File size: 18,273 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
"""
Laplacian of a compressed-sparse graph
"""
import numpy as np
from scipy.sparse import issparse
from scipy.sparse.linalg import LinearOperator
from scipy.sparse._sputils import convert_pydata_sparse_to_scipy, is_pydata_spmatrix
###############################################################################
# Graph laplacian
def laplacian(
csgraph,
normed=False,
return_diag=False,
use_out_degree=False,
*,
copy=True,
form="array",
dtype=None,
symmetrized=False,
):
"""
Return the Laplacian of a directed graph.
Parameters
----------
csgraph : array_like or sparse array or matrix, 2 dimensions
compressed-sparse graph, with shape (N, N).
normed : bool, optional
If True, then compute symmetrically normalized Laplacian.
Default: False.
return_diag : bool, optional
If True, then also return an array related to vertex degrees.
Default: False.
use_out_degree : bool, optional
If True, then use out-degree instead of in-degree.
This distinction matters only if the graph is asymmetric.
Default: False.
copy: bool, optional
If False, then change `csgraph` in place if possible,
avoiding doubling the memory use.
Default: True, for backward compatibility.
form: 'array', or 'function', or 'lo'
Determines the format of the output Laplacian:
* 'array' is a numpy array;
* 'function' is a pointer to evaluating the Laplacian-vector
or Laplacian-matrix product;
* 'lo' results in the format of the `LinearOperator`.
Choosing 'function' or 'lo' always avoids doubling
the memory use, ignoring `copy` value.
Default: 'array', for backward compatibility.
dtype: None or one of numeric numpy dtypes, optional
The dtype of the output. If ``dtype=None``, the dtype of the
output matches the dtype of the input csgraph, except for
the case ``normed=True`` and integer-like csgraph, where
the output dtype is 'float' allowing accurate normalization,
but dramatically increasing the memory use.
Default: None, for backward compatibility.
symmetrized: bool, optional
If True, then the output Laplacian is symmetric/Hermitian.
The symmetrization is done by ``csgraph + csgraph.T.conj``
without dividing by 2 to preserve integer dtypes if possible
prior to the construction of the Laplacian.
The symmetrization will increase the memory footprint of
sparse matrices unless the sparsity pattern is symmetric or
`form` is 'function' or 'lo'.
Default: False, for backward compatibility.
Returns
-------
lap : ndarray, or sparse array or matrix, or `LinearOperator`
The N x N Laplacian of csgraph. It will be a NumPy array (dense)
if the input was dense, or a sparse array otherwise, or
the format of a function or `LinearOperator` if
`form` equals 'function' or 'lo', respectively.
diag : ndarray, optional
The length-N main diagonal of the Laplacian matrix.
For the normalized Laplacian, this is the array of square roots
of vertex degrees or 1 if the degree is zero.
Notes
-----
The Laplacian matrix of a graph is sometimes referred to as the
"Kirchhoff matrix" or just the "Laplacian", and is useful in many
parts of spectral graph theory.
In particular, the eigen-decomposition of the Laplacian can give
insight into many properties of the graph, e.g.,
is commonly used for spectral data embedding and clustering.
The constructed Laplacian doubles the memory use if ``copy=True`` and
``form="array"`` which is the default.
Choosing ``copy=False`` has no effect unless ``form="array"``
or the matrix is sparse in the ``coo`` format, or dense array, except
for the integer input with ``normed=True`` that forces the float output.
Sparse input is reformatted into ``coo`` if ``form="array"``,
which is the default.
If the input adjacency matrix is not symmetric, the Laplacian is
also non-symmetric unless ``symmetrized=True`` is used.
Diagonal entries of the input adjacency matrix are ignored and
replaced with zeros for the purpose of normalization where ``normed=True``.
The normalization uses the inverse square roots of row-sums of the input
adjacency matrix, and thus may fail if the row-sums contain
negative or complex with a non-zero imaginary part values.
The normalization is symmetric, making the normalized Laplacian also
symmetric if the input csgraph was symmetric.
References
----------
.. [1] Laplacian matrix. https://en.wikipedia.org/wiki/Laplacian_matrix
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csgraph
Our first illustration is the symmetric graph
>>> G = np.arange(4) * np.arange(4)[:, np.newaxis]
>>> G
array([[0, 0, 0, 0],
[0, 1, 2, 3],
[0, 2, 4, 6],
[0, 3, 6, 9]])
and its symmetric Laplacian matrix
>>> csgraph.laplacian(G)
array([[ 0, 0, 0, 0],
[ 0, 5, -2, -3],
[ 0, -2, 8, -6],
[ 0, -3, -6, 9]])
The non-symmetric graph
>>> G = np.arange(9).reshape(3, 3)
>>> G
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
has different row- and column sums, resulting in two varieties
of the Laplacian matrix, using an in-degree, which is the default
>>> L_in_degree = csgraph.laplacian(G)
>>> L_in_degree
array([[ 9, -1, -2],
[-3, 8, -5],
[-6, -7, 7]])
or alternatively an out-degree
>>> L_out_degree = csgraph.laplacian(G, use_out_degree=True)
>>> L_out_degree
array([[ 3, -1, -2],
[-3, 8, -5],
[-6, -7, 13]])
Constructing a symmetric Laplacian matrix, one can add the two as
>>> L_in_degree + L_out_degree.T
array([[ 12, -4, -8],
[ -4, 16, -12],
[ -8, -12, 20]])
or use the ``symmetrized=True`` option
>>> csgraph.laplacian(G, symmetrized=True)
array([[ 12, -4, -8],
[ -4, 16, -12],
[ -8, -12, 20]])
that is equivalent to symmetrizing the original graph
>>> csgraph.laplacian(G + G.T)
array([[ 12, -4, -8],
[ -4, 16, -12],
[ -8, -12, 20]])
The goal of normalization is to make the non-zero diagonal entries
of the Laplacian matrix to be all unit, also scaling off-diagonal
entries correspondingly. The normalization can be done manually, e.g.,
>>> G = np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]])
>>> L, d = csgraph.laplacian(G, return_diag=True)
>>> L
array([[ 2, -1, -1],
[-1, 2, -1],
[-1, -1, 2]])
>>> d
array([2, 2, 2])
>>> scaling = np.sqrt(d)
>>> scaling
array([1.41421356, 1.41421356, 1.41421356])
>>> (1/scaling)*L*(1/scaling)
array([[ 1. , -0.5, -0.5],
[-0.5, 1. , -0.5],
[-0.5, -0.5, 1. ]])
Or using ``normed=True`` option
>>> L, d = csgraph.laplacian(G, return_diag=True, normed=True)
>>> L
array([[ 1. , -0.5, -0.5],
[-0.5, 1. , -0.5],
[-0.5, -0.5, 1. ]])
which now instead of the diagonal returns the scaling coefficients
>>> d
array([1.41421356, 1.41421356, 1.41421356])
Zero scaling coefficients are substituted with 1s, where scaling
has thus no effect, e.g.,
>>> G = np.array([[0, 0, 0], [0, 0, 1], [0, 1, 0]])
>>> G
array([[0, 0, 0],
[0, 0, 1],
[0, 1, 0]])
>>> L, d = csgraph.laplacian(G, return_diag=True, normed=True)
>>> L
array([[ 0., -0., -0.],
[-0., 1., -1.],
[-0., -1., 1.]])
>>> d
array([1., 1., 1.])
Only the symmetric normalization is implemented, resulting
in a symmetric Laplacian matrix if and only if its graph is symmetric
and has all non-negative degrees, like in the examples above.
The output Laplacian matrix is by default a dense array or a sparse
array or matrix inferring its class, shape, format, and dtype from
the input graph matrix:
>>> G = np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]]).astype(np.float32)
>>> G
array([[0., 1., 1.],
[1., 0., 1.],
[1., 1., 0.]], dtype=float32)
>>> csgraph.laplacian(G)
array([[ 2., -1., -1.],
[-1., 2., -1.],
[-1., -1., 2.]], dtype=float32)
but can alternatively be generated matrix-free as a LinearOperator:
>>> L = csgraph.laplacian(G, form="lo")
>>> L
<3x3 _CustomLinearOperator with dtype=float32>
>>> L(np.eye(3))
array([[ 2., -1., -1.],
[-1., 2., -1.],
[-1., -1., 2.]])
or as a lambda-function:
>>> L = csgraph.laplacian(G, form="function")
>>> L
<function _laplace.<locals>.<lambda> at 0x0000012AE6F5A598>
>>> L(np.eye(3))
array([[ 2., -1., -1.],
[-1., 2., -1.],
[-1., -1., 2.]])
The Laplacian matrix is used for
spectral data clustering and embedding
as well as for spectral graph partitioning.
Our final example illustrates the latter
for a noisy directed linear graph.
>>> from scipy.sparse import diags_array, random_array
>>> from scipy.sparse.linalg import lobpcg
Create a directed linear graph with ``N=35`` vertices
using a sparse adjacency matrix ``G``:
>>> N = 35
>>> G = diags_array(np.ones(N - 1), offsets=1, format="csr")
Fix a random seed ``rng`` and add a random sparse noise to the graph ``G``:
>>> rng = np.random.default_rng()
>>> G += 1e-2 * random_array((N, N), density=0.1, rng=rng)
Set initial approximations for eigenvectors:
>>> X = rng.random((N, 2))
The constant vector of ones is always a trivial eigenvector
of the non-normalized Laplacian to be filtered out:
>>> Y = np.ones((N, 1))
Alternating (1) the sign of the graph weights allows determining
labels for spectral max- and min- cuts in a single loop.
Since the graph is undirected, the option ``symmetrized=True``
must be used in the construction of the Laplacian.
The option ``normed=True`` cannot be used in (2) for the negative weights
here as the symmetric normalization evaluates square roots.
The option ``form="lo"`` in (2) is matrix-free, i.e., guarantees
a fixed memory footprint and read-only access to the graph.
Calling the eigenvalue solver ``lobpcg`` (3) computes the Fiedler vector
that determines the labels as the signs of its components in (5).
Since the sign in an eigenvector is not deterministic and can flip,
we fix the sign of the first component to be always +1 in (4).
>>> for cut in ["max", "min"]:
... G = -G # 1.
... L = csgraph.laplacian(G, symmetrized=True, form="lo") # 2.
... _, eves = lobpcg(L, X, Y=Y, largest=False, tol=1e-2) # 3.
... eves *= np.sign(eves[0, 0]) # 4.
... print(cut + "-cut labels:\\n", 1 * (eves[:, 0]>0)) # 5.
max-cut labels:
[1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1]
min-cut labels:
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
As anticipated for a (slightly noisy) linear graph,
the max-cut strips all the edges of the graph coloring all
odd vertices into one color and all even vertices into another one,
while the balanced min-cut partitions the graph
in the middle by deleting a single edge.
Both determined partitions are optimal.
"""
is_pydata_sparse = is_pydata_spmatrix(csgraph)
if is_pydata_sparse:
pydata_sparse_cls = csgraph.__class__
csgraph = convert_pydata_sparse_to_scipy(csgraph)
if csgraph.ndim != 2 or csgraph.shape[0] != csgraph.shape[1]:
raise ValueError('csgraph must be a square matrix or array')
if normed and (
np.issubdtype(csgraph.dtype, np.signedinteger)
or np.issubdtype(csgraph.dtype, np.uint)
):
csgraph = csgraph.astype(np.float64)
if form == "array":
create_lap = (
_laplacian_sparse if issparse(csgraph) else _laplacian_dense
)
else:
create_lap = (
_laplacian_sparse_flo
if issparse(csgraph)
else _laplacian_dense_flo
)
degree_axis = 1 if use_out_degree else 0
lap, d = create_lap(
csgraph,
normed=normed,
axis=degree_axis,
copy=copy,
form=form,
dtype=dtype,
symmetrized=symmetrized,
)
if is_pydata_sparse:
lap = pydata_sparse_cls.from_scipy_sparse(lap)
if return_diag:
return lap, d
return lap
def _setdiag_dense(m, d):
step = len(d) + 1
m.flat[::step] = d
def _laplace(m, d):
return lambda v: v * d[:, np.newaxis] - m @ v
def _laplace_normed(m, d, nd):
laplace = _laplace(m, d)
return lambda v: nd[:, np.newaxis] * laplace(v * nd[:, np.newaxis])
def _laplace_sym(m, d):
return (
lambda v: v * d[:, np.newaxis]
- m @ v
- np.transpose(np.conjugate(np.transpose(np.conjugate(v)) @ m))
)
def _laplace_normed_sym(m, d, nd):
laplace_sym = _laplace_sym(m, d)
return lambda v: nd[:, np.newaxis] * laplace_sym(v * nd[:, np.newaxis])
def _linearoperator(mv, shape, dtype):
return LinearOperator(matvec=mv, matmat=mv, shape=shape, dtype=dtype)
def _laplacian_sparse_flo(graph, normed, axis, copy, form, dtype, symmetrized):
# The keyword argument `copy` is unused and has no effect here.
del copy
if dtype is None:
dtype = graph.dtype
graph_sum = np.asarray(graph.sum(axis=axis)).ravel()
graph_diagonal = graph.diagonal()
diag = graph_sum - graph_diagonal
if symmetrized:
graph_sum += np.asarray(graph.sum(axis=1 - axis)).ravel()
diag = graph_sum - graph_diagonal - graph_diagonal
if normed:
isolated_node_mask = diag == 0
w = np.where(isolated_node_mask, 1, np.sqrt(diag))
if symmetrized:
md = _laplace_normed_sym(graph, graph_sum, 1.0 / w)
else:
md = _laplace_normed(graph, graph_sum, 1.0 / w)
if form == "function":
return md, w.astype(dtype, copy=False)
elif form == "lo":
m = _linearoperator(md, shape=graph.shape, dtype=dtype)
return m, w.astype(dtype, copy=False)
else:
raise ValueError(f"Invalid form: {form!r}")
else:
if symmetrized:
md = _laplace_sym(graph, graph_sum)
else:
md = _laplace(graph, graph_sum)
if form == "function":
return md, diag.astype(dtype, copy=False)
elif form == "lo":
m = _linearoperator(md, shape=graph.shape, dtype=dtype)
return m, diag.astype(dtype, copy=False)
else:
raise ValueError(f"Invalid form: {form!r}")
def _laplacian_sparse(graph, normed, axis, copy, form, dtype, symmetrized):
# The keyword argument `form` is unused and has no effect here.
del form
if dtype is None:
dtype = graph.dtype
needs_copy = False
if graph.format in ('lil', 'dok'):
m = graph.tocoo()
else:
m = graph
if copy:
needs_copy = True
if symmetrized:
m += m.T.conj()
w = np.asarray(m.sum(axis=axis)).ravel() - m.diagonal()
if normed:
m = m.tocoo(copy=needs_copy)
isolated_node_mask = (w == 0)
w = np.where(isolated_node_mask, 1, np.sqrt(w))
m.data /= w[m.row]
m.data /= w[m.col]
m.data *= -1
m.setdiag(1 - isolated_node_mask)
else:
if m.format == 'dia':
m = m.copy()
else:
m = m.tocoo(copy=needs_copy)
m.data *= -1
m.setdiag(w)
return m.astype(dtype, copy=False), w.astype(dtype)
def _laplacian_dense_flo(graph, normed, axis, copy, form, dtype, symmetrized):
if copy:
m = np.array(graph)
else:
m = np.asarray(graph)
if dtype is None:
dtype = m.dtype
graph_sum = m.sum(axis=axis)
graph_diagonal = m.diagonal()
diag = graph_sum - graph_diagonal
if symmetrized:
graph_sum += m.sum(axis=1 - axis)
diag = graph_sum - graph_diagonal - graph_diagonal
if normed:
isolated_node_mask = diag == 0
w = np.where(isolated_node_mask, 1, np.sqrt(diag))
if symmetrized:
md = _laplace_normed_sym(m, graph_sum, 1.0 / w)
else:
md = _laplace_normed(m, graph_sum, 1.0 / w)
if form == "function":
return md, w.astype(dtype, copy=False)
elif form == "lo":
m = _linearoperator(md, shape=graph.shape, dtype=dtype)
return m, w.astype(dtype, copy=False)
else:
raise ValueError(f"Invalid form: {form!r}")
else:
if symmetrized:
md = _laplace_sym(m, graph_sum)
else:
md = _laplace(m, graph_sum)
if form == "function":
return md, diag.astype(dtype, copy=False)
elif form == "lo":
m = _linearoperator(md, shape=graph.shape, dtype=dtype)
return m, diag.astype(dtype, copy=False)
else:
raise ValueError(f"Invalid form: {form!r}")
def _laplacian_dense(graph, normed, axis, copy, form, dtype, symmetrized):
if form != "array":
raise ValueError(f'{form!r} must be "array"')
if dtype is None:
dtype = graph.dtype
if copy:
m = np.array(graph)
else:
m = np.asarray(graph)
if dtype is None:
dtype = m.dtype
if symmetrized:
m += m.T.conj()
np.fill_diagonal(m, 0)
w = m.sum(axis=axis)
if normed:
isolated_node_mask = (w == 0)
w = np.where(isolated_node_mask, 1, np.sqrt(w))
m /= w
m /= w[:, np.newaxis]
m *= -1
_setdiag_dense(m, 1 - isolated_node_mask)
else:
m *= -1
_setdiag_dense(m, w)
return m.astype(dtype, copy=False), w.astype(dtype, copy=False)
|