File size: 15,275 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
"""Test of 1D aspects of sparse array classes"""

import pytest

import numpy as np
from numpy.testing import assert_equal, assert_allclose

from scipy.sparse import (
        bsr_array, csc_array, dia_array, lil_array,
        coo_array, csr_array, dok_array,
    )
from scipy.sparse._sputils import supported_dtypes, matrix
from scipy._lib._util import ComplexWarning


sup_complex = np.testing.suppress_warnings()
sup_complex.filter(ComplexWarning)


spcreators = [coo_array, csr_array, dok_array]
math_dtypes = [np.int64, np.float64, np.complex128]


@pytest.fixture
def dat1d():
    return np.array([3, 0, 1, 0], 'd')


@pytest.fixture
def datsp_math_dtypes(dat1d):
    dat_dtypes = {dtype: dat1d.astype(dtype) for dtype in math_dtypes}
    return {
        spcreator: [(dtype, dat, spcreator(dat)) for dtype, dat in dat_dtypes.items()]
        for spcreator in spcreators
    }


# Test init with 1D dense input
# sparrays which do not plan to support 1D
@pytest.mark.parametrize("spcreator", [bsr_array, csc_array, dia_array, lil_array])
def test_no_1d_support_in_init(spcreator):
    with pytest.raises(ValueError, match="arrays don't support 1D input"):
        spcreator([0, 1, 2, 3])


# Test init with nD dense input
# sparrays which do not yet support nD
@pytest.mark.parametrize(
    "spcreator", [csr_array, dok_array, bsr_array, csc_array, dia_array, lil_array]
)
def test_no_nd_support_in_init(spcreator):
    with pytest.raises(ValueError, match="arrays don't.*support 3D"):
        spcreator(np.ones((3, 2, 4)))


# Main tests class
@pytest.mark.parametrize("spcreator", spcreators)
class TestCommon1D:
    """test common functionality shared by 1D sparse formats"""

    def test_create_empty(self, spcreator):
        assert_equal(spcreator((3,)).toarray(), np.zeros(3))
        assert_equal(spcreator((3,)).nnz, 0)
        assert_equal(spcreator((3,)).count_nonzero(), 0)

    def test_invalid_shapes(self, spcreator):
        with pytest.raises(ValueError, match='elements cannot be negative'):
            spcreator((-3,))

    def test_repr(self, spcreator, dat1d):
        repr(spcreator(dat1d))

    def test_str(self, spcreator, dat1d):
        str(spcreator(dat1d))

    def test_neg(self, spcreator):
        A = np.array([-1, 0, 17, 0, -5, 0, 1, -4, 0, 0, 0, 0], 'd')
        assert_equal(-A, (-spcreator(A)).toarray())

    def test_1d_supported_init(self, spcreator):
        A = spcreator([0, 1, 2, 3])
        assert A.ndim == 1

    def test_reshape_1d_tofrom_row_or_column(self, spcreator):
        # add a dimension 1d->2d
        x = spcreator([1, 0, 7, 0, 0, 0, 0, -3, 0, 0, 0, 5])
        y = x.reshape(1, 12)
        desired = [[1, 0, 7, 0, 0, 0, 0, -3, 0, 0, 0, 5]]
        assert_equal(y.toarray(), desired)

        # remove a size-1 dimension 2d->1d
        x = spcreator(desired)
        y = x.reshape(12)
        assert_equal(y.toarray(), desired[0])
        y2 = x.reshape((12,))
        assert y.shape == y2.shape

        # make a 2d column into 1d. 2d->1d
        y = x.T.reshape(12)
        assert_equal(y.toarray(), desired[0])

    def test_reshape(self, spcreator):
        x = spcreator([1, 0, 7, 0, 0, 0, 0, -3, 0, 0, 0, 5])
        y = x.reshape((4, 3))
        desired = [[1, 0, 7], [0, 0, 0], [0, -3, 0], [0, 0, 5]]
        assert_equal(y.toarray(), desired)

        y = x.reshape((12,))
        assert y is x

        y = x.reshape(12)
        assert_equal(y.toarray(), x.toarray())

    def test_sum(self, spcreator):
        np.random.seed(1234)
        dat_1 = np.array([0, 1, 2, 3, -4, 5, -6, 7, 9])
        dat_2 = np.random.rand(5)
        dat_3 = np.array([])
        dat_4 = np.zeros((40,))
        arrays = [dat_1, dat_2, dat_3, dat_4]

        for dat in arrays:
            datsp = spcreator(dat)
            with np.errstate(over='ignore'):
                assert np.isscalar(datsp.sum())
                assert_allclose(dat.sum(), datsp.sum())
                assert_allclose(dat.sum(axis=None), datsp.sum(axis=None))
                assert_allclose(dat.sum(axis=0), datsp.sum(axis=0))
                assert_allclose(dat.sum(axis=-1), datsp.sum(axis=-1))

        # test `out` parameter
        datsp.sum(axis=0, out=np.zeros(()))

    def test_sum_invalid_params(self, spcreator):
        out = np.zeros((3,))  # wrong size for out
        dat = np.array([0, 1, 2])
        datsp = spcreator(dat)

        with pytest.raises(ValueError, match='axis must be None, -1 or 0'):
            datsp.sum(axis=1)
        with pytest.raises(TypeError, match='Tuples are not accepted'):
            datsp.sum(axis=(0, 1))
        with pytest.raises(TypeError, match='axis must be an integer'):
            datsp.sum(axis=1.5)
        with pytest.raises(ValueError, match='dimensions do not match'):
            datsp.sum(axis=0, out=out)

    def test_numpy_sum(self, spcreator):
        dat = np.array([0, 1, 2])
        datsp = spcreator(dat)

        dat_sum = np.sum(dat)
        datsp_sum = np.sum(datsp)

        assert_allclose(dat_sum, datsp_sum)

    def test_mean(self, spcreator):
        dat = np.array([0, 1, 2])
        datsp = spcreator(dat)

        assert_allclose(dat.mean(), datsp.mean())
        assert np.isscalar(datsp.mean(axis=None))
        assert_allclose(dat.mean(axis=None), datsp.mean(axis=None))
        assert_allclose(dat.mean(axis=0), datsp.mean(axis=0))
        assert_allclose(dat.mean(axis=-1), datsp.mean(axis=-1))

        with pytest.raises(ValueError, match='axis'):
            datsp.mean(axis=1)
        with pytest.raises(ValueError, match='axis'):
            datsp.mean(axis=-2)

    def test_mean_invalid_params(self, spcreator):
        out = np.asarray(np.zeros((1, 3)))
        dat = np.array([[0, 1, 2], [3, -4, 5], [-6, 7, 9]])

        datsp = spcreator(dat)
        with pytest.raises(ValueError, match='axis out of range'):
            datsp.mean(axis=3)
        with pytest.raises(TypeError, match='Tuples are not accepted'):
            datsp.mean(axis=(0, 1))
        with pytest.raises(TypeError, match='axis must be an integer'):
            datsp.mean(axis=1.5)
        with pytest.raises(ValueError, match='dimensions do not match'):
            datsp.mean(axis=1, out=out)

    def test_sum_dtype(self, spcreator):
        dat = np.array([0, 1, 2])
        datsp = spcreator(dat)

        for dtype in supported_dtypes:
            dat_sum = dat.sum(dtype=dtype)
            datsp_sum = datsp.sum(dtype=dtype)

            assert_allclose(dat_sum, datsp_sum)
            assert_equal(dat_sum.dtype, datsp_sum.dtype)

    def test_mean_dtype(self, spcreator):
        dat = np.array([0, 1, 2])
        datsp = spcreator(dat)

        for dtype in supported_dtypes:
            dat_mean = dat.mean(dtype=dtype)
            datsp_mean = datsp.mean(dtype=dtype)

            assert_allclose(dat_mean, datsp_mean)
            assert_equal(dat_mean.dtype, datsp_mean.dtype)

    def test_mean_out(self, spcreator):
        dat = np.array([0, 1, 2])
        datsp = spcreator(dat)

        dat_out = np.array([0])
        datsp_out = np.array([0])

        dat.mean(out=dat_out, keepdims=True)
        datsp.mean(out=datsp_out)
        assert_allclose(dat_out, datsp_out)

        dat.mean(axis=0, out=dat_out, keepdims=True)
        datsp.mean(axis=0, out=datsp_out)
        assert_allclose(dat_out, datsp_out)

    def test_numpy_mean(self, spcreator):
        dat = np.array([0, 1, 2])
        datsp = spcreator(dat)

        dat_mean = np.mean(dat)
        datsp_mean = np.mean(datsp)

        assert_allclose(dat_mean, datsp_mean)
        assert_equal(dat_mean.dtype, datsp_mean.dtype)

    @pytest.mark.thread_unsafe
    @sup_complex
    def test_from_array(self, spcreator):
        A = np.array([2, 3, 4])
        assert_equal(spcreator(A).toarray(), A)

        A = np.array([1.0 + 3j, 0, -1])
        assert_equal(spcreator(A).toarray(), A)
        assert_equal(spcreator(A, dtype='int16').toarray(), A.astype('int16'))

    @pytest.mark.thread_unsafe
    @sup_complex
    def test_from_list(self, spcreator):
        A = [2, 3, 4]
        assert_equal(spcreator(A).toarray(), A)

        A = [1.0 + 3j, 0, -1]
        assert_equal(spcreator(A).toarray(), np.array(A))
        assert_equal(
            spcreator(A, dtype='int16').toarray(), np.array(A).astype('int16')
        )

    @pytest.mark.thread_unsafe
    @sup_complex
    def test_from_sparse(self, spcreator):
        D = np.array([1, 0, 0])
        S = coo_array(D)
        assert_equal(spcreator(S).toarray(), D)
        S = spcreator(D)
        assert_equal(spcreator(S).toarray(), D)

        D = np.array([1.0 + 3j, 0, -1])
        S = coo_array(D)
        assert_equal(spcreator(S).toarray(), D)
        assert_equal(spcreator(S, dtype='int16').toarray(), D.astype('int16'))
        S = spcreator(D)
        assert_equal(spcreator(S).toarray(), D)
        assert_equal(spcreator(S, dtype='int16').toarray(), D.astype('int16'))

    def test_toarray(self, spcreator, dat1d):
        datsp = spcreator(dat1d)
        # Check C- or F-contiguous (default).
        chk = datsp.toarray()
        assert_equal(chk, dat1d)
        assert chk.flags.c_contiguous == chk.flags.f_contiguous

        # Check C-contiguous (with arg).
        chk = datsp.toarray(order='C')
        assert_equal(chk, dat1d)
        assert chk.flags.c_contiguous
        assert chk.flags.f_contiguous

        # Check F-contiguous (with arg).
        chk = datsp.toarray(order='F')
        assert_equal(chk, dat1d)
        assert chk.flags.c_contiguous
        assert chk.flags.f_contiguous

        # Check with output arg.
        out = np.zeros(datsp.shape, dtype=datsp.dtype)
        datsp.toarray(out=out)
        assert_equal(out, dat1d)

        # Check that things are fine when we don't initialize with zeros.
        out[...] = 1.0
        datsp.toarray(out=out)
        assert_equal(out, dat1d)

        # np.dot does not work with sparse matrices (unless scalars)
        # so this is testing whether dat1d matches datsp.toarray()
        a = np.array([1.0, 2.0, 3.0, 4.0])
        dense_dot_dense = np.dot(a, dat1d)
        check = np.dot(a, datsp.toarray())
        assert_equal(dense_dot_dense, check)

        b = np.array([1.0, 2.0, 3.0, 4.0])
        dense_dot_dense = np.dot(dat1d, b)
        check = np.dot(datsp.toarray(), b)
        assert_equal(dense_dot_dense, check)

        # Check bool data works.
        spbool = spcreator(dat1d, dtype=bool)
        arrbool = dat1d.astype(bool)
        assert_equal(spbool.toarray(), arrbool)

    def test_add(self, spcreator, datsp_math_dtypes):
        for dtype, dat, datsp in datsp_math_dtypes[spcreator]:
            a = dat.copy()
            a[0] = 2.0
            b = datsp
            c = b + a
            assert_equal(c, b.toarray() + a)

            # test broadcasting
            # Note: cant add nonzero scalar to sparray. Can add len 1 array
            c = b + a[0:1]
            assert_equal(c, b.toarray() + a[0])

    def test_radd(self, spcreator, datsp_math_dtypes):
        for dtype, dat, datsp in datsp_math_dtypes[spcreator]:
            a = dat.copy()
            a[0] = 2.0
            b = datsp
            c = a + b
            assert_equal(c, a + b.toarray())

    def test_rsub(self, spcreator, datsp_math_dtypes):
        for dtype, dat, datsp in datsp_math_dtypes[spcreator]:
            if dtype == np.dtype('bool'):
                # boolean array subtraction deprecated in 1.9.0
                continue

            assert_equal((dat - datsp), [0, 0, 0, 0])
            assert_equal((datsp - dat), [0, 0, 0, 0])
            assert_equal((0 - datsp).toarray(), -dat)

            A = spcreator([1, -4, 0, 2], dtype='d')
            assert_equal((dat - A), dat - A.toarray())
            assert_equal((A - dat), A.toarray() - dat)
            assert_equal(A.toarray() - datsp, A.toarray() - dat)
            assert_equal(datsp - A.toarray(), dat - A.toarray())

            # test broadcasting
            assert_equal(dat[:1] - datsp, dat[:1] - dat)

    def test_matmul_basic(self, spcreator):
        A = np.array([[2, 0, 3.0], [0, 0, 0], [0, 1, 2]])
        v = np.array([1, 0, 3])
        Asp = spcreator(A)
        vsp = spcreator(v)

        # sparse result when both args are sparse and result not scalar
        assert_equal((Asp @ vsp).toarray(), A @ v)
        assert_equal(A @ vsp, A @ v)
        assert_equal(Asp @ v, A @ v)
        assert_equal((vsp @ Asp).toarray(), v @ A)
        assert_equal(vsp @ A, v @ A)
        assert_equal(v @ Asp, v @ A)

        assert_equal(vsp @ vsp, v @ v)
        assert_equal(v @ vsp, v @ v)
        assert_equal(vsp @ v, v @ v)
        assert_equal((Asp @ Asp).toarray(), A @ A)
        assert_equal(A @ Asp, A @ A)
        assert_equal(Asp @ A, A @ A)

    def test_matvec(self, spcreator):
        A = np.array([2, 0, 3.0])
        Asp = spcreator(A)
        col = np.array([[1, 2, 3]]).T

        assert_allclose(Asp @ col, Asp.toarray() @ col)

        assert (A @ np.array([1, 2, 3])).shape == ()
        assert Asp @ np.array([1, 2, 3]) == 11
        assert (Asp @ np.array([1, 2, 3])).shape == ()
        assert (Asp @ np.array([[1], [2], [3]])).shape == (1,)
        # check result type
        assert isinstance(Asp @ matrix([[1, 2, 3]]).T, np.ndarray)

        # ensure exception is raised for improper dimensions
        bad_vecs = [np.array([1, 2]), np.array([1, 2, 3, 4]), np.array([[1], [2]])]
        for x in bad_vecs:
            with pytest.raises(ValueError, match='dimension mismatch'):
                Asp @ x

        # The current relationship between sparse matrix products and array
        # products is as follows:
        dot_result = np.dot(Asp.toarray(), [1, 2, 3])
        assert_allclose(Asp @ np.array([1, 2, 3]), dot_result)
        assert_allclose(Asp @ [[1], [2], [3]], dot_result.T)
        # Note that the result of Asp @ x is dense if x has a singleton dimension.

    def test_rmatvec(self, spcreator, dat1d):
        M = spcreator(dat1d)
        assert_allclose([1, 2, 3, 4] @ M, np.dot([1, 2, 3, 4], M.toarray()))
        row = np.array([[1, 2, 3, 4]])
        assert_allclose(row @ M, row @ M.toarray())

    def test_transpose(self, spcreator, dat1d):
        for A in [dat1d, np.array([])]:
            B = spcreator(A)
            assert_equal(B.toarray(), A)
            assert_equal(B.transpose().toarray(), A)
            assert_equal(B.dtype, A.dtype)

    def test_add_dense_to_sparse(self, spcreator, datsp_math_dtypes):
        for dtype, dat, datsp in datsp_math_dtypes[spcreator]:
            sum1 = dat + datsp
            assert_equal(sum1, dat + dat)
            sum2 = datsp + dat
            assert_equal(sum2, dat + dat)

    def test_iterator(self, spcreator):
        # test that __iter__ is compatible with NumPy
        B = np.arange(5)
        A = spcreator(B)

        if A.format not in ['coo', 'dia', 'bsr']:
            for x, y in zip(A, B):
                assert_equal(x, y)

    def test_resize(self, spcreator):
        # resize(shape) resizes the matrix in-place
        D = np.array([1, 0, 3, 4])
        S = spcreator(D)
        assert S.resize((3,)) is None
        assert_equal(S.toarray(), [1, 0, 3])
        S.resize((5,))
        assert_equal(S.toarray(), [1, 0, 3, 0, 0])