File size: 13,447 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import numpy as np
from scipy.linalg import lstsq
from scipy._lib._util import float_factorial
from scipy.ndimage import convolve1d # type: ignore[attr-defined]
from ._arraytools import axis_slice
def savgol_coeffs(window_length, polyorder, deriv=0, delta=1.0, pos=None,
use="conv"):
"""Compute the coefficients for a 1-D Savitzky-Golay FIR filter.
Parameters
----------
window_length : int
The length of the filter window (i.e., the number of coefficients).
polyorder : int
The order of the polynomial used to fit the samples.
`polyorder` must be less than `window_length`.
deriv : int, optional
The order of the derivative to compute. This must be a
nonnegative integer. The default is 0, which means to filter
the data without differentiating.
delta : float, optional
The spacing of the samples to which the filter will be applied.
This is only used if deriv > 0.
pos : int or None, optional
If pos is not None, it specifies evaluation position within the
window. The default is the middle of the window.
use : str, optional
Either 'conv' or 'dot'. This argument chooses the order of the
coefficients. The default is 'conv', which means that the
coefficients are ordered to be used in a convolution. With
use='dot', the order is reversed, so the filter is applied by
dotting the coefficients with the data set.
Returns
-------
coeffs : 1-D ndarray
The filter coefficients.
See Also
--------
savgol_filter
Notes
-----
.. versionadded:: 0.14.0
References
----------
A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by
Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8),
pp 1627-1639.
Jianwen Luo, Kui Ying, and Jing Bai. 2005. Savitzky-Golay smoothing and
differentiation filter for even number data. Signal Process.
85, 7 (July 2005), 1429-1434.
Examples
--------
>>> import numpy as np
>>> from scipy.signal import savgol_coeffs
>>> savgol_coeffs(5, 2)
array([-0.08571429, 0.34285714, 0.48571429, 0.34285714, -0.08571429])
>>> savgol_coeffs(5, 2, deriv=1)
array([ 2.00000000e-01, 1.00000000e-01, 2.07548111e-16, -1.00000000e-01,
-2.00000000e-01])
Note that use='dot' simply reverses the coefficients.
>>> savgol_coeffs(5, 2, pos=3)
array([ 0.25714286, 0.37142857, 0.34285714, 0.17142857, -0.14285714])
>>> savgol_coeffs(5, 2, pos=3, use='dot')
array([-0.14285714, 0.17142857, 0.34285714, 0.37142857, 0.25714286])
>>> savgol_coeffs(4, 2, pos=3, deriv=1, use='dot')
array([0.45, -0.85, -0.65, 1.05])
`x` contains data from the parabola x = t**2, sampled at
t = -1, 0, 1, 2, 3. `c` holds the coefficients that will compute the
derivative at the last position. When dotted with `x` the result should
be 6.
>>> x = np.array([1, 0, 1, 4, 9])
>>> c = savgol_coeffs(5, 2, pos=4, deriv=1, use='dot')
>>> c.dot(x)
6.0
"""
# An alternative method for finding the coefficients when deriv=0 is
# t = np.arange(window_length)
# unit = (t == pos).astype(int)
# coeffs = np.polyval(np.polyfit(t, unit, polyorder), t)
# The method implemented here is faster.
# To recreate the table of sample coefficients shown in the chapter on
# the Savitzy-Golay filter in the Numerical Recipes book, use
# window_length = nL + nR + 1
# pos = nL + 1
# c = savgol_coeffs(window_length, M, pos=pos, use='dot')
if polyorder >= window_length:
raise ValueError("polyorder must be less than window_length.")
halflen, rem = divmod(window_length, 2)
if pos is None:
if rem == 0:
pos = halflen - 0.5
else:
pos = halflen
if not (0 <= pos < window_length):
raise ValueError("pos must be nonnegative and less than "
"window_length.")
if use not in ['conv', 'dot']:
raise ValueError("`use` must be 'conv' or 'dot'")
if deriv > polyorder:
coeffs = np.zeros(window_length)
return coeffs
# Form the design matrix A. The columns of A are powers of the integers
# from -pos to window_length - pos - 1. The powers (i.e., rows) range
# from 0 to polyorder. (That is, A is a vandermonde matrix, but not
# necessarily square.)
x = np.arange(-pos, window_length - pos, dtype=float)
if use == "conv":
# Reverse so that result can be used in a convolution.
x = x[::-1]
order = np.arange(polyorder + 1).reshape(-1, 1)
A = x ** order
# y determines which order derivative is returned.
y = np.zeros(polyorder + 1)
# The coefficient assigned to y[deriv] scales the result to take into
# account the order of the derivative and the sample spacing.
y[deriv] = float_factorial(deriv) / (delta ** deriv)
# Find the least-squares solution of A*c = y
coeffs, _, _, _ = lstsq(A, y)
return coeffs
def _polyder(p, m):
"""Differentiate polynomials represented with coefficients.
p must be a 1-D or 2-D array. In the 2-D case, each column gives
the coefficients of a polynomial; the first row holds the coefficients
associated with the highest power. m must be a nonnegative integer.
(numpy.polyder doesn't handle the 2-D case.)
"""
if m == 0:
result = p
else:
n = len(p)
if n <= m:
result = np.zeros_like(p[:1, ...])
else:
dp = p[:-m].copy()
for k in range(m):
rng = np.arange(n - k - 1, m - k - 1, -1)
dp *= rng.reshape((n - m,) + (1,) * (p.ndim - 1))
result = dp
return result
def _fit_edge(x, window_start, window_stop, interp_start, interp_stop,
axis, polyorder, deriv, delta, y):
"""
Given an N-d array `x` and the specification of a slice of `x` from
`window_start` to `window_stop` along `axis`, create an interpolating
polynomial of each 1-D slice, and evaluate that polynomial in the slice
from `interp_start` to `interp_stop`. Put the result into the
corresponding slice of `y`.
"""
# Get the edge into a (window_length, -1) array.
x_edge = axis_slice(x, start=window_start, stop=window_stop, axis=axis)
if axis == 0 or axis == -x.ndim:
xx_edge = x_edge
swapped = False
else:
xx_edge = x_edge.swapaxes(axis, 0)
swapped = True
xx_edge = xx_edge.reshape(xx_edge.shape[0], -1)
# Fit the edges. poly_coeffs has shape (polyorder + 1, -1),
# where '-1' is the same as in xx_edge.
poly_coeffs = np.polyfit(np.arange(0, window_stop - window_start),
xx_edge, polyorder)
if deriv > 0:
poly_coeffs = _polyder(poly_coeffs, deriv)
# Compute the interpolated values for the edge.
i = np.arange(interp_start - window_start, interp_stop - window_start)
values = np.polyval(poly_coeffs, i.reshape(-1, 1)) / (delta ** deriv)
# Now put the values into the appropriate slice of y.
# First reshape values to match y.
shp = list(y.shape)
shp[0], shp[axis] = shp[axis], shp[0]
values = values.reshape(interp_stop - interp_start, *shp[1:])
if swapped:
values = values.swapaxes(0, axis)
# Get a view of the data to be replaced by values.
y_edge = axis_slice(y, start=interp_start, stop=interp_stop, axis=axis)
y_edge[...] = values
def _fit_edges_polyfit(x, window_length, polyorder, deriv, delta, axis, y):
"""
Use polynomial interpolation of x at the low and high ends of the axis
to fill in the halflen values in y.
This function just calls _fit_edge twice, once for each end of the axis.
"""
halflen = window_length // 2
_fit_edge(x, 0, window_length, 0, halflen, axis,
polyorder, deriv, delta, y)
n = x.shape[axis]
_fit_edge(x, n - window_length, n, n - halflen, n, axis,
polyorder, deriv, delta, y)
def savgol_filter(x, window_length, polyorder, deriv=0, delta=1.0,
axis=-1, mode='interp', cval=0.0):
""" Apply a Savitzky-Golay filter to an array.
This is a 1-D filter. If `x` has dimension greater than 1, `axis`
determines the axis along which the filter is applied.
Parameters
----------
x : array_like
The data to be filtered. If `x` is not a single or double precision
floating point array, it will be converted to type ``numpy.float64``
before filtering.
window_length : int
The length of the filter window (i.e., the number of coefficients).
If `mode` is 'interp', `window_length` must be less than or equal
to the size of `x`.
polyorder : int
The order of the polynomial used to fit the samples.
`polyorder` must be less than `window_length`.
deriv : int, optional
The order of the derivative to compute. This must be a
nonnegative integer. The default is 0, which means to filter
the data without differentiating.
delta : float, optional
The spacing of the samples to which the filter will be applied.
This is only used if deriv > 0. Default is 1.0.
axis : int, optional
The axis of the array `x` along which the filter is to be applied.
Default is -1.
mode : str, optional
Must be 'mirror', 'constant', 'nearest', 'wrap' or 'interp'. This
determines the type of extension to use for the padded signal to
which the filter is applied. When `mode` is 'constant', the padding
value is given by `cval`. See the Notes for more details on 'mirror',
'constant', 'wrap', and 'nearest'.
When the 'interp' mode is selected (the default), no extension
is used. Instead, a degree `polyorder` polynomial is fit to the
last `window_length` values of the edges, and this polynomial is
used to evaluate the last `window_length // 2` output values.
cval : scalar, optional
Value to fill past the edges of the input if `mode` is 'constant'.
Default is 0.0.
Returns
-------
y : ndarray, same shape as `x`
The filtered data.
See Also
--------
savgol_coeffs
Notes
-----
Details on the `mode` options:
'mirror':
Repeats the values at the edges in reverse order. The value
closest to the edge is not included.
'nearest':
The extension contains the nearest input value.
'constant':
The extension contains the value given by the `cval` argument.
'wrap':
The extension contains the values from the other end of the array.
For example, if the input is [1, 2, 3, 4, 5, 6, 7, 8], and
`window_length` is 7, the following shows the extended data for
the various `mode` options (assuming `cval` is 0)::
mode | Ext | Input | Ext
-----------+---------+------------------------+---------
'mirror' | 4 3 2 | 1 2 3 4 5 6 7 8 | 7 6 5
'nearest' | 1 1 1 | 1 2 3 4 5 6 7 8 | 8 8 8
'constant' | 0 0 0 | 1 2 3 4 5 6 7 8 | 0 0 0
'wrap' | 6 7 8 | 1 2 3 4 5 6 7 8 | 1 2 3
.. versionadded:: 0.14.0
Examples
--------
>>> import numpy as np
>>> from scipy.signal import savgol_filter
>>> np.set_printoptions(precision=2) # For compact display.
>>> x = np.array([2, 2, 5, 2, 1, 0, 1, 4, 9])
Filter with a window length of 5 and a degree 2 polynomial. Use
the defaults for all other parameters.
>>> savgol_filter(x, 5, 2)
array([1.66, 3.17, 3.54, 2.86, 0.66, 0.17, 1. , 4. , 9. ])
Note that the last five values in x are samples of a parabola, so
when mode='interp' (the default) is used with polyorder=2, the last
three values are unchanged. Compare that to, for example,
`mode='nearest'`:
>>> savgol_filter(x, 5, 2, mode='nearest')
array([1.74, 3.03, 3.54, 2.86, 0.66, 0.17, 1. , 4.6 , 7.97])
"""
if mode not in ["mirror", "constant", "nearest", "interp", "wrap"]:
raise ValueError("mode must be 'mirror', 'constant', 'nearest' "
"'wrap' or 'interp'.")
x = np.asarray(x)
# Ensure that x is either single or double precision floating point.
if x.dtype != np.float64 and x.dtype != np.float32:
x = x.astype(np.float64)
coeffs = savgol_coeffs(window_length, polyorder, deriv=deriv, delta=delta)
if mode == "interp":
if window_length > x.shape[axis]:
raise ValueError("If mode is 'interp', window_length must be less "
"than or equal to the size of x.")
# Do not pad. Instead, for the elements within `window_length // 2`
# of the ends of the sequence, use the polynomial that is fitted to
# the last `window_length` elements.
y = convolve1d(x, coeffs, axis=axis, mode="constant")
_fit_edges_polyfit(x, window_length, polyorder, deriv, delta, axis, y)
else:
# Any mode other than 'interp' is passed on to ndimage.convolve1d.
y = convolve1d(x, coeffs, axis=axis, mode=mode, cval=cval)
return y
|