File size: 15,926 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# pylint: disable=missing-docstring
import numpy as np

from scipy._lib._array_api import (
    assert_almost_equal, xp_assert_close, xp_assert_equal
)
import pytest
from pytest import raises

import scipy.signal._spline_filters as bsp
from scipy import signal


class TestBSplines:
    """Test behaviors of B-splines. Some of the values tested against were
    returned as of SciPy 1.1.0 and are included for regression testing
    purposes. Others (at integer points) are compared to theoretical
    expressions (cf. Unser, Aldroubi, Eden, IEEE TSP 1993, Table 1)."""

    def test_spline_filter(self):
        rng = np.random.RandomState(12457)
        # Test the type-error branch
        raises(TypeError, bsp.spline_filter, np.asarray([0]), 0)
        # Test the real branch
        data_array_real = rng.rand(12, 12)
        # make the magnitude exceed 1, and make some negative
        data_array_real = 10*(1-2*data_array_real)
        result_array_real = np.asarray(
            [[-.463312621, 8.33391222, .697290949, 5.28390836,
              5.92066474, 6.59452137, 9.84406950, -8.78324188,
              7.20675750, -8.17222994, -4.38633345, 9.89917069],
             [2.67755154, 6.24192170, -3.15730578, 9.87658581,
              -9.96930425, 3.17194115, -4.50919947, 5.75423446,
              9.65979824, -8.29066885, .971416087, -2.38331897],
             [-7.08868346, 4.89887705, -1.37062289, 7.70705838,
              2.51526461, 3.65885497, 5.16786604, -8.77715342e-03,
              4.10533325, 9.04761993, -.577960351, 9.86382519],
             [-4.71444301, -1.68038985, 2.84695116, 1.14315938,
              -3.17127091, 1.91830461, 7.13779687, -5.35737482,
              -9.66586425, -9.87717456, 9.93160672, 4.71948144],
             [9.49551194, -1.92958436, 6.25427993, -9.05582911,
              3.97562282, 7.68232426, -1.04514824, -5.86021443,
              -8.43007451, 5.47528997, 2.06330736, -8.65968112],
             [-8.91720100, 8.87065356, 3.76879937, 2.56222894,
              -.828387146, 8.72288903, 6.42474741, -6.84576083,
              9.94724115, 6.90665380, -6.61084494, -9.44907391],
             [9.25196790, -.774032030, 7.05371046, -2.73505725,
              2.53953305, -1.82889155, 2.95454824, -1.66362046,
              5.72478916, -3.10287679, 1.54017123, -7.87759020],
             [-3.98464539, -2.44316992, -1.12708657, 1.01725672,
              -8.89294671, -5.42145629, -6.16370321, 2.91775492,
              9.64132208, .702499998, -2.02622392, 1.56308431],
             [-2.22050773, 7.89951554, 5.98970713, -7.35861835,
              5.45459283, -7.76427957, 3.67280490, -4.05521315,
              4.51967507, -3.22738749, -3.65080177, 3.05630155],
             [-6.21240584, -.296796126, -8.34800163, 9.21564563,
              -3.61958784, -4.77120006, -3.99454057, 1.05021988e-03,
              -6.95982829, 6.04380797, 8.43181250, -2.71653339],
             [1.19638037, 6.99718842e-02, 6.72020394, -2.13963198,
              3.75309875, -5.70076744, 5.92143551, -7.22150575,
              -3.77114594, -1.11903194, -5.39151466, 3.06620093],
             [9.86326886, 1.05134482, -7.75950607, -3.64429655,
              7.81848957, -9.02270373, 3.73399754, -4.71962549,
              -7.71144306, 3.78263161, 6.46034818, -4.43444731]])
        xp_assert_close(bsp.spline_filter(data_array_real, 0),
                        result_array_real)

    def test_spline_filter_complex(self):
        rng = np.random.RandomState(12457)
        data_array_complex = rng.rand(7, 7) + rng.rand(7, 7)*1j
        # make the magnitude exceed 1, and make some negative
        data_array_complex = 10*(1+1j-2*data_array_complex)
        result_array_complex = np.asarray(
            [[-4.61489230e-01-1.92994022j, 8.33332443+6.25519943j,
              6.96300745e-01-9.05576038j, 5.28294849+3.97541356j,
              5.92165565+7.68240595j, 6.59493160-1.04542804j,
              9.84503460-5.85946894j],
             [-8.78262329-8.4295969j, 7.20675516+5.47528982j,
              -8.17223072+2.06330729j, -4.38633347-8.65968037j,
              9.89916801-8.91720295j, 2.67755103+8.8706522j,
              6.24192142+3.76879835j],
             [-3.15627527+2.56303072j, 9.87658501-0.82838702j,
              -9.96930313+8.72288895j, 3.17193985+6.42474651j,
              -4.50919819-6.84576082j, 5.75423431+9.94723988j,
              9.65979767+6.90665293j],
             [-8.28993416-6.61064005j, 9.71416473e-01-9.44907284j,
              -2.38331890+9.25196648j, -7.08868170-0.77403212j,
              4.89887714+7.05371094j, -1.37062311-2.73505688j,
              7.70705748+2.5395329j],
             [2.51528406-1.82964492j, 3.65885472+2.95454836j,
              5.16786575-1.66362023j, -8.77737999e-03+5.72478867j,
              4.10533333-3.10287571j, 9.04761887+1.54017115j,
              -5.77960968e-01-7.87758923j],
             [9.86398506-3.98528528j, -4.71444130-2.44316983j,
              -1.68038976-1.12708664j, 2.84695053+1.01725709j,
              1.14315915-8.89294529j, -3.17127085-5.42145538j,
              1.91830420-6.16370344j],
             [7.13875294+2.91851187j, -5.35737514+9.64132309j,
              -9.66586399+0.70250005j, -9.87717438-2.0262239j,
              9.93160629+1.5630846j, 4.71948051-2.22050714j,
              9.49550819+7.8995142j]])
        # FIXME: for complex types, the computations are done in
        # single precision (reason unclear). When this is changed,
        # this test needs updating.
        xp_assert_close(bsp.spline_filter(data_array_complex, 0),
                        result_array_complex, rtol=1e-6)

    def test_gauss_spline(self):
        np.random.seed(12459)
        assert_almost_equal(bsp.gauss_spline(0, 0), 1.381976597885342)
        xp_assert_close(bsp.gauss_spline(np.asarray([1.]), 1),
                        np.asarray([0.04865217]), atol=1e-9
        )

    def test_gauss_spline_list(self):
        # regression test for gh-12152 (accept array_like)
        knots = [-1.0, 0.0, -1.0]
        assert_almost_equal(bsp.gauss_spline(knots, 3),
                            np.asarray([0.15418033, 0.6909883, 0.15418033])
        )

    def test_cspline1d(self):
        np.random.seed(12462)
        xp_assert_equal(bsp.cspline1d(np.asarray([0])), [0.])
        c1d = np.asarray([1.21037185, 1.86293902, 2.98834059, 4.11660378,
                          4.78893826])
        # test lamda != 0
        xp_assert_close(bsp.cspline1d(np.asarray([1., 2, 3, 4, 5]), 1), c1d)
        c1d0 = np.asarray([0.78683946, 2.05333735, 2.99981113, 3.94741812,
                           5.21051638])
        xp_assert_close(bsp.cspline1d(np.asarray([1., 2, 3, 4, 5])), c1d0)

    def test_qspline1d(self):
        np.random.seed(12463)
        xp_assert_equal(bsp.qspline1d(np.asarray([0])), [0.])
        # test lamda != 0
        raises(ValueError, bsp.qspline1d, np.asarray([1., 2, 3, 4, 5]), 1.)
        raises(ValueError, bsp.qspline1d, np.asarray([1., 2, 3, 4, 5]), -1.)
        q1d0 = np.asarray([0.85350007, 2.02441743, 2.99999534, 3.97561055,
                           5.14634135])
        xp_assert_close(bsp.qspline1d(np.asarray([1., 2, 3, 4, 5])), q1d0)

    def test_cspline1d_eval(self):
        np.random.seed(12464)
        xp_assert_close(bsp.cspline1d_eval(np.asarray([0., 0]), [0.]),
                        np.asarray([0.])
        )
        xp_assert_equal(bsp.cspline1d_eval(np.asarray([1., 0, 1]), []),
                        np.asarray([])
        )
        x = [-3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
        dx = x[1] - x[0]
        newx = [-6., -5.5, -5., -4.5, -4., -3.5, -3., -2.5, -2., -1.5, -1.,
                -0.5, 0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6.,
                6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5, 12.,
                12.5]
        y = np.asarray([4.216, 6.864, 3.514, 6.203, 6.759, 7.433, 7.874, 5.879,
                        1.396, 4.094])
        cj = bsp.cspline1d(y)
        newy = np.asarray([6.203, 4.41570658, 3.514, 5.16924703, 6.864, 6.04643068,
                           4.21600281, 6.04643068, 6.864, 5.16924703, 3.514,
                           4.41570658, 6.203, 6.80717667, 6.759, 6.98971173, 7.433,
                           7.79560142, 7.874, 7.41525761, 5.879, 3.18686814, 1.396,
                           2.24889482, 4.094, 2.24889482, 1.396, 3.18686814, 5.879,
                           7.41525761, 7.874, 7.79560142, 7.433, 6.98971173, 6.759,
                           6.80717667, 6.203, 4.41570658])
        xp_assert_close(bsp.cspline1d_eval(cj, newx, dx=dx, x0=x[0]), newy)

    def test_qspline1d_eval(self):
        np.random.seed(12465)
        xp_assert_close(bsp.qspline1d_eval(np.asarray([0., 0]), [0.]),
                        np.asarray([0.])
        )
        xp_assert_equal(bsp.qspline1d_eval(np.asarray([1., 0, 1]), []),
                        np.asarray([])
        )
        x = [-3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
        dx = x[1]-x[0]
        newx = [-6., -5.5, -5., -4.5, -4., -3.5, -3., -2.5, -2., -1.5, -1.,
                -0.5, 0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6.,
                6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5, 12.,
                12.5]
        y = np.asarray([4.216, 6.864, 3.514, 6.203, 6.759, 7.433, 7.874, 5.879,
                        1.396, 4.094])
        cj = bsp.qspline1d(y)
        newy = np.asarray([6.203, 4.49418159, 3.514, 5.18390821, 6.864, 5.91436915,
                           4.21600002, 5.91436915, 6.864, 5.18390821, 3.514,
                           4.49418159, 6.203, 6.71900226, 6.759, 7.03980488, 7.433,
                           7.81016848, 7.874, 7.32718426, 5.879, 3.23872593, 1.396,
                           2.34046013, 4.094, 2.34046013, 1.396, 3.23872593, 5.879,
                           7.32718426, 7.874, 7.81016848, 7.433, 7.03980488, 6.759,
                           6.71900226, 6.203, 4.49418159])
        xp_assert_close(bsp.qspline1d_eval(cj, newx, dx=dx, x0=x[0]), newy)


# i/o dtypes with scipy 1.9.1, likely fixed by backwards compat
sepfir_dtype_map = {np.uint8: np.float32, int: np.float64,
                    np.float32: np.float32, float: float,
                    np.complex64: np.complex64, complex: complex}

class TestSepfir2d:
    def test_sepfir2d_invalid_filter(self):
        filt = np.array([1.0, 2.0, 4.0, 2.0, 1.0])
        image = np.random.rand(7, 9)
        # No error for odd lengths
        signal.sepfir2d(image, filt, filt[2:])

        # Row or column filter must be odd
        with pytest.raises(ValueError, match="odd length"):
            signal.sepfir2d(image, filt, filt[1:])
        with pytest.raises(ValueError, match="odd length"):
            signal.sepfir2d(image, filt[1:], filt)

        # Filters must be 1-dimensional
        with pytest.raises(ValueError, match="object too deep"):
            signal.sepfir2d(image, filt.reshape(1, -1), filt)
        with pytest.raises(ValueError, match="object too deep"):
            signal.sepfir2d(image, filt, filt.reshape(1, -1))

    def test_sepfir2d_invalid_image(self):
        filt = np.array([1.0, 2.0, 4.0, 2.0, 1.0])
        image = np.random.rand(8, 8)

        # Image must be 2 dimensional
        with pytest.raises(ValueError, match="object too deep"):
            signal.sepfir2d(image.reshape(4, 4, 4), filt, filt)

        with pytest.raises(ValueError, match="object of too small depth"):
            signal.sepfir2d(image[0], filt, filt)

    @pytest.mark.parametrize('dtyp',
        [np.uint8, int, np.float32, float, np.complex64, complex]
    )
    def test_simple(self, dtyp):
        # test values on a paper-and-pencil example
        a = np.array([[1, 2, 3, 3, 2, 1],
                      [1, 2, 3, 3, 2, 1],
                      [1, 2, 3, 3, 2, 1],
                      [1, 2, 3, 3, 2, 1]], dtype=dtyp)
        h1 = [0.5, 1, 0.5]
        h2 = [1]
        result = signal.sepfir2d(a, h1, h2)
        dt = sepfir_dtype_map[dtyp]
        expected = np.asarray([[2.5, 4. , 5.5, 5.5, 4. , 2.5],
                               [2.5, 4. , 5.5, 5.5, 4. , 2.5],
                               [2.5, 4. , 5.5, 5.5, 4. , 2.5],
                               [2.5, 4. , 5.5, 5.5, 4. , 2.5]], dtype=dt)
        xp_assert_close(result, expected, atol=1e-16)

        result = signal.sepfir2d(a, h2, h1)
        expected = np.asarray([[2., 4., 6., 6., 4., 2.],
                               [2., 4., 6., 6., 4., 2.],
                               [2., 4., 6., 6., 4., 2.],
                               [2., 4., 6., 6., 4., 2.]], dtype=dt)
        xp_assert_close(result, expected, atol=1e-16)

    @pytest.mark.parametrize('dtyp',
        [np.uint8, int, np.float32, float, np.complex64, complex]
    )
    def test_strided(self, dtyp):
        a = np.array([[1, 2, 3, 3, 2, 1, 1, 2, 3],
                     [1, 2, 3, 3, 2, 1, 1, 2, 3],
                     [1, 2, 3, 3, 2, 1, 1, 2, 3],
                     [1, 2, 3, 3, 2, 1, 1, 2, 3]])
        h1, h2 = [0.5, 1, 0.5], [1]
        result_strided = signal.sepfir2d(a[:, ::2], h1, h2)
        result_contig = signal.sepfir2d(a[:, ::2].copy(), h1, h2)
        xp_assert_close(result_strided, result_contig, atol=1e-15)
        assert result_strided.dtype == result_contig.dtype

    @pytest.mark.xfail(reason="XXX: filt.size > image.shape: flaky")
    def test_sepfir2d_strided_2(self):
        # XXX: this test is flaky: fails on some reruns, with
        # result[0, 1] and result[1, 1] being ~1e+224.
        np.random.seed(1234)
        filt = np.array([1.0, 2.0, 4.0, 2.0, 1.0, 3.0, 2.0])
        image = np.random.rand(4, 4)

        expected = np.asarray([[36.018162, 30.239061, 38.71187 , 43.878183],
                                [38.180999, 35.824583, 43.525247, 43.874945],
                                [43.269533, 40.834018, 46.757772, 44.276423],
                                [49.120928, 39.681844, 43.596067, 45.085854]])
        xp_assert_close(signal.sepfir2d(image, filt, filt[::3]), expected)

    @pytest.mark.xfail(reason="XXX: flaky. pointers OOB on some platforms")
    @pytest.mark.parametrize('dtyp',
        [np.uint8, int, np.float32, float, np.complex64, complex]
    )
    def test_sepfir2d_strided_3(self, dtyp):
        # NB: 'image' and 'filt' dtypes match here. Otherwise we can run into
        # unsafe casting errors for many combinations. Historically, dtype handling
        # in `sepfir2d` is a tad baroque; fixing it is an enhancement.
        filt = np.array([1, 2, 4, 2, 1, 3, 2], dtype=dtyp)
        image = np.asarray([[0, 3, 0, 1, 2],
                            [2, 2, 3, 3, 3],
                            [0, 1, 3, 0, 3],
                            [2, 3, 0, 1, 3],
                            [3, 3, 2, 1, 2]], dtype=dtyp)

        expected = [[123., 101.,  91., 136., 127.],
                    [133., 125., 126., 152., 160.],
                    [136., 137., 150., 162., 177.],
                    [133., 124., 132., 148., 147.],
                    [173., 158., 152., 164., 141.]]
        expected = np.asarray(expected)
        result = signal.sepfir2d(image, filt, filt[::3])
        xp_assert_close(result, expected, atol=1e-15)
        assert result.dtype == sepfir_dtype_map[dtyp]

        expected = [[22., 35., 41., 31., 47.],
                    [27., 39., 48., 47., 55.],
                    [33., 42., 49., 53., 59.],
                    [39., 44., 41., 36., 48.],
                    [67., 62., 47., 34., 46.]]
        expected = np.asarray(expected)
        result = signal.sepfir2d(image, filt[::3], filt[::3])
        xp_assert_close(result, expected, atol=1e-15)
        assert result.dtype == sepfir_dtype_map[dtyp]


def test_cspline2d():
    np.random.seed(181819142)
    image = np.random.rand(71, 73)
    signal.cspline2d(image, 8.0)


def test_qspline2d():
    np.random.seed(181819143)
    image = np.random.rand(71, 73)
    signal.qspline2d(image)