), (1, 9.2), (-4, 7.6), (-15.9, -2)
    x0 = [-2.1, -5.2, 1.9, 0, -2]

    options = {'ftol': 1e-10, 'xtol': 1e-10}

    res_powell = optimize.minimize(func, x0, method="Powell", options=options)
    assert_allclose(res_powell.x, 0., atol=1e-6)
    assert_allclose(res_powell.fun, 0., atol=1e-6)

    res_bounded_powell = optimize.minimize(func, x0, options=options,
                                           bounds=bounds,
                                           method="Powell")
    p = np.array([-1, -0.1, 1, 0, -2])
    assert_allclose(res_bounded_powell.x, p, atol=1e-6)
    assert_allclose(res_bounded_powell.fun, func(p), atol=1e-6)

    # now we test bounded Powell but with a mix of inf bounds.
    bounds = (None, -1), (-np.inf, -.1), (1, np.inf), (-4, None), (-15.9, -2)
    res_bounded_powell = optimize.minimize(func, x0, options=options,
                                           bounds=bounds,
                                           method="Powell")
    p = np.array([-1, -0.1, 1, 0, -2])
    assert_allclose(res_bounded_powell.x, p, atol=1e-6)
    assert_allclose(res_bounded_powell.fun, func(p), atol=1e-6)

    # next we test an example where the global minimum is within
    # the bounds, but the bounded Powell method performs better
    # than the standard Powell method.
    def func(x):
        t = np.sin(-x[0]) * np.cos(x[1]) * np.sin(-x[0] * x[1]) * np.cos(x[1])
        t -= np.cos(np.sin(x[1] * x[2]) * np.cos(x[2]))
        return t**2

    bounds = [(-2, 5)] * 3
    x0 = [-0.5, -0.5, -0.5]

    res_powell = optimize.minimize(func, x0, method="Powell")
    res_bounded_powell = optimize.minimize(func, x0,
                                           bounds=bounds,
                                           method="Powell")
    assert_allclose(res_powell.fun, 0.007136253919761627, atol=1e-6)
    assert_allclose(res_bounded_powell.fun, 0, atol=1e-6)

    # next we test the previous example where the we provide Powell
    # with (-inf, inf) bounds, and compare it to providing Powell
    # with no bounds. They should end up the same.
    bounds = [(-np.inf, np.inf)] * 3

    res_bounded_powell = optimize.minimize(func, x0,
                                           bounds=bounds,
                                           method="Powell")
    assert_allclose(res_powell.fun, res_bounded_powell.fun, atol=1e-6)
    assert_allclose(res_powell.nfev, res_bounded_powell.nfev, atol=1e-6)
    assert_allclose(res_powell.x, res_bounded_powell.x, atol=1e-6)

    # now test when x0 starts outside of the bounds.
    x0 = [45.46254415, -26.52351498, 31.74830248]
    bounds = [(-2, 5)] * 3
    # we're starting outside the bounds, so we should get a warning
    with assert_warns(optimize.OptimizeWarning):
        res_bounded_powell = optimize.minimize(func, x0,
                                               bounds=bounds,
                                               method="Powell")
    assert_allclose(res_bounded_powell.fun, 0, atol=1e-6)


def test_onesided_bounded_powell_stability():
    # When the Powell method is bounded on only one side, a
    # np.tan transform is done in order to convert it into a
    # completely bounded problem. Here we do some simple tests
    # of one-sided bounded Powell where the optimal solutions
    # are large to test the stability of the transformation.
    kwargs = {'method': 'Powell',
              'bounds': [(-np.inf, 1e6)] * 3,
              'options': {'ftol': 1e-8, 'xtol': 1e-8}}
    x0 = [1, 1, 1]

    # df/dx is constant.
    def f(x):
        return -np.sum(x)
    res = optimize.minimize(f, x0, **kwargs)
    assert_allclose(res.fun, -3e6, atol=1e-4)

    # df/dx gets smaller and smaller.
    def f(x):
        return -np.abs(np.sum(x)) ** (0.1) * (1 if np.all(x > 0) else -1)

    res = optimize.minimize(f, x0, **kwargs)
    assert_allclose(res.fun, -(3e6) ** (0.1))

    # df/dx gets larger and larger.
    def f(x):
        return -np.abs(np.sum(x)) ** 10 * (1 if np.all(x > 0) else -1)

    res = optimize.minimize(f, x0, **kwargs)
    assert_allclose(res.fun, -(3e6) ** 10, rtol=1e-7)

    # df/dx gets larger for some of the variables and smaller for others.
    def f(x):
        t = -np.abs(np.sum(x[:2])) ** 5 - np.abs(np.sum(x[2:])) ** (0.1)
        t *= (1 if np.all(x > 0) else -1)
        return t

    kwargs['bounds'] = [(-np.inf, 1e3)] * 3
    res = optimize.minimize(f, x0, **kwargs)
    assert_allclose(res.fun, -(2e3) ** 5 - (1e6) ** (0.1), rtol=1e-7)


class TestOptimizeWrapperDisp(CheckOptimizeParameterized):
    use_wrapper = True
    disp = True


class TestOptimizeWrapperNoDisp(CheckOptimizeParameterized):
    use_wrapper = True
    disp = False


class TestOptimizeNoWrapperDisp(CheckOptimizeParameterized):
    use_wrapper = False
    disp = True


class TestOptimizeNoWrapperNoDisp(CheckOptimizeParameterized):
    use_wrapper = False
    disp = False


class TestOptimizeSimple(CheckOptimize):

    def test_bfgs_nan(self):
        # Test corner case where nan is fed to optimizer.  See gh-2067.
        def func(x):
            return x
        def fprime(x):
            return np.ones_like(x)
        x0 = [np.nan]
        with np.errstate(over='ignore', invalid='ignore'):
            x = optimize.fmin_bfgs(func, x0, fprime, disp=False)
            assert np.isnan(func(x))

    def test_bfgs_nan_return(self):
        # Test corner cases where fun returns NaN. See gh-4793.

        # First case: NaN from first call.
        def func(x):
            return np.nan
        with np.errstate(invalid='ignore'):
            result = optimize.minimize(func, 0)

        assert np.isnan(result['fun'])
        assert result['success'] is False

        # Second case: NaN from second call.
        def func(x):
            return 0 if x == 0 else np.nan
        def fprime(x):
            return np.ones_like(x)  # Steer away from zero.
        with np.errstate(invalid='ignore'):
            result = optimize.minimize(func, 0, jac=fprime)

        assert np.isnan(result['fun'])
        assert result['success'] is False

    def test_bfgs_numerical_jacobian(self):
        # BFGS with numerical Jacobian and a vector epsilon parameter.
        # define the epsilon parameter using a random vector
        epsilon = np.sqrt(np.spacing(1.)) * np.random.rand(len(self.solution))

        params = optimize.fmin_bfgs(self.func, self.startparams,
                                    epsilon=epsilon, args=(),
                                    maxiter=self.maxiter, disp=False)

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

    def test_finite_differences_jac(self):
        methods = ['BFGS', 'CG', 'TNC']
        jacs = ['2-point', '3-point', None]
        for method, jac in itertools.product(methods, jacs):
            result = optimize.minimize(self.func, self.startparams,
                                       method=method, jac=jac)
            assert_allclose(self.func(result.x), self.func(self.solution),
                            atol=1e-6)

    def test_finite_differences_hess(self):
        # test that all the methods that require hess can use finite-difference
        # For Newton-CG, trust-ncg, trust-krylov the FD estimated hessian is
        # wrapped in a hessp function
        # dogleg, trust-exact actually require true hessians at the moment, so
        # they're excluded.
        methods = ['trust-constr', 'Newton-CG', 'trust-ncg', 'trust-krylov']
        hesses = FD_METHODS + (optimize.BFGS,)
        for method, hess in itertools.product(methods, hesses):
            if hess is optimize.BFGS:
                hess = hess()
            result = optimize.minimize(self.func, self.startparams,
                                       method=method, jac=self.grad,
                                       hess=hess)
            assert result.success

        # check that the methods demand some sort of Hessian specification
        # Newton-CG creates its own hessp, and trust-constr doesn't need a hess
        # specified either
        methods = ['trust-ncg', 'trust-krylov', 'dogleg', 'trust-exact']
        for method in methods:
            with pytest.raises(ValueError):
                optimize.minimize(self.func, self.startparams,
                                  method=method, jac=self.grad,
                                  hess=None)

    def test_bfgs_gh_2169(self):
        def f(x):
            if x < 0:
                return 1.79769313e+308
            else:
                return x + 1./x
        xs = optimize.fmin_bfgs(f, [10.], disp=False)
        assert_allclose(xs, 1.0, rtol=1e-4, atol=1e-4)

    def test_bfgs_double_evaluations(self):
        # check BFGS does not evaluate twice in a row at same point
        def f(x):
            xp = x[0]
            assert xp not in seen
            seen.add(xp)
            return 10*x**2, 20*x

        seen = set()
        optimize.minimize(f, -100, method='bfgs', jac=True, tol=1e-7)

    def test_l_bfgs_b(self):
        # limited-memory bound-constrained BFGS algorithm
        retval = optimize.fmin_l_bfgs_b(self.func, self.startparams,
                                        self.grad, args=(),
                                        maxiter=self.maxiter)

        (params, fopt, d) = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.7.0. Don't allow them to increase.
        assert self.funccalls.c == 7, self.funccalls.c
        assert self.gradcalls.c == 5, self.gradcalls.c

        # Ensure that the function behaves the same; this is from SciPy 0.7.0
        # test fixed in gh10673
        assert_allclose(self.trace.t[3:5],
                        [[8.117083e-16, -5.196198e-01, 4.897617e-01],
                         [0., -0.52489628, 0.48753042]],
                        atol=1e-14, rtol=1e-7)

    def test_l_bfgs_b_numjac(self):
        # L-BFGS-B with numerical Jacobian
        retval = optimize.fmin_l_bfgs_b(self.func, self.startparams,
                                        approx_grad=True,
                                        maxiter=self.maxiter)

        (params, fopt, d) = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

    def test_l_bfgs_b_funjac(self):
        # L-BFGS-B with combined objective function and Jacobian
        def fun(x):
            return self.func(x), self.grad(x)

        retval = optimize.fmin_l_bfgs_b(fun, self.startparams,
                                        maxiter=self.maxiter)

        (params, fopt, d) = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

    def test_l_bfgs_b_maxiter(self):
        # gh7854
        # Ensure that not more than maxiters are ever run.
        class Callback:
            def __init__(self):
                self.nit = 0
                self.fun = None
                self.x = None

            def __call__(self, x):
                self.x = x
                self.fun = optimize.rosen(x)
                self.nit += 1

        c = Callback()
        res = optimize.minimize(optimize.rosen, [0., 0.], method='l-bfgs-b',
                                callback=c, options={'maxiter': 5})

        assert_equal(res.nit, 5)
        assert_almost_equal(res.x, c.x)
        assert_almost_equal(res.fun, c.fun)
        assert_equal(res.status, 1)
        assert res.success is False
        assert_equal(res.message,
                     'STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT')

    def test_minimize_l_bfgs_b(self):
        # Minimize with L-BFGS-B method
        opts = {'disp': False, 'maxiter': self.maxiter}
        r = optimize.minimize(self.func, self.startparams,
                              method='L-BFGS-B', jac=self.grad,
                              options=opts)
        assert_allclose(self.func(r.x), self.func(self.solution),
                        atol=1e-6)
        assert self.gradcalls.c == r.njev

        self.funccalls.c = self.gradcalls.c = 0
        # approximate jacobian
        ra = optimize.minimize(self.func, self.startparams,
                               method='L-BFGS-B', options=opts)
        # check that function evaluations in approximate jacobian are counted
        # assert_(ra.nfev > r.nfev)
        assert self.funccalls.c == ra.nfev
        assert_allclose(self.func(ra.x), self.func(self.solution),
                        atol=1e-6)

        self.funccalls.c = self.gradcalls.c = 0
        # approximate jacobian
        ra = optimize.minimize(self.func, self.startparams, jac='3-point',
                               method='L-BFGS-B', options=opts)
        assert self.funccalls.c == ra.nfev
        assert_allclose(self.func(ra.x), self.func(self.solution),
                        atol=1e-6)

    def test_minimize_l_bfgs_b_ftol(self):
        # Check that the `ftol` parameter in l_bfgs_b works as expected
        v0 = None
        for tol in [1e-1, 1e-4, 1e-7, 1e-10]:
            opts = {'disp': False, 'maxiter': self.maxiter, 'ftol': tol}
            sol = optimize.minimize(self.func, self.startparams,
                                    method='L-BFGS-B', jac=self.grad,
                                    options=opts)
            v = self.func(sol.x)

            if v0 is None:
                v0 = v
            else:
                assert v < v0

            assert_allclose(v, self.func(self.solution), rtol=tol)

    def test_minimize_l_bfgs_maxls(self):
        # check that the maxls is passed down to the Fortran routine
        sol = optimize.minimize(optimize.rosen, np.array([-1.2, 1.0]),
                                method='L-BFGS-B', jac=optimize.rosen_der,
                                options={'disp': False, 'maxls': 1})
        assert not sol.success

    def test_minimize_l_bfgs_b_maxfun_interruption(self):
        # gh-6162
        f = optimize.rosen
        g = optimize.rosen_der
        values = []
        x0 = np.full(7, 1000)

        def objfun(x):
            value = f(x)
            values.append(value)
            return value

        # Look for an interesting test case.
        # Request a maxfun that stops at a particularly bad function
        # evaluation somewhere between 100 and 300 evaluations.
        low, medium, high = 30, 100, 300
        optimize.fmin_l_bfgs_b(objfun, x0, fprime=g, maxfun=high)
        v, k = max((y, i) for i, y in enumerate(values[medium:]))
        maxfun = medium + k
        # If the minimization strategy is reasonable,
        # the minimize() result should not be worse than the best
        # of the first 30 function evaluations.
        target = min(values[:low])
        xmin, fmin, d = optimize.fmin_l_bfgs_b(f, x0, fprime=g, maxfun=maxfun)
        assert_array_less(fmin, target)

    def test_custom(self):
        # This function comes from the documentation example.
        def custmin(fun, x0, args=(), maxfev=None, stepsize=0.1,
                    maxiter=100, callback=None, **options):
            bestx = x0
            besty = fun(x0)
            funcalls = 1
            niter = 0
            improved = True
            stop = False

            while improved and not stop and niter < maxiter:
                improved = False
                niter += 1
                for dim in range(np.size(x0)):
                    for s in [bestx[dim] - stepsize, bestx[dim] + stepsize]:
                        testx = np.copy(bestx)
                        testx[dim] = s
                        testy = fun(testx, *args)
                        funcalls += 1
                        if testy < besty:
                            besty = testy
                            bestx = testx
                            improved = True
                    if callback is not None:
                        callback(bestx)
                    if maxfev is not None and funcalls >= maxfev:
                        stop = True
                        break

            return optimize.OptimizeResult(fun=besty, x=bestx, nit=niter,
                                           nfev=funcalls, success=(niter > 1))

        x0 = [1.35, 0.9, 0.8, 1.1, 1.2]
        res = optimize.minimize(optimize.rosen, x0, method=custmin,
                                options=dict(stepsize=0.05))
        assert_allclose(res.x, 1.0, rtol=1e-4, atol=1e-4)

    def test_gh10771(self):
        # check that minimize passes bounds and constraints to a custom
        # minimizer without altering them.
        bounds = [(-2, 2), (0, 3)]
        constraints = 'constraints'

        def custmin(fun, x0, **options):
            assert options['bounds'] is bounds
            assert options['constraints'] is constraints
            return optimize.OptimizeResult()

        x0 = [1, 1]
        optimize.minimize(optimize.rosen, x0, method=custmin,
                          bounds=bounds, constraints=constraints)

    def test_minimize_tol_parameter(self):
        # Check that the minimize() tol= argument does something
        def func(z):
            x, y = z
            return x**2*y**2 + x**4 + 1

        def dfunc(z):
            x, y = z
            return np.array([2*x*y**2 + 4*x**3, 2*x**2*y])

        for method in ['nelder-mead', 'powell', 'cg', 'bfgs',
                       'newton-cg', 'l-bfgs-b', 'tnc',
                       'cobyla', 'cobyqa', 'slsqp']:
            if method in ('nelder-mead', 'powell', 'cobyla', 'cobyqa'):
                jac = None
            else:
                jac = dfunc

            sol1 = optimize.minimize(func, [2, 2], jac=jac, tol=1e-10,
                                     method=method)
            sol2 = optimize.minimize(func, [2, 2], jac=jac, tol=1.0,
                                     method=method)
            assert func(sol1.x) < func(sol2.x), \
                   f"{method}: {func(sol1.x)} vs. {func(sol2.x)}"

    @pytest.mark.fail_slow(10)
    @pytest.mark.filterwarnings('ignore::UserWarning')
    @pytest.mark.filterwarnings('ignore::RuntimeWarning')  # See gh-18547
    @pytest.mark.parametrize('method',
                             ['fmin', 'fmin_powell', 'fmin_cg', 'fmin_bfgs',
                              'fmin_ncg', 'fmin_l_bfgs_b', 'fmin_tnc',
                              'fmin_slsqp'] + MINIMIZE_METHODS)
    def test_minimize_callback_copies_array(self, method):
        # Check that arrays passed to callbacks are not modified
        # inplace by the optimizer afterward

        if method in ('fmin_tnc', 'fmin_l_bfgs_b'):
            def func(x):
                return optimize.rosen(x), optimize.rosen_der(x)
        else:
            func = optimize.rosen
            jac = optimize.rosen_der
            hess = optimize.rosen_hess

        x0 = np.zeros(10)

        # Set options
        kwargs = {}
        if method.startswith('fmin'):
            routine = getattr(optimize, method)
            if method == 'fmin_slsqp':
                kwargs['iter'] = 5
            elif method == 'fmin_tnc':
                kwargs['maxfun'] = 100
            elif method in ('fmin', 'fmin_powell'):
                kwargs['maxiter'] = 3500
            else:
                kwargs['maxiter'] = 5
        else:
            def routine(*a, **kw):
                kw['method'] = method
                return optimize.minimize(*a, **kw)

            if method == 'tnc':
                kwargs['options'] = dict(maxfun=100)
            else:
                kwargs['options'] = dict(maxiter=5)

        if method in ('fmin_ncg',):
            kwargs['fprime'] = jac
        elif method in ('newton-cg',):
            kwargs['jac'] = jac
        elif method in ('trust-krylov', 'trust-exact', 'trust-ncg', 'dogleg',
                        'trust-constr'):
            kwargs['jac'] = jac
            kwargs['hess'] = hess

        # Run with callback
        results = []

        def callback(x, *args, **kwargs):
            assert not isinstance(x, optimize.OptimizeResult)
            results.append((x, np.copy(x)))

        routine(func, x0, callback=callback, **kwargs)

        # Check returned arrays coincide with their copies
        # and have no memory overlap
        assert len(results) > 2
        assert all(np.all(x == y) for x, y in results)
        combinations = itertools.combinations(results, 2)
        assert not any(np.may_share_memory(x[0], y[0]) for x, y in combinations)

    @pytest.mark.parametrize('method', ['nelder-mead', 'powell', 'cg',
                                        'bfgs', 'newton-cg', 'l-bfgs-b',
                                        'tnc', 'cobyla', 'cobyqa', 'slsqp'])
    def test_no_increase(self, method):
        # Check that the solver doesn't return a value worse than the
        # initial point.

        def func(x):
            return (x - 1)**2

        def bad_grad(x):
            # purposefully invalid gradient function, simulates a case
            # where line searches start failing
            return 2*(x - 1) * (-1) - 2

        x0 = np.array([2.0])
        f0 = func(x0)
        jac = bad_grad
        options = dict(maxfun=20) if method == 'tnc' else dict(maxiter=20)
        if method in ['nelder-mead', 'powell', 'cobyla', 'cobyqa']:
            jac = None
        sol = optimize.minimize(func, x0, jac=jac, method=method,
                                options=options)
        assert_equal(func(sol.x), sol.fun)

        if method == 'slsqp':
            pytest.xfail("SLSQP returns slightly worse")
        assert func(sol.x) <= f0

    def test_slsqp_respect_bounds(self):
        # Regression test for gh-3108
        def f(x):
            return sum((x - np.array([1., 2., 3., 4.]))**2)

        def cons(x):
            a = np.array([[-1, -1, -1, -1], [-3, -3, -2, -1]])
            return np.concatenate([np.dot(a, x) + np.array([5, 10]), x])

        x0 = np.array([0.5, 1., 1.5, 2.])
        res = optimize.minimize(f, x0, method='slsqp',
                                constraints={'type': 'ineq', 'fun': cons})
        assert_allclose(res.x, np.array([0., 2, 5, 8])/3, atol=1e-12)

    @pytest.mark.parametrize('method', ['Nelder-Mead', 'Powell', 'CG', 'BFGS',
                                        'Newton-CG', 'L-BFGS-B', 'SLSQP',
                                        'trust-constr', 'dogleg', 'trust-ncg',
                                        'trust-exact', 'trust-krylov',
                                        'cobyqa'])
    def test_respect_maxiter(self, method):
        # Check that the number of iterations equals max_iter, assuming
        # convergence doesn't establish before
        MAXITER = 4

        x0 = np.zeros(10)

        sf = ScalarFunction(optimize.rosen, x0, (), optimize.rosen_der,
                            optimize.rosen_hess, None, None)

        # Set options
        kwargs = {'method': method, 'options': dict(maxiter=MAXITER)}

        if method in ('Newton-CG',):
            kwargs['jac'] = sf.grad
        elif method in ('trust-krylov', 'trust-exact', 'trust-ncg', 'dogleg',
                        'trust-constr'):
            kwargs['jac'] = sf.grad
            kwargs['hess'] = sf.hess

        sol = optimize.minimize(sf.fun, x0, **kwargs)
        assert sol.nit == MAXITER
        assert sol.nfev >= sf.nfev
        if hasattr(sol, 'njev'):
            assert sol.njev >= sf.ngev

        # method specific tests
        if method == 'SLSQP':
            assert sol.status == 9  # Iteration limit reached
        elif method == 'cobyqa':
            assert sol.status == 6  # Iteration limit reached

    @pytest.mark.thread_unsafe
    @pytest.mark.parametrize('method', ['Nelder-Mead', 'Powell',
                                        'fmin', 'fmin_powell'])
    def test_runtime_warning(self, method):
        x0 = np.zeros(10)
        sf = ScalarFunction(optimize.rosen, x0, (), optimize.rosen_der,
                            optimize.rosen_hess, None, None)
        options = {"maxiter": 1, "disp": True}
        with pytest.warns(RuntimeWarning,
                          match=r'Maximum number of iterations'):
            if method.startswith('fmin'):
                routine = getattr(optimize, method)
                routine(sf.fun, x0, **options)
            else:
                optimize.minimize(sf.fun, x0, method=method, options=options)

    def test_respect_maxiter_trust_constr_ineq_constraints(self):
        # special case of minimization with trust-constr and inequality
        # constraints to check maxiter limit is obeyed when using internal
        # method 'tr_interior_point'
        MAXITER = 4
        f = optimize.rosen
        jac = optimize.rosen_der
        hess = optimize.rosen_hess

        def fun(x):
            return np.array([0.2 * x[0] - 0.4 * x[1] - 0.33 * x[2]])
        cons = ({'type': 'ineq',
                 'fun': fun},)

        x0 = np.zeros(10)
        sol = optimize.minimize(f, x0, constraints=cons, jac=jac, hess=hess,
                                method='trust-constr',
                                options=dict(maxiter=MAXITER))
        assert sol.nit == MAXITER

    def test_minimize_automethod(self):
        def f(x):
            return x**2

        def cons(x):
            return x - 2

        x0 = np.array([10.])
        sol_0 = optimize.minimize(f, x0)
        sol_1 = optimize.minimize(f, x0, constraints=[{'type': 'ineq',
                                                       'fun': cons}])
        sol_2 = optimize.minimize(f, x0, bounds=[(5, 10)])
        sol_3 = optimize.minimize(f, x0,
                                  constraints=[{'type': 'ineq', 'fun': cons}],
                                  bounds=[(5, 10)])
        sol_4 = optimize.minimize(f, x0,
                                  constraints=[{'type': 'ineq', 'fun': cons}],
                                  bounds=[(1, 10)])
        for sol in [sol_0, sol_1, sol_2, sol_3, sol_4]:
            assert sol.success
        assert_allclose(sol_0.x, 0, atol=1e-7)
        assert_allclose(sol_1.x, 2, atol=1e-7)
        assert_allclose(sol_2.x, 5, atol=1e-7)
        assert_allclose(sol_3.x, 5, atol=1e-7)
        assert_allclose(sol_4.x, 2, atol=1e-7)

    def test_minimize_coerce_args_param(self):
        # Regression test for gh-3503
        def Y(x, c):
            return np.sum((x-c)**2)

        def dY_dx(x, c=None):
            return 2*(x-c)

        c = np.array([3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5])
        xinit = np.random.randn(len(c))
        optimize.minimize(Y, xinit, jac=dY_dx, args=(c), method="BFGS")

    def test_initial_step_scaling(self):
        # Check that optimizer initial step is not huge even if the
        # function and gradients are

        scales = [1e-50, 1, 1e50]
        methods = ['CG', 'BFGS', 'L-BFGS-B', 'Newton-CG']

        def f(x):
            if first_step_size[0] is None and x[0] != x0[0]:
                first_step_size[0] = abs(x[0] - x0[0])
            if abs(x).max() > 1e4:
                raise AssertionError("Optimization stepped far away!")
            return scale*(x[0] - 1)**2

        def g(x):
            return np.array([scale*(x[0] - 1)])

        for scale, method in itertools.product(scales, methods):
            if method in ('CG', 'BFGS'):
                options = dict(gtol=scale*1e-8)
            else:
                options = dict()

            if scale < 1e-10 and method in ('L-BFGS-B', 'Newton-CG'):
                # XXX: return initial point if they see small gradient
                continue

            x0 = [-1.0]
            first_step_size = [None]
            res = optimize.minimize(f, x0, jac=g, method=method,
                                    options=options)

            err_msg = f"{method} {scale}: {first_step_size}: {res}"

            assert res.success, err_msg
            assert_allclose(res.x, [1.0], err_msg=err_msg)
            assert res.nit <= 3, err_msg

            if scale > 1e-10:
                if method in ('CG', 'BFGS'):
                    assert_allclose(first_step_size[0], 1.01, err_msg=err_msg)
                else:
                    # Newton-CG and L-BFGS-B use different logic for the first
                    # step, but are both scaling invariant with step sizes ~ 1
                    assert first_step_size[0] > 0.5 and first_step_size[0] < 3, err_msg
            else:
                # step size has upper bound of ||grad||, so line
                # search makes many small steps
                pass

    @pytest.mark.parametrize('method', ['nelder-mead', 'powell', 'cg', 'bfgs',
                                        'newton-cg', 'l-bfgs-b', 'tnc',
                                        'cobyla', 'cobyqa', 'slsqp',
                                        'trust-constr', 'dogleg', 'trust-ncg',
                                        'trust-exact', 'trust-krylov'])
    def test_nan_values(self, method, num_parallel_threads):
        if num_parallel_threads > 1 and method == 'cobyqa':
            pytest.skip('COBYQA does not support concurrent execution')

        # Check nan values result to failed exit status
        rng = np.random.RandomState(1234)

        count = [0]

        def func(x):
            return np.nan

        def func2(x):
            count[0] += 1
            if count[0] > 2:
                return np.nan
            else:
                return rng.rand()

        def grad(x):
            return np.array([1.0])

        def hess(x):
            return np.array([[1.0]])

        x0 = np.array([1.0])

        needs_grad = method in ('newton-cg', 'trust-krylov', 'trust-exact',
                                'trust-ncg', 'dogleg')
        needs_hess = method in ('trust-krylov', 'trust-exact', 'trust-ncg',
                                'dogleg')

        funcs = [func, func2]
        grads = [grad] if needs_grad else [grad, None]
        hesss = [hess] if needs_hess else [hess, None]
        options = dict(maxfun=20) if method == 'tnc' else dict(maxiter=20)

        with np.errstate(invalid='ignore'), suppress_warnings() as sup:
            sup.filter(UserWarning, "delta_grad == 0.*")
            sup.filter(RuntimeWarning, ".*does not use Hessian.*")
            sup.filter(RuntimeWarning, ".*does not use gradient.*")

            for f, g, h in itertools.product(funcs, grads, hesss):
                count = [0]
                sol = optimize.minimize(f, x0, jac=g, hess=h, method=method,
                                        options=options)
                assert_equal(sol.success, False)

    @pytest.mark.parametrize('method', ['nelder-mead', 'cg', 'bfgs',
                                        'l-bfgs-b', 'tnc',
                                        'cobyla', 'cobyqa', 'slsqp',
                                        'trust-constr', 'dogleg', 'trust-ncg',
                                        'trust-exact', 'trust-krylov'])
    def test_duplicate_evaluations(self, method):
        # check that there are no duplicate evaluations for any methods
        jac = hess = None
        if method in ('newton-cg', 'trust-krylov', 'trust-exact',
                      'trust-ncg', 'dogleg'):
            jac = self.grad
        if method in ('trust-krylov', 'trust-exact', 'trust-ncg',
                      'dogleg'):
            hess = self.hess

        with np.errstate(invalid='ignore'), suppress_warnings() as sup:
            # for trust-constr
            sup.filter(UserWarning, "delta_grad == 0.*")
            optimize.minimize(self.func, self.startparams,
                              method=method, jac=jac, hess=hess)

        for i in range(1, len(self.trace.t)):
            if np.array_equal(self.trace.t[i - 1], self.trace.t[i]):
                raise RuntimeError(
                    f"Duplicate evaluations made by {method}")

    @pytest.mark.filterwarnings('ignore::RuntimeWarning')
    @pytest.mark.parametrize('method', MINIMIZE_METHODS_NEW_CB)
    @pytest.mark.parametrize('new_cb_interface', [0, 1, 2])
    def test_callback_stopiteration(self, method, new_cb_interface):
        # Check that if callback raises StopIteration, optimization
        # terminates with the same result as if iterations were limited

        def f(x):
            f.flag = False  # check that f isn't called after StopIteration
            return optimize.rosen(x)
        f.flag = False

        def g(x):
            f.flag = False
            return optimize.rosen_der(x)

        def h(x):
            f.flag = False
            return optimize.rosen_hess(x)

        maxiter = 5

        if new_cb_interface == 1:
            def callback_interface(*, intermediate_result):
                assert intermediate_result.fun == f(intermediate_result.x)
                callback()
        elif new_cb_interface == 2:
            class Callback:
                def __call__(self, intermediate_result: OptimizeResult):
                    assert intermediate_result.fun == f(intermediate_result.x)
                    callback()
            callback_interface = Callback()
        else:
            def callback_interface(xk, *args):  # type: ignore[misc]
                callback()

        def callback():
            callback.i += 1
            callback.flag = False
            if callback.i == maxiter:
                callback.flag = True
                raise StopIteration()
        callback.i = 0
        callback.flag = False

        kwargs = {'x0': [1.1]*5, 'method': method,
                  'fun': f, 'jac': g, 'hess': h}

        res = optimize.minimize(**kwargs, callback=callback_interface)
        if method == 'nelder-mead':
            maxiter = maxiter + 1  # nelder-mead counts differently
        if method == 'cobyqa':
            ref = optimize.minimize(**kwargs, options={'maxfev': maxiter})
            assert res.nfev == ref.nfev == maxiter
        else:
            ref = optimize.minimize(**kwargs, options={'maxiter': maxiter})
            assert res.nit == ref.nit == maxiter
        assert res.fun == ref.fun
        assert_equal(res.x, ref.x)
        assert res.status == (3 if method in [
            'trust-constr',
            'cobyqa',
        ] else 99)

    def test_ndim_error(self):
        msg = "'x0' must only have one dimension."
        with assert_raises(ValueError, match=msg):
            optimize.minimize(lambda x: x, np.ones((2, 1)))

    @pytest.mark.parametrize('method', ('nelder-mead', 'l-bfgs-b', 'tnc',
                                        'powell', 'cobyla', 'cobyqa',
                                        'trust-constr'))
    def test_minimize_invalid_bounds(self, method):
        def f(x):
            return np.sum(x**2)

        bounds = Bounds([1, 2], [3, 4])
        msg = 'The number of bounds is not compatible with the length of `x0`.'
        with pytest.raises(ValueError, match=msg):
            optimize.minimize(f, x0=[1, 2, 3], method=method, bounds=bounds)

        bounds = Bounds([1, 6, 1], [3, 4, 2])
        msg = 'An upper bound is less than the corresponding lower bound.'
        with pytest.raises(ValueError, match=msg):
            optimize.minimize(f, x0=[1, 2, 3], method=method, bounds=bounds)

    @pytest.mark.thread_unsafe
    @pytest.mark.parametrize('method', ['bfgs', 'cg', 'newton-cg', 'powell'])
    def test_minimize_warnings_gh1953(self, method):
        # test that minimize methods produce warnings rather than just using
        # `print`; see gh-1953.
        kwargs = {} if method=='powell' else {'jac': optimize.rosen_der}
        warning_type = (RuntimeWarning if method=='powell'
                        else optimize.OptimizeWarning)

        options = {'disp': True, 'maxiter': 10}
        with pytest.warns(warning_type, match='Maximum number'):
            optimize.minimize(lambda x: optimize.rosen(x), [0, 0],
                              method=method, options=options, **kwargs)

        options['disp'] = False
        optimize.minimize(lambda x: optimize.rosen(x), [0, 0],
                          method=method, options=options, **kwargs)


@pytest.mark.parametrize(
    'method',
    ['l-bfgs-b', 'tnc', 'Powell', 'Nelder-Mead', 'cobyqa']
)
def test_minimize_with_scalar(method):
    # checks that minimize works with a scalar being provided to it.
    def f(x):
        return np.sum(x ** 2)

    res = optimize.minimize(f, 17, bounds=[(-100, 100)], method=method)
    assert res.success
    assert_allclose(res.x, [0.0], atol=1e-5)


class TestLBFGSBBounds:
    def setup_method(self):
        self.bounds = ((1, None), (None, None))
        self.solution = (1, 0)

    def fun(self, x, p=2.0):
        return 1.0 / p * (x[0]**p + x[1]**p)

    def jac(self, x, p=2.0):
        return x**(p - 1)

    def fj(self, x, p=2.0):
        return self.fun(x, p), self.jac(x, p)

    def test_l_bfgs_b_bounds(self):
        x, f, d = optimize.fmin_l_bfgs_b(self.fun, [0, -1],
                                         fprime=self.jac,
                                         bounds=self.bounds)
        assert d['warnflag'] == 0, d['task']
        assert_allclose(x, self.solution, atol=1e-6)

    def test_l_bfgs_b_funjac(self):
        # L-BFGS-B with fun and jac combined and extra arguments
        x, f, d = optimize.fmin_l_bfgs_b(self.fj, [0, -1], args=(2.0, ),
                                         bounds=self.bounds)
        assert d['warnflag'] == 0, d['task']
        assert_allclose(x, self.solution, atol=1e-6)

    def test_minimize_l_bfgs_b_bounds(self):
        # Minimize with method='L-BFGS-B' with bounds
        res = optimize.minimize(self.fun, [0, -1], method='L-BFGS-B',
                                jac=self.jac, bounds=self.bounds)
        assert res['success'], res['message']
        assert_allclose(res.x, self.solution, atol=1e-6)

    @pytest.mark.parametrize('bounds', [
        ([(10, 1), (1, 10)]),
        ([(1, 10), (10, 1)]),
        ([(10, 1), (10, 1)])
    ])
    def test_minimize_l_bfgs_b_incorrect_bounds(self, bounds):
        with pytest.raises(ValueError, match='.*bound.*'):
            optimize.minimize(self.fun, [0, -1], method='L-BFGS-B',
                              jac=self.jac, bounds=bounds)

    def test_minimize_l_bfgs_b_bounds_FD(self):
        # test that initial starting value outside bounds doesn't raise
        # an error (done with clipping).
        # test all different finite differences combos, with and without args

        jacs = ['2-point', '3-point', None]
        argss = [(2.,), ()]
        for jac, args in itertools.product(jacs, argss):
            res = optimize.minimize(self.fun, [0, -1], args=args,
                                    method='L-BFGS-B',
                                    jac=jac, bounds=self.bounds,
                                    options={'finite_diff_rel_step': None})
            assert res['success'], res['message']
            assert_allclose(res.x, self.solution, atol=1e-6)


class TestOptimizeScalar:
    def setup_method(self):
        self.solution = 1.5

    def fun(self, x, a=1.5):
        """Objective function"""
        return (x - a)**2 - 0.8

    def test_brent(self):
        x = optimize.brent(self.fun)
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.brent(self.fun, brack=(-3, -2))
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.brent(self.fun, full_output=True)
        assert_allclose(x[0], self.solution, atol=1e-6)

        x = optimize.brent(self.fun, brack=(-15, -1, 15))
        assert_allclose(x, self.solution, atol=1e-6)

        message = r"\(f\(xb\) < f\(xa\)\) and \(f\(xb\) < f\(xc\)\)"
        with pytest.raises(ValueError, match=message):
            optimize.brent(self.fun, brack=(-1, 0, 1))

        message = r"\(xa < xb\) and \(xb < xc\)"
        with pytest.raises(ValueError, match=message):
            optimize.brent(self.fun, brack=(0, -1, 1))

    @pytest.mark.filterwarnings('ignore::UserWarning')
    def test_golden(self):
        x = optimize.golden(self.fun)
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.golden(self.fun, brack=(-3, -2))
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.golden(self.fun, full_output=True)
        assert_allclose(x[0], self.solution, atol=1e-6)

        x = optimize.golden(self.fun, brack=(-15, -1, 15))
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.golden(self.fun, tol=0)
        assert_allclose(x, self.solution)

        maxiter_test_cases = [0, 1, 5]
        for maxiter in maxiter_test_cases:
            x0 = optimize.golden(self.fun, maxiter=0, full_output=True)
            x = optimize.golden(self.fun, maxiter=maxiter, full_output=True)
            nfev0, nfev = x0[2], x[2]
            assert_equal(nfev - nfev0, maxiter)

        message = r"\(f\(xb\) < f\(xa\)\) and \(f\(xb\) < f\(xc\)\)"
        with pytest.raises(ValueError, match=message):
            optimize.golden(self.fun, brack=(-1, 0, 1))

        message = r"\(xa < xb\) and \(xb < xc\)"
        with pytest.raises(ValueError, match=message):
            optimize.golden(self.fun, brack=(0, -1, 1))

    def test_fminbound(self):
        x = optimize.fminbound(self.fun, 0, 1)
        assert_allclose(x, 1, atol=1e-4)

        x = optimize.fminbound(self.fun, 1, 5)
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.fminbound(self.fun, np.array([1]), np.array([5]))
        assert_allclose(x, self.solution, atol=1e-6)
        assert_raises(ValueError, optimize.fminbound, self.fun, 5, 1)

    def test_fminbound_scalar(self):
        with pytest.raises(ValueError, match='.*must be finite scalars.*'):
            optimize.fminbound(self.fun, np.zeros((1, 2)), 1)

        x = optimize.fminbound(self.fun, 1, np.array(5))
        assert_allclose(x, self.solution, atol=1e-6)

    def test_gh11207(self):
        def fun(x):
            return x**2
        optimize.fminbound(fun, 0, 0)

    def test_minimize_scalar(self):
        # combine all tests above for the minimize_scalar wrapper
        x = optimize.minimize_scalar(self.fun).x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, method='Brent')
        assert x.success

        x = optimize.minimize_scalar(self.fun, method='Brent',
                                     options=dict(maxiter=3))
        assert not x.success

        x = optimize.minimize_scalar(self.fun, bracket=(-3, -2),
                                     args=(1.5, ), method='Brent').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, method='Brent',
                                     args=(1.5,)).x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bracket=(-15, -1, 15),
                                     args=(1.5, ), method='Brent').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bracket=(-3, -2),
                                     args=(1.5, ), method='golden').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, method='golden',
                                     args=(1.5,)).x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bracket=(-15, -1, 15),
                                     args=(1.5, ), method='golden').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bounds=(0, 1), args=(1.5,),
                                     method='Bounded').x
        assert_allclose(x, 1, atol=1e-4)

        x = optimize.minimize_scalar(self.fun, bounds=(1, 5), args=(1.5, ),
                                     method='bounded').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bounds=(np.array([1]),
                                                       np.array([5])),
                                     args=(np.array([1.5]), ),
                                     method='bounded').x
        assert_allclose(x, self.solution, atol=1e-6)

        assert_raises(ValueError, optimize.minimize_scalar, self.fun,
                      bounds=(5, 1), method='bounded', args=(1.5, ))

        assert_raises(ValueError, optimize.minimize_scalar, self.fun,
                      bounds=(np.zeros(2), 1), method='bounded', args=(1.5, ))

        x = optimize.minimize_scalar(self.fun, bounds=(1, np.array(5)),
                                     method='bounded').x
        assert_allclose(x, self.solution, atol=1e-6)

    def test_minimize_scalar_custom(self):
        # This function comes from the documentation example.
        def custmin(fun, bracket, args=(), maxfev=None, stepsize=0.1,
                    maxiter=100, callback=None, **options):
            bestx = (bracket[1] + bracket[0]) / 2.0
            besty = fun(bestx)
            funcalls = 1
            niter = 0
            improved = True
            stop = False

            while improved and not stop and niter < maxiter:
                improved = False
                niter += 1
                for testx in [bestx - stepsize, bestx + stepsize]:
                    testy = fun(testx, *args)
                    funcalls += 1
                    if testy < besty:
                        besty = testy
                        bestx = testx
                        improved = True
                if callback is not None:
                    callback(bestx)
                if maxfev is not None and funcalls >= maxfev:
                    stop = True
                    break

            return optimize.OptimizeResult(fun=besty, x=bestx, nit=niter,
                                           nfev=funcalls, success=(niter > 1))

        res = optimize.minimize_scalar(self.fun, bracket=(0, 4),
                                       method=custmin,
                                       options=dict(stepsize=0.05))
        assert_allclose(res.x, self.solution, atol=1e-6)

    def test_minimize_scalar_coerce_args_param(self):
        # Regression test for gh-3503
        optimize.minimize_scalar(self.fun, args=1.5)

    @pytest.mark.parametrize('method', ['brent', 'bounded', 'golden'])
    def test_disp(self, method):
        # test that all minimize_scalar methods accept a disp option.
        for disp in [0, 1, 2, 3]:
            optimize.minimize_scalar(self.fun, options={"disp": disp})

    @pytest.mark.parametrize('method', ['brent', 'bounded', 'golden'])
    def test_result_attributes(self, method):
        kwargs = {"bounds": [-10, 10]} if method == 'bounded' else {}
        result = optimize.minimize_scalar(self.fun, method=method, **kwargs)
        assert hasattr(result, "x")
        assert hasattr(result, "success")
        assert hasattr(result, "message")
        assert hasattr(result, "fun")
        assert hasattr(result, "nfev")
        assert hasattr(result, "nit")

    @pytest.mark.filterwarnings('ignore::UserWarning')
    @pytest.mark.parametrize('method', ['brent', 'bounded', 'golden'])
    def test_nan_values(self, method):
        # Check nan values result to failed exit status
        np.random.seed(1234)

        count = [0]

        def func(x):
            count[0] += 1
            if count[0] > 4:
                return np.nan
            else:
                return x**2 + 0.1 * np.sin(x)

        bracket = (-1, 0, 1)
        bounds = (-1, 1)

        with np.errstate(invalid='ignore'), suppress_warnings() as sup:
            sup.filter(UserWarning, "delta_grad == 0.*")
            sup.filter(RuntimeWarning, ".*does not use Hessian.*")
            sup.filter(RuntimeWarning, ".*does not use gradient.*")

            count = [0]

            kwargs = {"bounds": bounds} if method == 'bounded' else {}
            sol = optimize.minimize_scalar(func, bracket=bracket,
                                           **kwargs, method=method,
                                           options=dict(maxiter=20))
            assert_equal(sol.success, False)

    def test_minimize_scalar_defaults_gh10911(self):
        # Previously, bounds were silently ignored unless `method='bounds'`
        # was chosen. See gh-10911. Check that this is no longer the case.
        def f(x):
            return x**2

        res = optimize.minimize_scalar(f)
        assert_allclose(res.x, 0, atol=1e-8)

        res = optimize.minimize_scalar(f, bounds=(1, 100),
                                       options={'xatol': 1e-10})
        assert_allclose(res.x, 1)

    def test_minimize_non_finite_bounds_gh10911(self):
        # Previously, minimize_scalar misbehaved with infinite bounds.
        # See gh-10911. Check that it now raises an error, instead.
        msg = "Optimization bounds must be finite scalars."
        with pytest.raises(ValueError, match=msg):
            optimize.minimize_scalar(np.sin, bounds=(1, np.inf))
        with pytest.raises(ValueError, match=msg):
            optimize.minimize_scalar(np.sin, bounds=(np.nan, 1))

    @pytest.mark.parametrize("method", ['brent', 'golden'])
    def test_minimize_unbounded_method_with_bounds_gh10911(self, method):
        # Previously, `bounds` were silently ignored when `method='brent'` or
        # `method='golden'`. See gh-10911. Check that error is now raised.
        msg = "Use of `bounds` is incompatible with..."
        with pytest.raises(ValueError, match=msg):
            optimize.minimize_scalar(np.sin, method=method, bounds=(1, 2))

    @pytest.mark.filterwarnings('ignore::RuntimeWarning')
    @pytest.mark.parametrize("method", MINIMIZE_SCALAR_METHODS)
    @pytest.mark.parametrize("tol", [1, 1e-6])
    @pytest.mark.parametrize("fshape", [(), (1,), (1, 1)])
    def test_minimize_scalar_dimensionality_gh16196(self, method, tol, fshape):
        # gh-16196 reported that the output shape of `minimize_scalar` was not
        # consistent when an objective function returned an array. Check that
        # `res.fun` and `res.x` are now consistent.
        def f(x):
            return np.array(x**4).reshape(fshape)

        a, b = -0.1, 0.2
        kwargs = (dict(bracket=(a, b)) if method != "bounded"
                  else dict(bounds=(a, b)))
        kwargs.update(dict(method=method, tol=tol))

        res = optimize.minimize_scalar(f, **kwargs)
        assert res.x.shape == res.fun.shape == f(res.x).shape == fshape

    @pytest.mark.thread_unsafe
    @pytest.mark.parametrize('method', ['bounded', 'brent', 'golden'])
    def test_minimize_scalar_warnings_gh1953(self, method):
        # test that minimize_scalar methods produce warnings rather than just
        # using `print`; see gh-1953.
        def f(x):
            return (x - 1)**2

        kwargs = {}
        kwd = 'bounds' if method == 'bounded' else 'bracket'
        kwargs[kwd] = [-2, 10]

        options = {'disp': True, 'maxiter': 3}
        with pytest.warns(optimize.OptimizeWarning, match='Maximum number'):
            optimize.minimize_scalar(f, method=method, options=options,
                                     **kwargs)

        options['disp'] = False
        optimize.minimize_scalar(f, method=method, options=options, **kwargs)


class TestBracket:

    @pytest.mark.filterwarnings('ignore::RuntimeWarning')
    def test_errors_and_status_false(self):
        # Check that `bracket` raises the errors it is supposed to
        def f(x):  # gh-14858
            return x**2 if ((-1 < x) & (x < 1)) else 100.0

        message = "The algorithm terminated without finding a valid bracket."
        with pytest.raises(RuntimeError, match=message):
            optimize.bracket(f, -1, 1)
        with pytest.raises(RuntimeError, match=message):
            optimize.bracket(f, -1, np.inf)
        with pytest.raises(RuntimeError, match=message):
            optimize.brent(f, brack=(-1, 1))
        with pytest.raises(RuntimeError, match=message):
            optimize.golden(f, brack=(-1, 1))

        def f(x):  # gh-5899
            return -5 * x**5 + 4 * x**4 - 12 * x**3 + 11 * x**2 - 2 * x + 1

        message = "No valid bracket was found before the iteration limit..."
        with pytest.raises(RuntimeError, match=message):
            optimize.bracket(f, -0.5, 0.5, maxiter=10)

    @pytest.mark.parametrize('method', ('brent', 'golden'))
    def test_minimize_scalar_success_false(self, method):
        # Check that status information from `bracket` gets to minimize_scalar
        def f(x):  # gh-14858
            return x**2 if ((-1 < x) & (x < 1)) else 100.0

        message = "The algorithm terminated without finding a valid bracket."

        res = optimize.minimize_scalar(f, bracket=(-1, 1), method=method)
        assert not res.success
        assert message in res.message
        assert res.nfev == 3
        assert res.nit == 0
        assert res.fun == 100


def test_brent_negative_tolerance():
    assert_raises(ValueError, optimize.brent, np.cos, tol=-.01)


class TestNewtonCg:
    def test_rosenbrock(self):
        x0 = np.array([-1.2, 1.0])
        sol = optimize.minimize(optimize.rosen, x0,
                                jac=optimize.rosen_der,
                                hess=optimize.rosen_hess,
                                tol=1e-5,
                                method='Newton-CG')
        assert sol.success, sol.message
        assert_allclose(sol.x, np.array([1, 1]), rtol=1e-4)

    def test_himmelblau(self):
        x0 = np.array(himmelblau_x0)
        sol = optimize.minimize(himmelblau,
                                x0,
                                jac=himmelblau_grad,
                                hess=himmelblau_hess,
                                method='Newton-CG',
                                tol=1e-6)
        assert sol.success, sol.message
        assert_allclose(sol.x, himmelblau_xopt, rtol=1e-4)
        assert_allclose(sol.fun, himmelblau_min, atol=1e-4)

    def test_finite_difference(self):
        x0 = np.array([-1.2, 1.0])
        sol = optimize.minimize(optimize.rosen, x0,
                                jac=optimize.rosen_der,
                                hess='2-point',
                                tol=1e-5,
                                method='Newton-CG')
        assert sol.success, sol.message
        assert_allclose(sol.x, np.array([1, 1]), rtol=1e-4)

    def test_hessian_update_strategy(self):
        x0 = np.array([-1.2, 1.0])
        sol = optimize.minimize(optimize.rosen, x0,
                                jac=optimize.rosen_der,
                                hess=optimize.BFGS(),
                                tol=1e-5,
                                method='Newton-CG')
        assert sol.success, sol.message
        assert_allclose(sol.x, np.array([1, 1]), rtol=1e-4)


def test_line_for_search():
    # _line_for_search is only used in _linesearch_powell, which is also
    # tested below. Thus there are more tests of _line_for_search in the
    # test_linesearch_powell_bounded function.

    line_for_search = optimize._optimize._line_for_search
    # args are x0, alpha, lower_bound, upper_bound
    # returns lmin, lmax

    lower_bound = np.array([-5.3, -1, -1.5, -3])
    upper_bound = np.array([1.9, 1, 2.8, 3])

    # test when starting in the bounds
    x0 = np.array([0., 0, 0, 0])
    # and when starting outside of the bounds
    x1 = np.array([0., 2, -3, 0])

    all_tests = (
        (x0, np.array([1., 0, 0, 0]), -5.3, 1.9),
        (x0, np.array([0., 1, 0, 0]), -1, 1),
        (x0, np.array([0., 0, 1, 0]), -1.5, 2.8),
        (x0, np.array([0., 0, 0, 1]), -3, 3),
        (x0, np.array([1., 1, 0, 0]), -1, 1),
        (x0, np.array([1., 0, -1, 2]), -1.5, 1.5),
        (x0, np.array([2., 0, -1, 2]), -1.5, 0.95),
        (x1, np.array([1., 0, 0, 0]), -5.3, 1.9),
        (x1, np.array([0., 1, 0, 0]), -3, -1),
        (x1, np.array([0., 0, 1, 0]), 1.5, 5.8),
        (x1, np.array([0., 0, 0, 1]), -3, 3),
        (x1, np.array([1., 1, 0, 0]), -3, -1),
        (x1, np.array([1., 0, -1, 0]), -5.3, -1.5),
    )

    for x, alpha, lmin, lmax in all_tests:
        mi, ma = line_for_search(x, alpha, lower_bound, upper_bound)
        assert_allclose(mi, lmin, atol=1e-6)
        assert_allclose(ma, lmax, atol=1e-6)

    # now with infinite bounds
    lower_bound = np.array([-np.inf, -1, -np.inf, -3])
    upper_bound = np.array([np.inf, 1, 2.8, np.inf])

    all_tests = (
        (x0, np.array([1., 0, 0, 0]), -np.inf, np.inf),
        (x0, np.array([0., 1, 0, 0]), -1, 1),
        (x0, np.array([0., 0, 1, 0]), -np.inf, 2.8),
        (x0, np.array([0., 0, 0, 1]), -3, np.inf),
        (x0, np.array([1., 1, 0, 0]), -1, 1),
        (x0, np.array([1., 0, -1, 2]), -1.5, np.inf),
        (x1, np.array([1., 0, 0, 0]), -np.inf, np.inf),
        (x1, np.array([0., 1, 0, 0]), -3, -1),
        (x1, np.array([0., 0, 1, 0]), -np.inf, 5.8),
        (x1, np.array([0., 0, 0, 1]), -3, np.inf),
        (x1, np.array([1., 1, 0, 0]), -3, -1),
        (x1, np.array([1., 0, -1, 0]), -5.8, np.inf),
    )

    for x, alpha, lmin, lmax in all_tests:
        mi, ma = line_for_search(x, alpha, lower_bound, upper_bound)
        assert_allclose(mi, lmin, atol=1e-6)
        assert_allclose(ma, lmax, atol=1e-6)


def test_linesearch_powell():
    # helper function in optimize.py, not a public function.
    linesearch_powell = optimize._optimize._linesearch_powell
    # args are func, p, xi, fval, lower_bound=None, upper_bound=None, tol=1e-3
    # returns new_fval, p + direction, direction
    def func(x):
        return np.sum((x - np.array([-1.0, 2.0, 1.5, -0.4])) ** 2)
    p0 = np.array([0., 0, 0, 0])
    fval = func(p0)
    lower_bound = np.array([-np.inf] * 4)
    upper_bound = np.array([np.inf] * 4)

    all_tests = (
        (np.array([1., 0, 0, 0]), -1),
        (np.array([0., 1, 0, 0]), 2),
        (np.array([0., 0, 1, 0]), 1.5),
        (np.array([0., 0, 0, 1]), -.4),
        (np.array([-1., 0, 1, 0]), 1.25),
        (np.array([0., 0, 1, 1]), .55),
        (np.array([2., 0, -1, 1]), -.65),
    )

    for xi, l in all_tests:
        f, p, direction = linesearch_powell(func, p0, xi,
                                            fval=fval, tol=1e-5)
        assert_allclose(f, func(l * xi), atol=1e-6)
        assert_allclose(p, l * xi, atol=1e-6)
        assert_allclose(direction, l * xi, atol=1e-6)

        f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5,
                                            lower_bound=lower_bound,
                                            upper_bound=upper_bound,
                                            fval=fval)
        assert_allclose(f, func(l * xi), atol=1e-6)
        assert_allclose(p, l * xi, atol=1e-6)
        assert_allclose(direction, l * xi, atol=1e-6)


def test_linesearch_powell_bounded():
    # helper function in optimize.py, not a public function.
    linesearch_powell = optimize._optimize._linesearch_powell
    # args are func, p, xi, fval, lower_bound=None, upper_bound=None, tol=1e-3
    # returns new_fval, p+direction, direction
    def func(x):
        return np.sum((x - np.array([-1.0, 2.0, 1.5, -0.4])) ** 2)
    p0 = np.array([0., 0, 0, 0])
    fval = func(p0)

    # first choose bounds such that the same tests from
    # test_linesearch_powell should pass.
    lower_bound = np.array([-2.]*4)
    upper_bound = np.array([2.]*4)

    all_tests = (
        (np.array([1., 0, 0, 0]), -1),
        (np.array([0., 1, 0, 0]), 2),
        (np.array([0., 0, 1, 0]), 1.5),
        (np.array([0., 0, 0, 1]), -.4),
        (np.array([-1., 0, 1, 0]), 1.25),
        (np.array([0., 0, 1, 1]), .55),
        (np.array([2., 0, -1, 1]), -.65),
    )

    for xi, l in all_tests:
        f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5,
                                            lower_bound=lower_bound,
                                            upper_bound=upper_bound,
                                            fval=fval)
        assert_allclose(f, func(l * xi), atol=1e-6)
        assert_allclose(p, l * xi, atol=1e-6)
        assert_allclose(direction, l * xi, atol=1e-6)

    # now choose bounds such that unbounded vs bounded gives different results
    lower_bound = np.array([-.3]*3 + [-1])
    upper_bound = np.array([.45]*3 + [.9])

    all_tests = (
        (np.array([1., 0, 0, 0]), -.3),
        (np.array([0., 1, 0, 0]), .45),
        (np.array([0., 0, 1, 0]), .45),
        (np.array([0., 0, 0, 1]), -.4),
        (np.array([-1., 0, 1, 0]), .3),
        (np.array([0., 0, 1, 1]), .45),
        (np.array([2., 0, -1, 1]), -.15),
    )

    for xi, l in all_tests:
        f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5,
                                            lower_bound=lower_bound,
                                            upper_bound=upper_bound,
                                            fval=fval)
        assert_allclose(f, func(l * xi), atol=1e-6)
        assert_allclose(p, l * xi, atol=1e-6)
        assert_allclose(direction, l * xi, atol=1e-6)

    # now choose as above but start outside the bounds
    p0 = np.array([-1., 0, 0, 2])
    fval = func(p0)

    all_tests = (
        (np.array([1., 0, 0, 0]), .7),
        (np.array([0., 1, 0, 0]), .45),
        (np.array([0., 0, 1, 0]), .45),
        (np.array([0., 0, 0, 1]), -2.4),
    )

    for xi, l in all_tests:
        f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5,
                                            lower_bound=lower_bound,
                                            upper_bound=upper_bound,
                                            fval=fval)
        assert_allclose(f, func(p0 + l * xi), atol=1e-6)
        assert_allclose(p, p0 + l * xi, atol=1e-6)
        assert_allclose(direction, l * xi, atol=1e-6)

    # now mix in inf
    p0 = np.array([0., 0, 0, 0])
    fval = func(p0)

    # now choose bounds that mix inf
    lower_bound = np.array([-.3, -np.inf, -np.inf, -1])
    upper_bound = np.array([np.inf, .45, np.inf, .9])

    all_tests = (
        (np.array([1., 0, 0, 0]), -.3),
        (np.array([0., 1, 0, 0]), .45),
        (np.array([0., 0, 1, 0]), 1.5),
        (np.array([0., 0, 0, 1]), -.4),
        (np.array([-1., 0, 1, 0]), .3),
        (np.array([0., 0, 1, 1]), .55),
        (np.array([2., 0, -1, 1]), -.15),
    )

    for xi, l in all_tests:
        f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5,
                                            lower_bound=lower_bound,
                                            upper_bound=upper_bound,
                                            fval=fval)
        assert_allclose(f, func(l * xi), atol=1e-6)
        assert_allclose(p, l * xi, atol=1e-6)
        assert_allclose(direction, l * xi, atol=1e-6)

    # now choose as above but start outside the bounds
    p0 = np.array([-1., 0, 0, 2])
    fval = func(p0)

    all_tests = (
        (np.array([1., 0, 0, 0]), .7),
        (np.array([0., 1, 0, 0]), .45),
        (np.array([0., 0, 1, 0]), 1.5),
        (np.array([0., 0, 0, 1]), -2.4),
    )

    for xi, l in all_tests:
        f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5,
                                            lower_bound=lower_bound,
                                            upper_bound=upper_bound,
                                            fval=fval)
        assert_allclose(f, func(p0 + l * xi), atol=1e-6)
        assert_allclose(p, p0 + l * xi, atol=1e-6)
        assert_allclose(direction, l * xi, atol=1e-6)


def test_powell_limits():
    # gh15342 - powell was going outside bounds for some function evaluations.
    bounds = optimize.Bounds([0, 0], [0.6, 20])

    def fun(x):
        a, b = x
        assert (x >= bounds.lb).all() and (x <= bounds.ub).all()
        return a ** 2 + b ** 2

    optimize.minimize(fun, x0=[0.6, 20], method='Powell', bounds=bounds)

    # Another test from the original report - gh-13411
    bounds = optimize.Bounds(lb=[0,], ub=[1,], keep_feasible=[True,])

    def func(x):
        assert x >= 0 and x <= 1
        return np.exp(x)

    optimize.minimize(fun=func, x0=[0.5], method='powell', bounds=bounds)


def test_powell_output():
    funs = [rosen, lambda x: np.array(rosen(x)), lambda x: np.array([rosen(x)])]
    for fun in funs:
        res = optimize.minimize(fun, x0=[0.6, 20], method='Powell')
        assert np.isscalar(res.fun)


@array_api_compatible
class TestRosen:
    def test_rosen(self, xp):
        # integer input should be promoted to the default floating type
        x = xp.asarray([1, 1, 1])
        xp_assert_equal(optimize.rosen(x),
                        xp.asarray(0.))

    @skip_xp_backends('jax.numpy',
                      reasons=["JAX arrays do not support item assignment"])
    @pytest.mark.usefixtures("skip_xp_backends")
    def test_rosen_der(self, xp):
        x = xp.asarray([1, 1, 1, 1])
        xp_assert_equal(optimize.rosen_der(x),
                        xp.zeros_like(x, dtype=xp.asarray(1.).dtype))

    @skip_xp_backends('jax.numpy',
                      reasons=["JAX arrays do not support item assignment"])
    @pytest.mark.usefixtures("skip_xp_backends")
    def test_hess_prod(self, xp):
        one = xp.asarray(1.)
        xp_test = array_namespace(one)
        # Compare rosen_hess(x) times p with rosen_hess_prod(x,p). See gh-1775.
        x = xp.asarray([3, 4, 5])
        p = xp.asarray([2, 2, 2])
        hp = optimize.rosen_hess_prod(x, p)
        p = xp_test.astype(p, one.dtype)
        dothp = optimize.rosen_hess(x) @ p
        xp_assert_equal(hp, dothp)


def himmelblau(p):
    """
    R^2 -> R^1 test function for optimization. The function has four local
    minima where himmelblau(xopt) == 0.
    """
    x, y = p
    a = x*x + y - 11
    b = x + y*y - 7
    return a*a + b*b


def himmelblau_grad(p):
    x, y = p
    return np.array([4*x**3 + 4*x*y - 42*x + 2*y**2 - 14,
                     2*x**2 + 4*x*y + 4*y**3 - 26*y - 22])


def himmelblau_hess(p):
    x, y = p
    return np.array([[12*x**2 + 4*y - 42, 4*x + 4*y],
                     [4*x + 4*y, 4*x + 12*y**2 - 26]])


himmelblau_x0 = [-0.27, -0.9]
himmelblau_xopt = [3, 2]
himmelblau_min = 0.0


def test_minimize_multiple_constraints():
    # Regression test for gh-4240.
    def func(x):
        return np.array([25 - 0.2 * x[0] - 0.4 * x[1] - 0.33 * x[2]])

    def func1(x):
        return np.array([x[1]])

    def func2(x):
        return np.array([x[2]])

    cons = ({'type': 'ineq', 'fun': func},
            {'type': 'ineq', 'fun': func1},
            {'type': 'ineq', 'fun': func2})

    def f(x):
        return -1 * (x[0] + x[1] + x[2])

    res = optimize.minimize(f, [0, 0, 0], method='SLSQP', constraints=cons)
    assert_allclose(res.x, [125, 0, 0], atol=1e-10)


class TestOptimizeResultAttributes:
    # Test that all minimizers return an OptimizeResult containing
    # all the OptimizeResult attributes
    def setup_method(self):
        self.x0 = [5, 5]
        self.func = optimize.rosen
        self.jac = optimize.rosen_der
        self.hess = optimize.rosen_hess
        self.hessp = optimize.rosen_hess_prod
        self.bounds = [(0., 10.), (0., 10.)]

    @pytest.mark.fail_slow(2)
    def test_attributes_present(self):
        attributes = ['nit', 'nfev', 'x', 'success', 'status', 'fun',
                      'message']
        skip = {'cobyla': ['nit']}
        for method in MINIMIZE_METHODS:
            with suppress_warnings() as sup:
                sup.filter(RuntimeWarning,
                           ("Method .+ does not use (gradient|Hessian.*)"
                            " information"))
                res = optimize.minimize(self.func, self.x0, method=method,
                                        jac=self.jac, hess=self.hess,
                                        hessp=self.hessp)
            for attribute in attributes:
                if method in skip and attribute in skip[method]:
                    continue

                assert hasattr(res, attribute)
                assert attribute in dir(res)

            # gh13001, OptimizeResult.message should be a str
            assert isinstance(res.message, str)


def f1(z, *params):
    x, y = z
    a, b, c, d, e, f, g, h, i, j, k, l, scale = params
    return (a * x**2 + b * x * y + c * y**2 + d*x + e*y + f)


def f2(z, *params):
    x, y = z
    a, b, c, d, e, f, g, h, i, j, k, l, scale = params
    return (-g*np.exp(-((x-h)**2 + (y-i)**2) / scale))


def f3(z, *params):
    x, y = z
    a, b, c, d, e, f, g, h, i, j, k, l, scale = params
    return (-j*np.exp(-((x-k)**2 + (y-l)**2) / scale))


def brute_func(z, *params):
    return f1(z, *params) + f2(z, *params) + f3(z, *params)


class TestBrute:
    # Test the "brute force" method
    def setup_method(self):
        self.params = (2, 3, 7, 8, 9, 10, 44, -1, 2, 26, 1, -2, 0.5)
        self.rranges = (slice(-4, 4, 0.25), slice(-4, 4, 0.25))
        self.solution = np.array([-1.05665192, 1.80834843])

    def brute_func(self, z, *params):
        # an instance method optimizing
        return brute_func(z, *params)

    def test_brute(self):
        # test fmin
        resbrute = optimize.brute(brute_func, self.rranges, args=self.params,
                                  full_output=True, finish=optimize.fmin)
        assert_allclose(resbrute[0], self.solution, atol=1e-3)
        assert_allclose(resbrute[1], brute_func(self.solution, *self.params),
                        atol=1e-3)

        # test minimize
        resbrute = optimize.brute(brute_func, self.rranges, args=self.params,
                                  full_output=True,
                                  finish=optimize.minimize)
        assert_allclose(resbrute[0], self.solution, atol=1e-3)
        assert_allclose(resbrute[1], brute_func(self.solution, *self.params),
                        atol=1e-3)

        # test that brute can optimize an instance method (the other tests use
        # a non-class based function
        resbrute = optimize.brute(self.brute_func, self.rranges,
                                  args=self.params, full_output=True,
                                  finish=optimize.minimize)
        assert_allclose(resbrute[0], self.solution, atol=1e-3)

    def test_1D(self):
        # test that for a 1-D problem the test function is passed an array,
        # not a scalar.
        def f(x):
            assert len(x.shape) == 1
            assert x.shape[0] == 1
            return x ** 2

        optimize.brute(f, [(-1, 1)], Ns=3, finish=None)

    @pytest.mark.fail_slow(10)
    def test_workers(self):
        # check that parallel evaluation works
        resbrute = optimize.brute(brute_func, self.rranges, args=self.params,
                                  full_output=True, finish=None)

        resbrute1 = optimize.brute(brute_func, self.rranges, args=self.params,
                                   full_output=True, finish=None, workers=2)

        assert_allclose(resbrute1[-1], resbrute[-1])
        assert_allclose(resbrute1[0], resbrute[0])

    @pytest.mark.thread_unsafe
    def test_runtime_warning(self, capsys):
        rng = np.random.default_rng(1234)

        def func(z, *params):
            return rng.random(1) * 1000  # never converged problem

        msg = "final optimization did not succeed.*|Maximum number of function eval.*"
        with pytest.warns(RuntimeWarning, match=msg):
            optimize.brute(func, self.rranges, args=self.params, disp=True)

    def test_coerce_args_param(self):
        # optimize.brute should coerce non-iterable args to a tuple.
        def f(x, *args):
            return x ** args[0]

        resbrute = optimize.brute(f, (slice(-4, 4, .25),), args=2)
        assert_allclose(resbrute, 0)


@pytest.mark.thread_unsafe
@pytest.mark.fail_slow(20)
def test_cobyla_threadsafe():

    # Verify that cobyla is threadsafe. Will segfault if it is not.

    import concurrent.futures
    import time

    def objective1(x):
        time.sleep(0.1)
        return x[0]**2

    def objective2(x):
        time.sleep(0.1)
        return (x[0]-1)**2

    min_method = "COBYLA"

    def minimizer1():
        return optimize.minimize(objective1,
                                      [0.0],
                                      method=min_method)

    def minimizer2():
        return optimize.minimize(objective2,
                                      [0.0],
                                      method=min_method)

    with concurrent.futures.ThreadPoolExecutor() as pool:
        tasks = []
        tasks.append(pool.submit(minimizer1))
        tasks.append(pool.submit(minimizer2))
        for t in tasks:
            t.result()


class TestIterationLimits:
    # Tests that optimisation does not give up before trying requested
    # number of iterations or evaluations. And that it does not succeed
    # by exceeding the limits.
    def setup_method(self):
        self.funcalls = threading.local()

    def slow_func(self, v):
        if not hasattr(self.funcalls, 'c'):
            self.funcalls.c = 0
        self.funcalls.c += 1
        r, t = np.sqrt(v[0]**2+v[1]**2), np.arctan2(v[0], v[1])
        return np.sin(r*20 + t)+r*0.5

    @pytest.mark.fail_slow(10)
    def test_neldermead_limit(self):
        self.check_limits("Nelder-Mead", 200)

    def test_powell_limit(self):
        self.check_limits("powell", 1000)

    def check_limits(self, method, default_iters):
        for start_v in [[0.1, 0.1], [1, 1], [2, 2]]:
            for mfev in [50, 500, 5000]:
                self.funcalls.c = 0
                res = optimize.minimize(self.slow_func, start_v,
                                        method=method,
                                        options={"maxfev": mfev})
                assert self.funcalls.c == res["nfev"]
                if res["success"]:
                    assert res["nfev"] < mfev
                else:
                    assert res["nfev"] >= mfev
            for mit in [50, 500, 5000]:
                res = optimize.minimize(self.slow_func, start_v,
                                        method=method,
                                        options={"maxiter": mit})
                if res["success"]:
                    assert res["nit"] <= mit
                else:
                    assert res["nit"] >= mit
            for mfev, mit in [[50, 50], [5000, 5000], [5000, np.inf]]:
                self.funcalls.c = 0
                res = optimize.minimize(self.slow_func, start_v,
                                        method=method,
                                        options={"maxiter": mit,
                                                 "maxfev": mfev})
                assert self.funcalls.c == res["nfev"]
                if res["success"]:
                    assert res["nfev"] < mfev and res["nit"] <= mit
                else:
                    assert res["nfev"] >= mfev or res["nit"] >= mit
            for mfev, mit in [[np.inf, None], [None, np.inf]]:
                self.funcalls.c = 0
                res = optimize.minimize(self.slow_func, start_v,
                                        method=method,
                                        options={"maxiter": mit,
                                                 "maxfev": mfev})
                assert self.funcalls.c == res["nfev"]
                if res["success"]:
                    if mfev is None:
                        assert res["nfev"] < default_iters*2
                    else:
                        assert res["nit"] <= default_iters*2
                else:
                    assert (res["nfev"] >= default_iters*2
                            or res["nit"] >= default_iters*2)


def test_result_x_shape_when_len_x_is_one():
    def fun(x):
        return x * x

    def jac(x):
        return 2. * x

    def hess(x):
        return np.array([[2.]])

    methods = ['Nelder-Mead', 'Powell', 'CG', 'BFGS', 'L-BFGS-B', 'TNC',
               'COBYLA', 'COBYQA', 'SLSQP']
    for method in methods:
        res = optimize.minimize(fun, np.array([0.1]), method=method)
        assert res.x.shape == (1,)

    # use jac + hess
    methods = ['trust-constr', 'dogleg', 'trust-ncg', 'trust-exact',
               'trust-krylov', 'Newton-CG']
    for method in methods:
        res = optimize.minimize(fun, np.array([0.1]), method=method, jac=jac,
                                hess=hess)
        assert res.x.shape == (1,)


class FunctionWithGradient:
    def __init__(self):
        self.number_of_calls = threading.local()

    def __call__(self, x):
        if not hasattr(self.number_of_calls, 'c'):
            self.number_of_calls.c = 0
        self.number_of_calls.c += 1
        return np.sum(x**2), 2 * x


@pytest.fixture
def function_with_gradient():
    return FunctionWithGradient()


def test_memoize_jac_function_before_gradient(function_with_gradient):
    memoized_function = MemoizeJac(function_with_gradient)

    x0 = np.array([1.0, 2.0])
    assert_allclose(memoized_function(x0), 5.0)
    assert function_with_gradient.number_of_calls.c == 1

    assert_allclose(memoized_function.derivative(x0), 2 * x0)
    assert function_with_gradient.number_of_calls.c == 1, \
        "function is not recomputed " \
        "if gradient is requested after function value"

    assert_allclose(
        memoized_function(2 * x0), 20.0,
        err_msg="different input triggers new computation")
    assert function_with_gradient.number_of_calls.c == 2, \
        "different input triggers new computation"


def test_memoize_jac_gradient_before_function(function_with_gradient):
    memoized_function = MemoizeJac(function_with_gradient)

    x0 = np.array([1.0, 2.0])
    assert_allclose(memoized_function.derivative(x0), 2 * x0)
    assert function_with_gradient.number_of_calls.c == 1

    assert_allclose(memoized_function(x0), 5.0)
    assert function_with_gradient.number_of_calls.c == 1, \
        "function is not recomputed " \
        "if function value is requested after gradient"

    assert_allclose(
        memoized_function.derivative(2 * x0), 4 * x0,
        err_msg="different input triggers new computation")
    assert function_with_gradient.number_of_calls.c == 2, \
        "different input triggers new computation"


def test_memoize_jac_with_bfgs(function_with_gradient):
    """ Tests that using MemoizedJac in combination with ScalarFunction
        and BFGS does not lead to repeated function evaluations.
        Tests changes made in response to GH11868.
    """
    memoized_function = MemoizeJac(function_with_gradient)
    jac = memoized_function.derivative
    hess = optimize.BFGS()

    x0 = np.array([1.0, 0.5])
    scalar_function = ScalarFunction(
        memoized_function, x0, (), jac, hess, None, None)
    assert function_with_gradient.number_of_calls.c == 1

    scalar_function.fun(x0 + 0.1)
    assert function_with_gradient.number_of_calls.c == 2

    scalar_function.fun(x0 + 0.2)
    assert function_with_gradient.number_of_calls.c == 3


def test_gh12696():
    # Test that optimize doesn't throw warning gh-12696
    with assert_no_warnings():
        optimize.fminbound(
            lambda x: np.array([x**2]), -np.pi, np.pi, disp=False)


# --- Test minimize with equal upper and lower bounds --- #

def setup_test_equal_bounds():

    rng = np.random.RandomState(0)
    x0 = rng.rand(4)
    lb = np.array([0, 2, -1, -1.0])
    ub = np.array([3, 2, 2, -1.0])
    i_eb = (lb == ub)

    def check_x(x, check_size=True, check_values=True):
        if check_size:
            assert x.size == 4
        if check_values:
            assert_allclose(x[i_eb], lb[i_eb])

    def func(x):
        check_x(x)
        return optimize.rosen(x)

    def grad(x):
        check_x(x)
        return optimize.rosen_der(x)

    def callback(x, *args):
        check_x(x)

    def constraint1(x):
        check_x(x, check_values=False)
        return x[0:1] - 1

    def jacobian1(x):
        check_x(x, check_values=False)
        dc = np.zeros_like(x)
        dc[0] = 1
        return dc

    def constraint2(x):
        check_x(x, check_values=False)
        return x[2:3] - 0.5

    def jacobian2(x):
        check_x(x, check_values=False)
        dc = np.zeros_like(x)
        dc[2] = 1
        return dc

    c1a = NonlinearConstraint(constraint1, -np.inf, 0)
    c1b = NonlinearConstraint(constraint1, -np.inf, 0, jacobian1)
    c2a = NonlinearConstraint(constraint2, -np.inf, 0)
    c2b = NonlinearConstraint(constraint2, -np.inf, 0, jacobian2)

    # test using the three methods that accept bounds, use derivatives, and
    # have some trouble when bounds fix variables
    methods = ('L-BFGS-B', 'SLSQP', 'TNC')

    # test w/out gradient, w/ gradient, and w/ combined objective/gradient
    kwds = ({"fun": func, "jac": False},
            {"fun": func, "jac": grad},
            {"fun": (lambda x: (func(x), grad(x))),
             "jac": True})

    # test with both old- and new-style bounds
    bound_types = (lambda lb, ub: list(zip(lb, ub)),
                   Bounds)

    # Test for many combinations of constraints w/ and w/out jacobian
    # Pairs in format: (test constraints, reference constraints)
    # (always use analytical jacobian in reference)
    constraints = ((None, None), ([], []),
                   (c1a, c1b), (c2b, c2b),
                   ([c1b], [c1b]), ([c2a], [c2b]),
                   ([c1a, c2a], [c1b, c2b]),
                   ([c1a, c2b], [c1b, c2b]),
                   ([c1b, c2b], [c1b, c2b]))

    # test with and without callback function
    callbacks = (None, callback)

    data = {"methods": methods, "kwds": kwds, "bound_types": bound_types,
            "constraints": constraints, "callbacks": callbacks,
            "lb": lb, "ub": ub, "x0": x0, "i_eb": i_eb}

    return data


eb_data = setup_test_equal_bounds()


# This test is about handling fixed variables, not the accuracy of the solvers
@pytest.mark.xfail_on_32bit("Failures due to floating point issues, not logic")
@pytest.mark.xfail(scipy.show_config(mode='dicts')['Compilers']['fortran']['name'] ==
                   "intel-llvm",
                   reason="Failures due to floating point issues, not logic")
@pytest.mark.parametrize('method', eb_data["methods"])
@pytest.mark.parametrize('kwds', eb_data["kwds"])
@pytest.mark.parametrize('bound_type', eb_data["bound_types"])
@pytest.mark.parametrize('constraints', eb_data["constraints"])
@pytest.mark.parametrize('callback', eb_data["callbacks"])
def test_equal_bounds(method, kwds, bound_type, constraints, callback):
    """
    Tests that minimizers still work if (bounds.lb == bounds.ub).any()
    gh12502 - Divide by zero in Jacobian numerical differentiation when
    equality bounds constraints are used
    """
    # GH-15051; slightly more skips than necessary; hopefully fixed by GH-14882
    if (platform.machine() == 'aarch64' and method == "TNC"
            and kwds["jac"] is False and callback is not None):
        pytest.skip('Tolerance violation on aarch')

    lb, ub = eb_data["lb"], eb_data["ub"]
    x0, i_eb = eb_data["x0"], eb_data["i_eb"]

    test_constraints, reference_constraints = constraints
    if test_constraints and not method == 'SLSQP':
        pytest.skip('Only SLSQP supports nonlinear constraints')
    # reference constraints always have analytical jacobian
    # if test constraints are not the same, we'll need finite differences
    fd_needed = (test_constraints != reference_constraints)

    bounds = bound_type(lb, ub)  # old- or new-style

    kwds.update({"x0": x0, "method": method, "bounds": bounds,
                 "constraints": test_constraints, "callback": callback})
    res = optimize.minimize(**kwds)

    expected = optimize.minimize(optimize.rosen, x0, method=method,
                                 jac=optimize.rosen_der, bounds=bounds,
                                 constraints=reference_constraints)

    # compare the output of a solution with FD vs that of an analytic grad
    assert res.success
    assert_allclose(res.fun, expected.fun, rtol=1.5e-6)
    assert_allclose(res.x, expected.x, rtol=5e-4)

    if fd_needed or kwds['jac'] is False:
        expected.jac[i_eb] = np.nan
    assert res.jac.shape[0] == 4
    assert_allclose(res.jac[i_eb], expected.jac[i_eb], rtol=1e-6)

    if not (kwds['jac'] or test_constraints or isinstance(bounds, Bounds)):
        # compare the output to an equivalent FD minimization that doesn't
        # need factorization
        def fun(x):
            new_x = np.array([np.nan, 2, np.nan, -1])
            new_x[[0, 2]] = x
            return optimize.rosen(new_x)

        fd_res = optimize.minimize(fun,
                                   x0[[0, 2]],
                                   method=method,
                                   bounds=bounds[::2])
        assert_allclose(res.fun, fd_res.fun)
        # TODO this test should really be equivalent to factorized version
        # above, down to res.nfev. However, testing found that when TNC is
        # called with or without a callback the output is different. The two
        # should be the same! This indicates that the TNC callback may be
        # mutating something when it shouldn't.
        assert_allclose(res.x[[0, 2]], fd_res.x, rtol=2e-6)


@pytest.mark.parametrize('method', eb_data["methods"])
def test_all_bounds_equal(method):
    # this only tests methods that have parameters factored out when lb==ub
    # it does not test other methods that work with bounds
    def f(x, p1=1):
        return np.linalg.norm(x) + p1

    bounds = [(1, 1), (2, 2)]
    x0 = (1.0, 3.0)
    res = optimize.minimize(f, x0, bounds=bounds, method=method)
    assert res.success
    assert_allclose(res.fun, f([1.0, 2.0]))
    assert res.nfev == 1
    assert res.message == 'All independent variables were fixed by bounds.'

    args = (2,)
    res = optimize.minimize(f, x0, bounds=bounds, method=method, args=args)
    assert res.success
    assert_allclose(res.fun, f([1.0, 2.0], 2))

    if method.upper() == 'SLSQP':
        def con(x):
            return np.sum(x)
        nlc = NonlinearConstraint(con, -np.inf, 0.0)
        res = optimize.minimize(
            f, x0, bounds=bounds, method=method, constraints=[nlc]
        )
        assert res.success is False
        assert_allclose(res.fun, f([1.0, 2.0]))
        assert res.nfev == 1
        message = "All independent variables were fixed by bounds, but"
        assert res.message.startswith(message)

        nlc = NonlinearConstraint(con, -np.inf, 4)
        res = optimize.minimize(
            f, x0, bounds=bounds, method=method, constraints=[nlc]
        )
        assert res.success is True
        assert_allclose(res.fun, f([1.0, 2.0]))
        assert res.nfev == 1
        message = "All independent variables were fixed by bounds at values"
        assert res.message.startswith(message)


def test_eb_constraints():
    # make sure constraint functions aren't overwritten when equal bounds
    # are employed, and a parameter is factored out. GH14859
    def f(x):
        return x[0]**3 + x[1]**2 + x[2]*x[3]

    def cfun(x):
        return x[0] + x[1] + x[2] + x[3] - 40

    constraints = [{'type': 'ineq', 'fun': cfun}]

    bounds = [(0, 20)] * 4
    bounds[1] = (5, 5)
    optimize.minimize(
        f,
        x0=[1, 2, 3, 4],
        method='SLSQP',
        bounds=bounds,
        constraints=constraints,
    )
    assert constraints[0]['fun'] == cfun


def test_show_options():
    solver_methods = {
        'minimize': MINIMIZE_METHODS,
        'minimize_scalar': MINIMIZE_SCALAR_METHODS,
        'root': ROOT_METHODS,
        'root_scalar': ROOT_SCALAR_METHODS,
        'linprog': LINPROG_METHODS,
        'quadratic_assignment': QUADRATIC_ASSIGNMENT_METHODS,
    }
    for solver, methods in solver_methods.items():
        for method in methods:
            # testing that `show_options` works without error
            show_options(solver, method)

    unknown_solver_method = {
        'minimize': "ekki",  # unknown method
        'maximize': "cg",  # unknown solver
        'maximize_scalar': "ekki",  # unknown solver and method
    }
    for solver, method in unknown_solver_method.items():
        # testing that `show_options` raises ValueError
        assert_raises(ValueError, show_options, solver, method)


def test_bounds_with_list():
    # gh13501. Bounds created with lists weren't working for Powell.
    bounds = optimize.Bounds(lb=[5., 5.], ub=[10., 10.])
    optimize.minimize(
        optimize.rosen, x0=np.array([9, 9]), method='Powell', bounds=bounds
    )


def test_x_overwritten_user_function():
    # if the user overwrites the x-array in the user function it's likely
    # that the minimizer stops working properly.
    # gh13740
    def fquad(x):
        a = np.arange(np.size(x))
        x -= a
        x *= x
        return np.sum(x)

    def fquad_jac(x):
        a = np.arange(np.size(x))
        x *= 2
        x -= 2 * a
        return x

    def fquad_hess(x):
        return np.eye(np.size(x)) * 2.0

    meth_jac = [
        'newton-cg', 'dogleg', 'trust-ncg', 'trust-exact',
        'trust-krylov', 'trust-constr'
    ]
    meth_hess = [
        'dogleg', 'trust-ncg', 'trust-exact', 'trust-krylov', 'trust-constr'
    ]

    x0 = np.ones(5) * 1.5

    for meth in MINIMIZE_METHODS:
        jac = None
        hess = None
        if meth in meth_jac:
            jac = fquad_jac
        if meth in meth_hess:
            hess = fquad_hess
        res = optimize.minimize(fquad, x0, method=meth, jac=jac, hess=hess)
        assert_allclose(res.x, np.arange(np.size(x0)), atol=2e-4)


class TestGlobalOptimization:

    def test_optimize_result_attributes(self):
        def func(x):
            return x ** 2

        # Note that `brute` solver does not return `OptimizeResult`
        results = [optimize.basinhopping(func, x0=1),
                   optimize.differential_evolution(func, [(-4, 4)]),
                   optimize.shgo(func, [(-4, 4)]),
                   optimize.dual_annealing(func, [(-4, 4)]),
                   optimize.direct(func, [(-4, 4)]),
                   ]

        for result in results:
            assert isinstance(result, optimize.OptimizeResult)
            assert hasattr(result, "x")
            assert hasattr(result, "success")
            assert hasattr(result, "message")
            assert hasattr(result, "fun")
            assert hasattr(result, "nfev")
            assert hasattr(result, "nit")


def test_approx_fprime():
    # check that approx_fprime (serviced by approx_derivative) works for
    # jac and hess
    g = optimize.approx_fprime(himmelblau_x0, himmelblau)
    assert_allclose(g, himmelblau_grad(himmelblau_x0), rtol=5e-6)

    h = optimize.approx_fprime(himmelblau_x0, himmelblau_grad)
    assert_allclose(h, himmelblau_hess(himmelblau_x0), rtol=5e-6)


def test_gh12594():
    # gh-12594 reported an error in `_linesearch_powell` and
    # `_line_for_search` when `Bounds` was passed lists instead of arrays.
    # Check that results are the same whether the inputs are lists or arrays.

    def f(x):
        return x[0]**2 + (x[1] - 1)**2

    bounds = Bounds(lb=[-10, -10], ub=[10, 10])
    res = optimize.minimize(f, x0=(0, 0), method='Powell', bounds=bounds)
    bounds = Bounds(lb=np.array([-10, -10]), ub=np.array([10, 10]))
    ref = optimize.minimize(f, x0=(0, 0), method='Powell', bounds=bounds)

    assert_allclose(res.fun, ref.fun)
    assert_allclose(res.x, ref.x)


@pytest.mark.parametrize('method', ['Newton-CG', 'trust-constr'])
@pytest.mark.parametrize('sparse_type', [coo_matrix, csc_matrix, csr_matrix,
                                         coo_array, csr_array, csc_array])
def test_sparse_hessian(method, sparse_type):
    # gh-8792 reported an error for minimization with `newton_cg` when `hess`
    # returns a sparse matrix. Check that results are the same whether `hess`
    # returns a dense or sparse matrix for optimization methods that accept
    # sparse Hessian matrices.

    def sparse_rosen_hess(x):
        return sparse_type(rosen_hess(x))

    x0 = [2., 2.]

    res_sparse = optimize.minimize(rosen, x0, method=method,
                                   jac=rosen_der, hess=sparse_rosen_hess)
    res_dense = optimize.minimize(rosen, x0, method=method,
                                  jac=rosen_der, hess=rosen_hess)

    assert_allclose(res_dense.fun, res_sparse.fun)
    assert_allclose(res_dense.x, res_sparse.x)
    assert res_dense.nfev == res_sparse.nfev
    assert res_dense.njev == res_sparse.njev
    assert res_dense.nhev == res_sparse.nhev