File size: 49,272 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
"""Base class for sparse matrices"""

import numpy as np

from ._sputils import (asmatrix, check_reshape_kwargs, check_shape,
                       get_sum_dtype, isdense, isscalarlike,
                       matrix, validateaxis, getdtype)

from ._matrix import spmatrix

__all__ = ['isspmatrix', 'issparse', 'sparray',
           'SparseWarning', 'SparseEfficiencyWarning']


class SparseWarning(Warning):
    pass


class SparseFormatWarning(SparseWarning):
    pass


class SparseEfficiencyWarning(SparseWarning):
    pass


# The formats that we might potentially understand.
_formats = {'csc': [0, "Compressed Sparse Column"],
            'csr': [1, "Compressed Sparse Row"],
            'dok': [2, "Dictionary Of Keys"],
            'lil': [3, "List of Lists"],
            'dod': [4, "Dictionary of Dictionaries"],
            'sss': [5, "Symmetric Sparse Skyline"],
            'coo': [6, "COOrdinate"],
            'lba': [7, "Linpack BAnded"],
            'egd': [8, "Ellpack-itpack Generalized Diagonal"],
            'dia': [9, "DIAgonal"],
            'bsr': [10, "Block Sparse Row"],
            'msr': [11, "Modified compressed Sparse Row"],
            'bsc': [12, "Block Sparse Column"],
            'msc': [13, "Modified compressed Sparse Column"],
            'ssk': [14, "Symmetric SKyline"],
            'nsk': [15, "Nonsymmetric SKyline"],
            'jad': [16, "JAgged Diagonal"],
            'uss': [17, "Unsymmetric Sparse Skyline"],
            'vbr': [18, "Variable Block Row"],
            'und': [19, "Undefined"]
            }


# These univariate ufuncs preserve zeros.
_ufuncs_with_fixed_point_at_zero = frozenset([
        np.sin, np.tan, np.arcsin, np.arctan, np.sinh, np.tanh, np.arcsinh,
        np.arctanh, np.rint, np.sign, np.expm1, np.log1p, np.deg2rad,
        np.rad2deg, np.floor, np.ceil, np.trunc, np.sqrt])


MAXPRINT = 50


class _spbase:
    """ This class provides a base class for all sparse arrays.  It
    cannot be instantiated.  Most of the work is provided by subclasses.
    """

    __array_priority__ = 10.1
    _format = 'und'  # undefined
    _allow_nd = (2,)

    @property
    def ndim(self) -> int:
        return len(self._shape)

    @property
    def _shape_as_2d(self):
        s = self._shape
        return (1, s[-1]) if len(s) == 1 else s

    @property
    def _bsr_container(self):
        from ._bsr import bsr_array
        return bsr_array

    @property
    def _coo_container(self):
        from ._coo import coo_array
        return coo_array

    @property
    def _csc_container(self):
        from ._csc import csc_array
        return csc_array

    @property
    def _csr_container(self):
        from ._csr import csr_array
        return csr_array

    @property
    def _dia_container(self):
        from ._dia import dia_array
        return dia_array

    @property
    def _dok_container(self):
        from ._dok import dok_array
        return dok_array

    @property
    def _lil_container(self):
        from ._lil import lil_array
        return lil_array

    def __init__(self, arg1, *, maxprint=None):
        self._shape = None
        if self.__class__.__name__ == '_spbase':
            raise ValueError("This class is not intended"
                             " to be instantiated directly.")
        if isinstance(self, sparray) and np.isscalar(arg1):
            raise ValueError(
                "scipy sparse array classes do not support instantiation from a scalar"
            )
        self.maxprint = MAXPRINT if maxprint is None else maxprint

    @property
    def shape(self):
        return self._shape

    def reshape(self, *args, **kwargs):
        """reshape(self, shape, order='C', copy=False)

        Gives a new shape to a sparse array/matrix without changing its data.

        Parameters
        ----------
        shape : length-2 tuple of ints
            The new shape should be compatible with the original shape.
        order : {'C', 'F'}, optional
            Read the elements using this index order. 'C' means to read and
            write the elements using C-like index order; e.g., read entire first
            row, then second row, etc. 'F' means to read and write the elements
            using Fortran-like index order; e.g., read entire first column, then
            second column, etc.
        copy : bool, optional
            Indicates whether or not attributes of self should be copied
            whenever possible. The degree to which attributes are copied varies
            depending on the type of sparse array being used.

        Returns
        -------
        reshaped : sparse array/matrix
            A sparse array/matrix with the given `shape`, not necessarily of the same
            format as the current object.

        See Also
        --------
        numpy.reshape : NumPy's implementation of 'reshape' for ndarrays
        """
        # If the shape already matches, don't bother doing an actual reshape
        # Otherwise, the default is to convert to COO and use its reshape
        # Don't restrict ndim on this first call. That happens in constructor
        shape = check_shape(args, self.shape, allow_nd=range(1, 65))
        order, copy = check_reshape_kwargs(kwargs)
        if shape == self.shape:
            if copy:
                return self.copy()
            else:
                return self

        return self.tocoo(copy=copy).reshape(shape, order=order, copy=False)

    def resize(self, shape):
        """Resize the array/matrix in-place to dimensions given by ``shape``

        Any elements that lie within the new shape will remain at the same
        indices, while non-zero elements lying outside the new shape are
        removed.

        Parameters
        ----------
        shape : (int, int)
            number of rows and columns in the new array/matrix

        Notes
        -----
        The semantics are not identical to `numpy.ndarray.resize` or
        `numpy.resize`. Here, the same data will be maintained at each index
        before and after reshape, if that index is within the new bounds. In
        numpy, resizing maintains contiguity of the array, moving elements
        around in the logical array but not within a flattened representation.

        We give no guarantees about whether the underlying data attributes
        (arrays, etc.) will be modified in place or replaced with new objects.
        """
        # As an inplace operation, this requires implementation in each format.
        raise NotImplementedError(
            f'{type(self).__name__}.resize is not implemented')

    def astype(self, dtype, casting='unsafe', copy=True):
        """Cast the array/matrix elements to a specified type.

        Parameters
        ----------
        dtype : string or numpy dtype
            Typecode or data-type to which to cast the data.
        casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
            Controls what kind of data casting may occur.
            Defaults to 'unsafe' for backwards compatibility.
            'no' means the data types should not be cast at all.
            'equiv' means only byte-order changes are allowed.
            'safe' means only casts which can preserve values are allowed.
            'same_kind' means only safe casts or casts within a kind,
            like float64 to float32, are allowed.
            'unsafe' means any data conversions may be done.
        copy : bool, optional
            If `copy` is `False`, the result might share some memory with this
            array/matrix. If `copy` is `True`, it is guaranteed that the result and
            this array/matrix do not share any memory.
        """

        dtype = getdtype(dtype)
        if self.dtype != dtype:
            return self.tocsr().astype(
                dtype, casting=casting, copy=copy).asformat(self.format)
        elif copy:
            return self.copy()
        else:
            return self

    @classmethod
    def _ascontainer(cls, X, **kwargs):
        if issubclass(cls, sparray):
            return np.asarray(X, **kwargs)
        else:
            return asmatrix(X, **kwargs)

    @classmethod
    def _container(cls, X, **kwargs):
        if issubclass(cls, sparray):
            return np.array(X, **kwargs)
        else:
            return matrix(X, **kwargs)

    def _asfptype(self):
        """Upcast array to a floating point format (if necessary)"""

        fp_types = ['f', 'd', 'F', 'D']

        if self.dtype.char in fp_types:
            return self
        else:
            for fp_type in fp_types:
                if self.dtype <= np.dtype(fp_type):
                    return self.astype(fp_type)

            raise TypeError(
                f'cannot upcast [{self.dtype.name}] to a floating point format'
            )

    def __iter__(self):
        for r in range(self.shape[0]):
            yield self[r]

    def _getmaxprint(self):
        """Maximum number of elements to display when printed."""
        return self.maxprint

    def count_nonzero(self, axis=None):
        """Number of non-zero entries, equivalent to

        np.count_nonzero(a.toarray(), axis=axis)

        Unlike the nnz property, which return the number of stored
        entries (the length of the data attribute), this method counts the
        actual number of non-zero entries in data.

        Duplicate entries are summed before counting.

        Parameters
        ----------
        axis : {-2, -1, 0, 1, None} optional
            Count nonzeros for the whole array, or along a specified axis.

            .. versionadded:: 1.15.0

        Returns
        -------
        numpy array
            A reduced array (no axis `axis`) holding the number of nonzero values
            for each of the indices of the nonaxis dimensions.

        Notes
        -----
        If you want to count nonzero and explicit zero stored values (e.g. nnz)
        along an axis, two fast idioms are provided by `numpy` functions for the
        common CSR, CSC, COO formats.

        For the major axis in CSR (rows) and CSC (cols) use `np.diff`:

            >>> import numpy as np
            >>> import scipy as sp
            >>> A = sp.sparse.csr_array([[4, 5, 0], [7, 0, 0]])
            >>> major_axis_stored_values = np.diff(A.indptr)  # -> np.array([2, 1])

        For the minor axis in CSR (cols) and CSC (rows) use `numpy.bincount` with
        minlength ``A.shape[1]`` for CSR and ``A.shape[0]`` for CSC:

            >>> csr_minor_stored_values = np.bincount(A.indices, minlength=A.shape[1])

        For COO, use the minor axis approach for either `axis`:

            >>> A = A.tocoo()
            >>> coo_axis0_stored_values = np.bincount(A.coords[0], minlength=A.shape[1])
            >>> coo_axis1_stored_values = np.bincount(A.coords[1], minlength=A.shape[0])

        Examples
        --------

            >>> A = sp.sparse.csr_array([[4, 5, 0], [7, 0, 0]])
            >>> A.count_nonzero(axis=0)
            array([2, 1, 0])
        """
        clsname = self.__class__.__name__
        raise NotImplementedError(f"count_nonzero not implemented for {clsname}.")

    def _getnnz(self, axis=None):
        """Number of stored values, including explicit zeros.

        Parameters
        ----------
        axis : {-2, -1, 0, 1, None} optional
            Report stored values for the whole array, or along a specified axis.

        See also
        --------
        count_nonzero : Number of non-zero entries
        """
        clsname = self.__class__.__name__
        raise NotImplementedError(f"getnnz not implemented for {clsname}.")

    @property
    def nnz(self) -> int:
        """Number of stored values, including explicit zeros.

        See also
        --------
        count_nonzero : Number of non-zero entries
        """
        return self._getnnz()

    @property
    def size(self) -> int:
        """Number of stored values.

        See also
        --------
        count_nonzero : Number of non-zero values.
        """
        return self._getnnz()

    @property
    def format(self) -> str:
        """Format string for matrix."""
        return self._format

    @property
    def T(self):
        """Transpose."""
        return self.transpose()

    @property
    def real(self):
        return self._real()

    @property
    def imag(self):
        return self._imag()

    def __repr__(self):
        _, format_name = _formats[self.format]
        sparse_cls = 'array' if isinstance(self, sparray) else 'matrix'
        return (
            f"<{format_name} sparse {sparse_cls} of dtype '{self.dtype}'\n"
            f"\twith {self.nnz} stored elements and shape {self.shape}>"
        )

    def __str__(self):
        maxprint = self._getmaxprint()

        A = self.tocoo()

        # helper function, outputs "(i,j)  v"
        def tostr(coords, data):
            pairs = zip(zip(*(c.tolist() for c in coords)), data)
            return '\n'.join(f'  {idx}\t{val}' for idx, val in pairs)

        out = repr(self)
        if self.nnz == 0:
            return out

        out += '\n  Coords\tValues\n'
        if self.nnz > maxprint:
            half = maxprint // 2
            out += tostr(tuple(c[:half] for c in A.coords), A.data[:half])
            out += "\n  :\t:\n"
            half = maxprint - half
            out += tostr(tuple(c[-half:] for c in A.coords), A.data[-half:])
        else:
            out += tostr(A.coords, A.data)

        return out

    def __bool__(self):  # Simple -- other ideas?
        if self.shape == (1, 1):
            return self.nnz != 0
        else:
            raise ValueError("The truth value of an array with more than one "
                             "element is ambiguous. Use a.any() or a.all().")
    __nonzero__ = __bool__

    # What should len(sparse) return? For consistency with dense matrices,
    # perhaps it should be the number of rows?  But for some uses the number of
    # non-zeros is more important.  For now, raise an exception!
    def __len__(self):
        raise TypeError("sparse array length is ambiguous; use getnnz()"
                        " or shape[0]")

    def asformat(self, format, copy=False):
        """Return this array/matrix in the passed format.

        Parameters
        ----------
        format : {str, None}
            The desired sparse format ("csr", "csc", "lil", "dok", "array", ...)
            or None for no conversion.
        copy : bool, optional
            If True, the result is guaranteed to not share data with self.

        Returns
        -------
        A : This array/matrix in the passed format.
        """
        if format is None or format == self.format:
            if copy:
                return self.copy()
            else:
                return self
        else:
            try:
                convert_method = getattr(self, 'to' + format)
            except AttributeError as e:
                raise ValueError(f'Format {format} is unknown.') from e

            # Forward the copy kwarg, if it's accepted.
            try:
                return convert_method(copy=copy)
            except TypeError:
                return convert_method()

    ###################################################################
    #  NOTE: All arithmetic operations use csr_matrix by default.
    # Therefore a new sparse array format just needs to define a
    # .tocsr() method to provide arithmetic support. Any of these
    # methods can be overridden for efficiency.
    ####################################################################

    def multiply(self, other):
        """Point-wise multiplication by another array/matrix."""
        if isscalarlike(other):
            return self._mul_scalar(other)
        return self.tocsr().multiply(other)

    def maximum(self, other):
        """Element-wise maximum between this and another array/matrix."""
        return self.tocsr().maximum(other)

    def minimum(self, other):
        """Element-wise minimum between this and another array/matrix."""
        return self.tocsr().minimum(other)

    def dot(self, other):
        """Ordinary dot product

        Examples
        --------
        >>> import numpy as np
        >>> from scipy.sparse import csr_array
        >>> A = csr_array([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
        >>> v = np.array([1, 0, -1])
        >>> A.dot(v)
        array([ 1, -3, -1], dtype=int64)

        """
        if np.isscalar(other):
            return self * other
        else:
            return self @ other

    def power(self, n, dtype=None):
        """Element-wise power."""
        return self.tocsr().power(n, dtype=dtype)

    def _broadcast_to(self, shape, copy=False):
        if self.shape == shape:
            return self.copy() if copy else self
        else:
            return self.tocsr()._broadcast_to(shape, copy)

    def __eq__(self, other):
        return self.tocsr().__eq__(other)

    def __ne__(self, other):
        return self.tocsr().__ne__(other)

    def __lt__(self, other):
        return self.tocsr().__lt__(other)

    def __gt__(self, other):
        return self.tocsr().__gt__(other)

    def __le__(self, other):
        return self.tocsr().__le__(other)

    def __ge__(self, other):
        return self.tocsr().__ge__(other)

    def __abs__(self):
        return abs(self.tocsr())

    def __round__(self, ndigits=0):
        return round(self.tocsr(), ndigits=ndigits)

    def _add_sparse(self, other):
        return self.tocsr()._add_sparse(other)

    def _add_dense(self, other):
        return self.tocoo()._add_dense(other)

    def _sub_sparse(self, other):
        return self.tocsr()._sub_sparse(other)

    def _sub_dense(self, other):
        return self.todense() - other

    def _rsub_dense(self, other):
        # note: this can't be replaced by other + (-self) for unsigned types
        return other - self.todense()

    def __add__(self, other):  # self + other
        if isscalarlike(other):
            if other == 0:
                return self.copy()
            # Now we would add this scalar to every element.
            raise NotImplementedError('adding a nonzero scalar to a '
                                      'sparse array is not supported')
        elif issparse(other):
            if other.shape != self.shape:
                raise ValueError("inconsistent shapes")
            return self._add_sparse(other)
        elif isdense(other):
            other = np.broadcast_to(other, self.shape)
            return self._add_dense(other)
        else:
            return NotImplemented

    def __radd__(self,other):  # other + self
        return self.__add__(other)

    def __sub__(self, other):  # self - other
        if isscalarlike(other):
            if other == 0:
                return self.copy()
            raise NotImplementedError('subtracting a nonzero scalar from a '
                                      'sparse array is not supported')
        elif issparse(other):
            if other.shape != self.shape:
                raise ValueError("inconsistent shapes")
            return self._sub_sparse(other)
        elif isdense(other):
            other = np.broadcast_to(other, self.shape)
            return self._sub_dense(other)
        else:
            return NotImplemented

    def __rsub__(self,other):  # other - self
        if isscalarlike(other):
            if other == 0:
                return -self.copy()
            raise NotImplementedError('subtracting a sparse array from a '
                                      'nonzero scalar is not supported')
        elif isdense(other):
            other = np.broadcast_to(other, self.shape)
            return self._rsub_dense(other)
        else:
            return NotImplemented

    def _matmul_dispatch(self, other):
        """np.array-like matmul & `np.matrix`-like mul, i.e. `dot` or `NotImplemented`

        interpret other and call one of the following
        self._mul_scalar()
        self._matmul_vector()
        self._matmul_multivector()
        self._matmul_sparse()
        """
        # This method has to be different from `__matmul__` because it is also
        # called by sparse matrix classes.

        # Currently matrix multiplication is only supported
        # for 2D arrays. Hence we unpacked and use only the
        # two last axes' lengths.
        M, N = self._shape_as_2d

        if other.__class__ is np.ndarray:
            # Fast path for the most common case
            if other.shape == (N,):
                return self._matmul_vector(other)
            elif other.shape == (N, 1):
                result = self._matmul_vector(other.ravel())
                if self.ndim == 1:
                    return result.reshape(1)
                return result.reshape(M, 1)
            elif other.ndim == 2 and other.shape[0] == N:
                return self._matmul_multivector(other)

        if isscalarlike(other):
            # scalar value
            return self._mul_scalar(other)

        err_prefix = "matmul: dimension mismatch with signature"
        if issparse(other):
            if N != other.shape[0]:
                raise ValueError(
                    f"{err_prefix} (n,k={N}),(k={other.shape[0]},m)->(n,m)"
                )
            return self._matmul_sparse(other)

        # If it's a list or whatever, treat it like an array
        other_a = np.asanyarray(other)

        if other_a.ndim == 0 and other_a.dtype == np.object_:
            # Not interpretable as an array; return NotImplemented so that
            # other's __rmatmul__ can kick in if that's implemented.
            return NotImplemented

        try:
            other.shape
        except AttributeError:
            other = other_a

        if other.ndim == 1 or other.ndim == 2 and other.shape[1] == 1:
            # dense row or column vector
            if other.shape[0] != N:
                raise ValueError(
                    f"{err_prefix} (n,k={N}),(k={other.shape[0]},1?)->(n,1?)"
                )

            result = self._matmul_vector(np.ravel(other))

            if isinstance(other, np.matrix):
                result = self._ascontainer(result)

            if other.ndim == 2 and other.shape[1] == 1:
                # If 'other' was an (nx1) column vector, reshape the result
                if self.ndim == 1:
                    result = result.reshape(1)
                else:
                    result = result.reshape(-1, 1)

            return result

        elif other.ndim == 2:
            ##
            # dense 2D array or matrix ("multivector")

            if other.shape[0] != N:
                raise ValueError(
                    f"{err_prefix} (n,k={N}),(k={other.shape[0]},m)->(n,m)"
                )

            result = self._matmul_multivector(np.asarray(other))

            if isinstance(other, np.matrix):
                result = self._ascontainer(result)

            return result

        else:
            raise ValueError('could not interpret dimensions')

    def __mul__(self, other):
        return self.multiply(other)

    def __rmul__(self, other):  # other * self
        return self.multiply(other)

    # by default, use CSR for __mul__ handlers
    def _mul_scalar(self, other):
        return self.tocsr()._mul_scalar(other)

    def _matmul_vector(self, other):
        return self.tocsr()._matmul_vector(other)

    def _matmul_multivector(self, other):
        return self.tocsr()._matmul_multivector(other)

    def _matmul_sparse(self, other):
        return self.tocsr()._matmul_sparse(other)

    def _rmatmul_dispatch(self, other):
        if isscalarlike(other):
            return self._mul_scalar(other)
        else:
            # Don't use asarray unless we have to
            try:
                tr = other.transpose()
            except AttributeError:
                tr = np.asarray(other).transpose()
            ret = self.transpose()._matmul_dispatch(tr)
            if ret is NotImplemented:
                return NotImplemented
            return ret.transpose()

    #######################
    # matmul (@) operator #
    #######################

    def __matmul__(self, other):
        if isscalarlike(other):
            raise ValueError("Scalar operands are not allowed, "
                             "use '*' instead")
        return self._matmul_dispatch(other)

    def __rmatmul__(self, other):
        if isscalarlike(other):
            raise ValueError("Scalar operands are not allowed, "
                             "use '*' instead")
        return self._rmatmul_dispatch(other)

    ####################
    # Other Arithmetic #
    ####################

    def _divide(self, other, true_divide=False, rdivide=False):
        if isscalarlike(other):
            if rdivide:
                if true_divide:
                    return np.true_divide(other, self.todense())
                else:
                    return np.divide(other, self.todense())

            if true_divide and np.can_cast(self.dtype, np.float64):
                return self.astype(np.float64)._mul_scalar(1./other)
            else:
                r = self._mul_scalar(1./other)

                scalar_dtype = np.asarray(other).dtype
                if (np.issubdtype(self.dtype, np.integer) and
                        np.issubdtype(scalar_dtype, np.integer)):
                    return r.astype(self.dtype)
                else:
                    return r

        elif isdense(other):
            if not rdivide:
                if true_divide:
                    recip = np.true_divide(1., other)
                else:
                    recip = np.divide(1., other)
                return self.multiply(recip)
            else:
                if true_divide:
                    return np.true_divide(other, self.todense())
                else:
                    return np.divide(other, self.todense())
        elif issparse(other):
            if rdivide:
                return other._divide(self, true_divide, rdivide=False)

            self_csr = self.tocsr()
            if true_divide and np.can_cast(self.dtype, np.float64):
                return self_csr.astype(np.float64)._divide_sparse(other)
            else:
                return self_csr._divide_sparse(other)
        else:
            return NotImplemented

    def __truediv__(self, other):
        return self._divide(other, true_divide=True)

    def __div__(self, other):
        # Always do true division
        return self._divide(other, true_divide=True)

    def __rtruediv__(self, other):
        # Implementing this as the inverse would be too magical -- bail out
        return NotImplemented

    def __rdiv__(self, other):
        # Implementing this as the inverse would be too magical -- bail out
        return NotImplemented

    def __neg__(self):
        return -self.tocsr()

    def __iadd__(self, other):
        return NotImplemented

    def __isub__(self, other):
        return NotImplemented

    def __imul__(self, other):
        return NotImplemented

    def __idiv__(self, other):
        return self.__itruediv__(other)

    def __itruediv__(self, other):
        return NotImplemented

    def __pow__(self, *args, **kwargs):
        return self.power(*args, **kwargs)

    def transpose(self, axes=None, copy=False):
        """
        Reverses the dimensions of the sparse array/matrix.

        Parameters
        ----------
        axes : None, optional
            This argument is in the signature *solely* for NumPy
            compatibility reasons. Do not pass in anything except
            for the default value.
        copy : bool, optional
            Indicates whether or not attributes of `self` should be
            copied whenever possible. The degree to which attributes
            are copied varies depending on the type of sparse array/matrix
            being used.

        Returns
        -------
        p : `self` with the dimensions reversed.

        Notes
        -----
        If `self` is a `csr_array` or a `csc_array`, then this will return a
        `csc_array` or a `csr_array`, respectively.

        See Also
        --------
        numpy.transpose : NumPy's implementation of 'transpose' for ndarrays
        """
        return self.tocsr(copy=copy).transpose(axes=axes, copy=False)

    def conjugate(self, copy=True):
        """Element-wise complex conjugation.

        If the array/matrix is of non-complex data type and `copy` is False,
        this method does nothing and the data is not copied.

        Parameters
        ----------
        copy : bool, optional
            If True, the result is guaranteed to not share data with self.

        Returns
        -------
        A : The element-wise complex conjugate.

        """
        if np.issubdtype(self.dtype, np.complexfloating):
            return self.tocsr(copy=copy).conjugate(copy=False)
        elif copy:
            return self.copy()
        else:
            return self

    def conj(self, copy=True):
        return self.conjugate(copy=copy)

    conj.__doc__ = conjugate.__doc__

    def _real(self):
        return self.tocsr()._real()

    def _imag(self):
        return self.tocsr()._imag()

    def nonzero(self):
        """Nonzero indices of the array/matrix.

        Returns a tuple of arrays (row,col) containing the indices
        of the non-zero elements of the array.

        Examples
        --------
        >>> from scipy.sparse import csr_array
        >>> A = csr_array([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
        >>> A.nonzero()
        (array([0, 0, 1, 2, 2], dtype=int32), array([0, 1, 2, 0, 2], dtype=int32))

        """

        # convert to COOrdinate format
        A = self.tocoo()
        nz_mask = A.data != 0
        return tuple(idx[nz_mask] for idx in A.coords)

    def _getcol(self, j):
        """Returns a copy of column j of the array, as an (m x 1) sparse
        array (column vector).
        """
        if self.ndim == 1:
            raise ValueError("getcol not provided for 1d arrays. Use indexing A[j]")
        # Subclasses should override this method for efficiency.
        # Post-multiply by a (n x 1) column vector 'a' containing all zeros
        # except for a_j = 1
        N = self.shape[-1]
        if j < 0:
            j += N
        if j < 0 or j >= N:
            raise IndexError("index out of bounds")
        col_selector = self._csc_container(([1], [[j], [0]]),
                                           shape=(N, 1), dtype=self.dtype)
        result = self @ col_selector
        return result

    def _getrow(self, i):
        """Returns a copy of row i of the array, as a (1 x n) sparse
        array (row vector).
        """
        if self.ndim == 1:
            raise ValueError("getrow not meaningful for a 1d array")
        # Subclasses should override this method for efficiency.
        # Pre-multiply by a (1 x m) row vector 'a' containing all zeros
        # except for a_i = 1
        M = self.shape[0]
        if i < 0:
            i += M
        if i < 0 or i >= M:
            raise IndexError("index out of bounds")
        row_selector = self._csr_container(([1], [[0], [i]]),
                                           shape=(1, M), dtype=self.dtype)
        return row_selector @ self

    # The following dunder methods cannot be implemented.
    #
    # def __array__(self):
    #     # Sparse matrices rely on NumPy wrapping them in object arrays under
    #     # the hood to make unary ufuncs work on them. So we cannot raise
    #     # TypeError here - which would be handy to not give users object
    #     # arrays they probably don't want (they're looking for `.toarray()`).
    #     #
    #     # Conversion with `toarray()` would also break things because of the
    #     # behavior discussed above, plus we want to avoid densification by
    #     # accident because that can too easily blow up memory.
    #
    # def __array_ufunc__(self):
    #     # We cannot implement __array_ufunc__ due to mismatching semantics.
    #     # See gh-7707 and gh-7349 for details.
    #
    # def __array_function__(self):
    #     # We cannot implement __array_function__ due to mismatching semantics.
    #     # See gh-10362 for details.

    def todense(self, order=None, out=None):
        """
        Return a dense representation of this sparse array.

        Parameters
        ----------
        order : {'C', 'F'}, optional
            Whether to store multi-dimensional data in C (row-major)
            or Fortran (column-major) order in memory. The default
            is 'None', which provides no ordering guarantees.
            Cannot be specified in conjunction with the `out`
            argument.

        out : ndarray, 2-D, optional
            If specified, uses this array as the output buffer
            instead of allocating a new array to return. The
            provided array must have the same shape and dtype as
            the sparse array on which you are calling the method.

        Returns
        -------
        arr : ndarray, 2-D
            An array with the same shape and containing the same
            data represented by the sparse array, with the requested
            memory order. If `out` was passed, the same object is
            returned after being modified in-place to contain the
            appropriate values.
        """
        return self._ascontainer(self.toarray(order=order, out=out))

    def toarray(self, order=None, out=None):
        """
        Return a dense ndarray representation of this sparse array/matrix.

        Parameters
        ----------
        order : {'C', 'F'}, optional
            Whether to store multidimensional data in C (row-major)
            or Fortran (column-major) order in memory. The default
            is 'None', which provides no ordering guarantees.
            Cannot be specified in conjunction with the `out`
            argument.

        out : ndarray, 2-D, optional
            If specified, uses this array as the output buffer
            instead of allocating a new array to return. The provided
            array must have the same shape and dtype as the sparse
            array/matrix on which you are calling the method. For most
            sparse types, `out` is required to be memory contiguous
            (either C or Fortran ordered).

        Returns
        -------
        arr : ndarray, 2-D
            An array with the same shape and containing the same
            data represented by the sparse array/matrix, with the requested
            memory order. If `out` was passed, the same object is
            returned after being modified in-place to contain the
            appropriate values.
        """
        return self.tocoo(copy=False).toarray(order=order, out=out)

    # Any sparse array format deriving from _spbase must define one of
    # tocsr or tocoo. The other conversion methods may be implemented for
    # efficiency, but are not required.
    def tocsr(self, copy=False):
        """Convert this array/matrix to Compressed Sparse Row format.

        With copy=False, the data/indices may be shared between this array/matrix and
        the resultant csr_array/matrix.
        """
        return self.tocoo(copy=copy).tocsr(copy=False)

    def todok(self, copy=False):
        """Convert this array/matrix to Dictionary Of Keys format.

        With copy=False, the data/indices may be shared between this array/matrix and
        the resultant dok_array/matrix.
        """
        return self.tocoo(copy=copy).todok(copy=False)

    def tocoo(self, copy=False):
        """Convert this array/matrix to COOrdinate format.

        With copy=False, the data/indices may be shared between this array/matrix and
        the resultant coo_array/matrix.
        """
        return self.tocsr(copy=False).tocoo(copy=copy)

    def tolil(self, copy=False):
        """Convert this array/matrix to List of Lists format.

        With copy=False, the data/indices may be shared between this array/matrix and
        the resultant lil_array/matrix.
        """
        return self.tocsr(copy=False).tolil(copy=copy)

    def todia(self, copy=False):
        """Convert this array/matrix to sparse DIAgonal format.

        With copy=False, the data/indices may be shared between this array/matrix and
        the resultant dia_array/matrix.
        """
        return self.tocoo(copy=copy).todia(copy=False)

    def tobsr(self, blocksize=None, copy=False):
        """Convert this array/matrix to Block Sparse Row format.

        With copy=False, the data/indices may be shared between this array/matrix and
        the resultant bsr_array/matrix.

        When blocksize=(R, C) is provided, it will be used for construction of
        the bsr_array/matrix.
        """
        return self.tocsr(copy=False).tobsr(blocksize=blocksize, copy=copy)

    def tocsc(self, copy=False):
        """Convert this array/matrix to Compressed Sparse Column format.

        With copy=False, the data/indices may be shared between this array/matrix and
        the resultant csc_array/matrix.
        """
        return self.tocsr(copy=copy).tocsc(copy=False)

    def copy(self):
        """Returns a copy of this array/matrix.

        No data/indices will be shared between the returned value and current
        array/matrix.
        """
        return self.__class__(self, copy=True)

    def sum(self, axis=None, dtype=None, out=None):
        """
        Sum the array/matrix elements over a given axis.

        Parameters
        ----------
        axis : {-2, -1, 0, 1, None} optional
            Axis along which the sum is computed. The default is to
            compute the sum of all the array/matrix elements, returning a scalar
            (i.e., `axis` = `None`).
        dtype : dtype, optional
            The type of the returned array/matrix and of the accumulator in which
            the elements are summed.  The dtype of `a` is used by default
            unless `a` has an integer dtype of less precision than the default
            platform integer.  In that case, if `a` is signed then the platform
            integer is used while if `a` is unsigned then an unsigned integer
            of the same precision as the platform integer is used.

            .. versionadded:: 0.18.0

        out : np.matrix, optional
            Alternative output matrix in which to place the result. It must
            have the same shape as the expected output, but the type of the
            output values will be cast if necessary.

            .. versionadded:: 0.18.0

        Returns
        -------
        sum_along_axis : np.matrix
            A matrix with the same shape as `self`, with the specified
            axis removed.

        See Also
        --------
        numpy.matrix.sum : NumPy's implementation of 'sum' for matrices

        """
        validateaxis(axis)

        # Mimic numpy's casting.
        res_dtype = get_sum_dtype(self.dtype)

        if self.ndim == 1:
            if axis not in (None, -1, 0):
                raise ValueError("axis must be None, -1 or 0")
            ret = (self @ np.ones(self.shape, dtype=res_dtype)).astype(dtype)

            if out is not None:
                if any(dim != 1 for dim in out.shape):
                    raise ValueError("dimensions do not match")
                out[...] = ret
            return ret

        # We use multiplication by a matrix of ones to achieve this.
        # For some sparse array formats more efficient methods are
        # possible -- these should override this function.
        M, N = self.shape

        if axis is None:
            # sum over rows and columns
            return (
                self @ self._ascontainer(np.ones((N, 1), dtype=res_dtype))
            ).sum(dtype=dtype, out=out)

        if axis < 0:
            axis += 2

        # axis = 0 or 1 now
        if axis == 0:
            # sum over columns
            ret = self._ascontainer(
                np.ones((1, M), dtype=res_dtype)
            ) @ self
        else:
            # sum over rows
            ret = self @ self._ascontainer(
                np.ones((N, 1), dtype=res_dtype)
            )

        if out is not None:
            if isinstance(self, sparray):
                ret_shape = ret.shape[:axis] + ret.shape[axis + 1:]
            else:
                ret_shape = ret.shape
            if out.shape != ret_shape:
                raise ValueError("dimensions do not match")

        return ret.sum(axis=axis, dtype=dtype, out=out)

    def mean(self, axis=None, dtype=None, out=None):
        """
        Compute the arithmetic mean along the specified axis.

        Returns the average of the array/matrix elements. The average is taken
        over all elements in the array/matrix by default, otherwise over the
        specified axis. `float64` intermediate and return values are used
        for integer inputs.

        Parameters
        ----------
        axis : {-2, -1, 0, 1, None} optional
            Axis along which the mean is computed. The default is to compute
            the mean of all elements in the array/matrix (i.e., `axis` = `None`).
        dtype : data-type, optional
            Type to use in computing the mean. For integer inputs, the default
            is `float64`; for floating point inputs, it is the same as the
            input dtype.

            .. versionadded:: 0.18.0

        out : np.matrix, optional
            Alternative output matrix in which to place the result. It must
            have the same shape as the expected output, but the type of the
            output values will be cast if necessary.

            .. versionadded:: 0.18.0

        Returns
        -------
        m : np.matrix

        See Also
        --------
        numpy.matrix.mean : NumPy's implementation of 'mean' for matrices

        """
        validateaxis(axis)

        res_dtype = self.dtype.type
        integral = (np.issubdtype(self.dtype, np.integer) or
                    np.issubdtype(self.dtype, np.bool_))

        # output dtype
        if dtype is None:
            if integral:
                res_dtype = np.float64
        else:
            res_dtype = np.dtype(dtype).type

        # intermediate dtype for summation
        inter_dtype = np.float64 if integral else res_dtype
        inter_self = self.astype(inter_dtype)

        if self.ndim == 1:
            if axis not in (None, -1, 0):
                raise ValueError("axis must be None, -1 or 0")
            res = inter_self / self.shape[-1]
            return res.sum(dtype=res_dtype, out=out)

        if axis is None:
            return (inter_self / (self.shape[0] * self.shape[1]))\
                .sum(dtype=res_dtype, out=out)

        if axis < 0:
            axis += 2

        # axis = 0 or 1 now
        if axis == 0:
            return (inter_self * (1.0 / self.shape[0])).sum(
                axis=0, dtype=res_dtype, out=out)
        else:
            return (inter_self * (1.0 / self.shape[1])).sum(
                axis=1, dtype=res_dtype, out=out)

    def diagonal(self, k=0):
        """Returns the kth diagonal of the array/matrix.

        Parameters
        ----------
        k : int, optional
            Which diagonal to get, corresponding to elements a[i, i+k].
            Default: 0 (the main diagonal).

            .. versionadded:: 1.0

        See also
        --------
        numpy.diagonal : Equivalent numpy function.

        Examples
        --------
        >>> from scipy.sparse import csr_array
        >>> A = csr_array([[1, 2, 0], [0, 0, 3], [4, 0, 5]])
        >>> A.diagonal()
        array([1, 0, 5])
        >>> A.diagonal(k=1)
        array([2, 3])
        """
        return self.tocsr().diagonal(k=k)

    def trace(self, offset=0):
        """Returns the sum along diagonals of the sparse array/matrix.

        Parameters
        ----------
        offset : int, optional
            Which diagonal to get, corresponding to elements a[i, i+offset].
            Default: 0 (the main diagonal).

        """
        return self.diagonal(k=offset).sum()

    def setdiag(self, values, k=0):
        """
        Set diagonal or off-diagonal elements of the array/matrix.

        Parameters
        ----------
        values : array_like
            New values of the diagonal elements.

            Values may have any length. If the diagonal is longer than values,
            then the remaining diagonal entries will not be set. If values are
            longer than the diagonal, then the remaining values are ignored.

            If a scalar value is given, all of the diagonal is set to it.

        k : int, optional
            Which off-diagonal to set, corresponding to elements a[i,i+k].
            Default: 0 (the main diagonal).

        """
        M, N = self.shape
        if (k > 0 and k >= N) or (k < 0 and -k >= M):
            raise ValueError("k exceeds array dimensions")
        self._setdiag(np.asarray(values), k)

    def _setdiag(self, values, k):
        """This part of the implementation gets overridden by the
        different formats.
        """
        M, N = self.shape
        if k < 0:
            if values.ndim == 0:
                # broadcast
                max_index = min(M+k, N)
                for i in range(max_index):
                    self[i - k, i] = values
            else:
                max_index = min(M+k, N, len(values))
                if max_index <= 0:
                    return
                for i, v in enumerate(values[:max_index]):
                    self[i - k, i] = v
        else:
            if values.ndim == 0:
                # broadcast
                max_index = min(M, N-k)
                for i in range(max_index):
                    self[i, i + k] = values
            else:
                max_index = min(M, N-k, len(values))
                if max_index <= 0:
                    return
                for i, v in enumerate(values[:max_index]):
                    self[i, i + k] = v

    def _process_toarray_args(self, order, out):
        if out is not None:
            if order is not None:
                raise ValueError('order cannot be specified if out '
                                 'is not None')
            if out.shape != self.shape or out.dtype != self.dtype:
                raise ValueError('out array must be same dtype and shape as '
                                 'sparse array')
            out[...] = 0.
            return out
        else:
            return np.zeros(self.shape, dtype=self.dtype, order=order)

    def _get_index_dtype(self, arrays=(), maxval=None, check_contents=False):
        """
        Determine index dtype for array.

        This wraps _sputils.get_index_dtype, providing compatibility for both
        array and matrix API sparse matrices. Matrix API sparse matrices would
        attempt to downcast the indices - which can be computationally
        expensive and undesirable for users. The array API changes this
        behaviour.

        See discussion: https://github.com/scipy/scipy/issues/16774

        The get_index_dtype import is due to implementation details of the test
        suite. It allows the decorator ``with_64bit_maxval_limit`` to mock a
        lower int32 max value for checks on the matrix API's downcasting
        behaviour.
        """
        from ._sputils import get_index_dtype

        # Don't check contents for array API
        return get_index_dtype(arrays,
                               maxval,
                               (check_contents and not isinstance(self, sparray)))


class sparray:
    """A namespace class to separate sparray from spmatrix"""


sparray.__doc__ = _spbase.__doc__


def issparse(x):
    """Is `x` of a sparse array or sparse matrix type?

    Parameters
    ----------
    x
        object to check for being a sparse array or sparse matrix

    Returns
    -------
    bool
        True if `x` is a sparse array or a sparse matrix, False otherwise

    Notes
    -----
    Use `isinstance(x, sp.sparse.sparray)` to check between an array or matrix.
    Use `a.format` to check the sparse format, e.g. `a.format == 'csr'`.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse import csr_array, csr_matrix, issparse
    >>> issparse(csr_matrix([[5]]))
    True
    >>> issparse(csr_array([[5]]))
    True
    >>> issparse(np.array([[5]]))
    False
    >>> issparse(5)
    False
    """
    return isinstance(x, _spbase)


def isspmatrix(x):
    """Is `x` of a sparse matrix type?

    Parameters
    ----------
    x
        object to check for being a sparse matrix

    Returns
    -------
    bool
        True if `x` is a sparse matrix, False otherwise

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse import csr_array, csr_matrix, isspmatrix
    >>> isspmatrix(csr_matrix([[5]]))
    True
    >>> isspmatrix(csr_array([[5]]))
    False
    >>> isspmatrix(np.array([[5]]))
    False
    >>> isspmatrix(5)
    False
    """
    return isinstance(x, spmatrix)