File size: 11,323 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
# Code adapted from "upfirdn" python library with permission:
#
# Copyright (c) 2009, Motorola, Inc
#
# All Rights Reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# * Neither the name of Motorola nor the names of its contributors may be
# used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
from itertools import product
from scipy._lib._array_api import xp_assert_close
from pytest import raises as assert_raises
import pytest
from scipy.signal import upfirdn, firwin
from scipy.signal._upfirdn import _output_len, _upfirdn_modes
from scipy.signal._upfirdn_apply import _pad_test
def upfirdn_naive(x, h, up=1, down=1):
"""Naive upfirdn processing in Python.
Note: arg order (x, h) differs to facilitate apply_along_axis use.
"""
h = np.asarray(h)
out = np.zeros(len(x) * up, x.dtype)
out[::up] = x
out = np.convolve(h, out)[::down][:_output_len(len(h), len(x), up, down)]
return out
class UpFIRDnCase:
"""Test _UpFIRDn object"""
def __init__(self, up, down, h, x_dtype):
self.up = up
self.down = down
self.h = np.atleast_1d(h)
self.x_dtype = x_dtype
self.rng = np.random.RandomState(17)
def __call__(self):
# tiny signal
self.scrub(np.ones(1, self.x_dtype))
# ones
self.scrub(np.ones(10, self.x_dtype)) # ones
# randn
x = self.rng.randn(10).astype(self.x_dtype)
if self.x_dtype in (np.complex64, np.complex128):
x += 1j * self.rng.randn(10)
self.scrub(x)
# ramp
self.scrub(np.arange(10).astype(self.x_dtype))
# 3D, random
size = (2, 3, 5)
x = self.rng.randn(*size).astype(self.x_dtype)
if self.x_dtype in (np.complex64, np.complex128):
x += 1j * self.rng.randn(*size)
for axis in range(len(size)):
self.scrub(x, axis=axis)
x = x[:, ::2, 1::3].T
for axis in range(len(size)):
self.scrub(x, axis=axis)
def scrub(self, x, axis=-1):
yr = np.apply_along_axis(upfirdn_naive, axis, x,
self.h, self.up, self.down)
want_len = _output_len(len(self.h), x.shape[axis], self.up, self.down)
assert yr.shape[axis] == want_len
y = upfirdn(self.h, x, self.up, self.down, axis=axis)
assert y.shape[axis] == want_len
assert y.shape == yr.shape
dtypes = (self.h.dtype, x.dtype)
if all(d == np.complex64 for d in dtypes):
assert y.dtype == np.complex64
elif np.complex64 in dtypes and np.float32 in dtypes:
assert y.dtype == np.complex64
elif all(d == np.float32 for d in dtypes):
assert y.dtype == np.float32
elif np.complex128 in dtypes or np.complex64 in dtypes:
assert y.dtype == np.complex128
else:
assert y.dtype == np.float64
xp_assert_close(yr.astype(y.dtype), y)
_UPFIRDN_TYPES = (int, np.float32, np.complex64, float, complex)
class TestUpfirdn:
def test_valid_input(self):
assert_raises(ValueError, upfirdn, [1], [1], 1, 0) # up or down < 1
assert_raises(ValueError, upfirdn, [], [1], 1, 1) # h.ndim != 1
assert_raises(ValueError, upfirdn, [[1]], [1], 1, 1)
@pytest.mark.parametrize('len_h', [1, 2, 3, 4, 5])
@pytest.mark.parametrize('len_x', [1, 2, 3, 4, 5])
def test_singleton(self, len_h, len_x):
# gh-9844: lengths producing expected outputs
h = np.zeros(len_h)
h[len_h // 2] = 1. # make h a delta
x = np.ones(len_x)
y = upfirdn(h, x, 1, 1)
want = np.pad(x, (len_h // 2, (len_h - 1) // 2), 'constant')
xp_assert_close(y, want)
def test_shift_x(self):
# gh-9844: shifted x can change values?
y = upfirdn([1, 1], [1.], 1, 1)
xp_assert_close(y, np.asarray([1.0, 1.0])) # was [0, 1] in the issue
y = upfirdn([1, 1], [0., 1.], 1, 1)
xp_assert_close(y, np.asarray([0.0, 1.0, 1.0]))
# A bunch of lengths/factors chosen because they exposed differences
# between the "old way" and new way of computing length, and then
# got `expected` from MATLAB
@pytest.mark.parametrize('len_h, len_x, up, down, expected', [
(2, 2, 5, 2, [1, 0, 0, 0]),
(2, 3, 6, 3, [1, 0, 1, 0, 1]),
(2, 4, 4, 3, [1, 0, 0, 0, 1]),
(3, 2, 6, 2, [1, 0, 0, 1, 0]),
(4, 11, 3, 5, [1, 0, 0, 1, 0, 0, 1]),
])
def test_length_factors(self, len_h, len_x, up, down, expected):
# gh-9844: weird factors
h = np.zeros(len_h)
h[0] = 1.
x = np.ones(len_x)
y = upfirdn(h, x, up, down)
expected = np.asarray(expected, dtype=np.float64)
xp_assert_close(y, expected)
@pytest.mark.parametrize('down, want_len', [ # lengths from MATLAB
(2, 5015),
(11, 912),
(79, 127),
])
def test_vs_convolve(self, down, want_len):
# Check that up=1.0 gives same answer as convolve + slicing
random_state = np.random.RandomState(17)
try_types = (int, np.float32, np.complex64, float, complex)
size = 10000
for dtype in try_types:
x = random_state.randn(size).astype(dtype)
if dtype in (np.complex64, np.complex128):
x += 1j * random_state.randn(size)
h = firwin(31, 1. / down, window='hamming')
yl = upfirdn_naive(x, h, 1, down)
y = upfirdn(h, x, up=1, down=down)
assert y.shape == (want_len,)
assert yl.shape[0] == y.shape[0]
xp_assert_close(yl, y, atol=1e-7, rtol=1e-7)
@pytest.mark.parametrize('x_dtype', _UPFIRDN_TYPES)
@pytest.mark.parametrize('h', (1., 1j))
@pytest.mark.parametrize('up, down', [(1, 1), (2, 2), (3, 2), (2, 3)])
def test_vs_naive_delta(self, x_dtype, h, up, down):
UpFIRDnCase(up, down, h, x_dtype)()
@pytest.mark.parametrize('x_dtype', _UPFIRDN_TYPES)
@pytest.mark.parametrize('h_dtype', _UPFIRDN_TYPES)
@pytest.mark.parametrize('p_max, q_max',
list(product((10, 100), (10, 100))))
def test_vs_naive(self, x_dtype, h_dtype, p_max, q_max):
tests = self._random_factors(p_max, q_max, h_dtype, x_dtype)
for test in tests:
test()
def _random_factors(self, p_max, q_max, h_dtype, x_dtype):
n_rep = 3
longest_h = 25
random_state = np.random.RandomState(17)
tests = []
for _ in range(n_rep):
# Randomize the up/down factors somewhat
p_add = q_max if p_max > q_max else 1
q_add = p_max if q_max > p_max else 1
p = random_state.randint(p_max) + p_add
q = random_state.randint(q_max) + q_add
# Generate random FIR coefficients
len_h = random_state.randint(longest_h) + 1
h = np.atleast_1d(random_state.randint(len_h))
h = h.astype(h_dtype)
if h_dtype is complex:
h += 1j * random_state.randint(len_h)
tests.append(UpFIRDnCase(p, q, h, x_dtype))
return tests
@pytest.mark.parametrize('mode', _upfirdn_modes)
def test_extensions(self, mode):
"""Test vs. manually computed results for modes not in numpy's pad."""
x = np.array([1, 2, 3, 1], dtype=float)
npre, npost = 6, 6
y = _pad_test(x, npre=npre, npost=npost, mode=mode)
if mode == 'antisymmetric':
y_expected = np.asarray(
[3.0, 1, -1, -3, -2, -1, 1, 2, 3, 1, -1, -3, -2, -1, 1, 2])
elif mode == 'antireflect':
y_expected = np.asarray(
[1.0, 2, 3, 1, -1, 0, 1, 2, 3, 1, -1, 0, 1, 2, 3, 1])
elif mode == 'smooth':
y_expected = np.asarray(
[-5.0, -4, -3, -2, -1, 0, 1, 2, 3, 1, -1, -3, -5, -7, -9, -11])
elif mode == "line":
lin_slope = (x[-1] - x[0]) / (len(x) - 1)
left = x[0] + np.arange(-npre, 0, 1) * lin_slope
right = x[-1] + np.arange(1, npost + 1) * lin_slope
y_expected = np.concatenate((left, x, right))
else:
y_expected = np.pad(x, (npre, npost), mode=mode)
xp_assert_close(y, y_expected)
@pytest.mark.parametrize(
'size, h_len, mode, dtype',
product(
[8],
[4, 5, 26], # include cases with h_len > 2*size
_upfirdn_modes,
[np.float32, np.float64, np.complex64, np.complex128],
)
)
def test_modes(self, size, h_len, mode, dtype):
random_state = np.random.RandomState(5)
x = random_state.randn(size).astype(dtype)
if dtype in (np.complex64, np.complex128):
x += 1j * random_state.randn(size)
h = np.arange(1, 1 + h_len, dtype=x.real.dtype)
y = upfirdn(h, x, up=1, down=1, mode=mode)
# expected result: pad the input, filter with zero padding, then crop
npad = h_len - 1
if mode in ['antisymmetric', 'antireflect', 'smooth', 'line']:
# use _pad_test test function for modes not supported by np.pad.
xpad = _pad_test(x, npre=npad, npost=npad, mode=mode)
else:
xpad = np.pad(x, npad, mode=mode)
ypad = upfirdn(h, xpad, up=1, down=1, mode='constant')
y_expected = ypad[npad:-npad]
atol = rtol = np.finfo(dtype).eps * 1e2
xp_assert_close(y, y_expected, atol=atol, rtol=rtol)
def test_output_len_long_input():
# Regression test for gh-17375. On Windows, a large enough input
# that should have been well within the capabilities of 64 bit integers
# would result in a 32 bit overflow because of a bug in Cython 0.29.32.
len_h = 1001
in_len = 10**8
up = 320
down = 441
out_len = _output_len(len_h, in_len, up, down)
# The expected value was computed "by hand" from the formula
# (((in_len - 1) * up + len_h) - 1) // down + 1
assert out_len == 72562360
|