File size: 38,433 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
"""test sparse matrix construction functions"""

import numpy as np
from numpy import array
from numpy.testing import (assert_equal, assert_,
        assert_array_equal, assert_array_almost_equal_nulp)
import pytest
from pytest import raises as assert_raises
from scipy._lib._testutils import check_free_memory

from scipy.sparse import (csr_matrix, coo_matrix,
                          csr_array, coo_array,
                          csc_array, bsr_array,
                          dia_array, dok_array,
                          lil_array, csc_matrix,
                          bsr_matrix, dia_matrix,
                          lil_matrix, sparray, spmatrix,
                          _construct as construct)
from scipy.sparse._construct import rand as sprand

sparse_formats = ['csr','csc','coo','bsr','dia','lil','dok']

#TODO check whether format=XXX is respected


def _sprandn(m, n, density=0.01, format="coo", dtype=None, rng=None):
    # Helper function for testing.
    rng = np.random.default_rng(rng)
    data_rvs = rng.standard_normal
    return construct.random(m, n, density, format, dtype, rng, data_rvs)


def _sprandn_array(m, n, density=0.01, format="coo", dtype=None, rng=None):
    # Helper function for testing.
    rng = np.random.default_rng(rng)
    data_sampler = rng.standard_normal
    return construct.random_array((m, n), density=density, format=format, dtype=dtype,
                                  rng=rng, data_sampler=data_sampler)


class TestConstructUtils:

    @pytest.mark.parametrize("cls", [
        csc_array, csr_array, coo_array, bsr_array,
        dia_array, dok_array, lil_array
    ])
    def test_singleton_array_constructor(self, cls):
        with pytest.raises(
            ValueError,
            match=(
                'scipy sparse array classes do not support '
                'instantiation from a scalar'
            )
        ):
            cls(0)

    @pytest.mark.parametrize("cls", [
        csc_matrix, csr_matrix, coo_matrix,
        bsr_matrix, dia_matrix, lil_matrix
    ])
    def test_singleton_matrix_constructor(self, cls):
        """
        This test is for backwards compatibility post scipy 1.13.
        The behavior observed here is what is to be expected
        with the older matrix classes. This test comes with the
        exception of dok_matrix, which was not working pre scipy1.12
        (unlike the rest of these).
        """
        assert cls(0).shape == (1, 1)

    def test_spdiags(self):
        diags1 = array([[1, 2, 3, 4, 5]])
        diags2 = array([[1, 2, 3, 4, 5],
                         [6, 7, 8, 9,10]])
        diags3 = array([[1, 2, 3, 4, 5],
                         [6, 7, 8, 9,10],
                         [11,12,13,14,15]])

        cases = []
        cases.append((diags1, 0, 1, 1, [[1]]))
        cases.append((diags1, [0], 1, 1, [[1]]))
        cases.append((diags1, [0], 2, 1, [[1],[0]]))
        cases.append((diags1, [0], 1, 2, [[1,0]]))
        cases.append((diags1, [1], 1, 2, [[0,2]]))
        cases.append((diags1,[-1], 1, 2, [[0,0]]))
        cases.append((diags1, [0], 2, 2, [[1,0],[0,2]]))
        cases.append((diags1,[-1], 2, 2, [[0,0],[1,0]]))
        cases.append((diags1, [3], 2, 2, [[0,0],[0,0]]))
        cases.append((diags1, [0], 3, 4, [[1,0,0,0],[0,2,0,0],[0,0,3,0]]))
        cases.append((diags1, [1], 3, 4, [[0,2,0,0],[0,0,3,0],[0,0,0,4]]))
        cases.append((diags1, [2], 3, 5, [[0,0,3,0,0],[0,0,0,4,0],[0,0,0,0,5]]))

        cases.append((diags2, [0,2], 3, 3, [[1,0,8],[0,2,0],[0,0,3]]))
        cases.append((diags2, [-1,0], 3, 4, [[6,0,0,0],[1,7,0,0],[0,2,8,0]]))
        cases.append((diags2, [2,-3], 6, 6, [[0,0,3,0,0,0],
                                              [0,0,0,4,0,0],
                                              [0,0,0,0,5,0],
                                              [6,0,0,0,0,0],
                                              [0,7,0,0,0,0],
                                              [0,0,8,0,0,0]]))

        cases.append((diags3, [-1,0,1], 6, 6, [[6,12, 0, 0, 0, 0],
                                                [1, 7,13, 0, 0, 0],
                                                [0, 2, 8,14, 0, 0],
                                                [0, 0, 3, 9,15, 0],
                                                [0, 0, 0, 4,10, 0],
                                                [0, 0, 0, 0, 5, 0]]))
        cases.append((diags3, [-4,2,-1], 6, 5, [[0, 0, 8, 0, 0],
                                                 [11, 0, 0, 9, 0],
                                                 [0,12, 0, 0,10],
                                                 [0, 0,13, 0, 0],
                                                 [1, 0, 0,14, 0],
                                                 [0, 2, 0, 0,15]]))
        cases.append((diags3, [-1, 1, 2], len(diags3[0]), len(diags3[0]),
                      [[0, 7, 13, 0, 0],
                       [1, 0, 8, 14, 0],
                       [0, 2, 0, 9, 15],
                       [0, 0, 3, 0, 10],
                       [0, 0, 0, 4, 0]]))

        for d, o, m, n, result in cases:
            if len(d[0]) == m and m == n:
                assert_equal(construct.spdiags(d, o).toarray(), result)
            assert_equal(construct.spdiags(d, o, m, n).toarray(), result)
            assert_equal(construct.spdiags(d, o, (m, n)).toarray(), result)

    def test_diags(self):
        a = array([1, 2, 3, 4, 5])
        b = array([6, 7, 8, 9, 10])
        c = array([11, 12, 13, 14, 15])

        cases = []
        cases.append((a[:1], 0, (1, 1), [[1]]))
        cases.append(([a[:1]], [0], (1, 1), [[1]]))
        cases.append(([a[:1]], [0], (2, 1), [[1],[0]]))
        cases.append(([a[:1]], [0], (1, 2), [[1,0]]))
        cases.append(([a[:1]], [1], (1, 2), [[0,1]]))
        cases.append(([a[:2]], [0], (2, 2), [[1,0],[0,2]]))
        cases.append(([a[:1]],[-1], (2, 2), [[0,0],[1,0]]))
        cases.append(([a[:3]], [0], (3, 4), [[1,0,0,0],[0,2,0,0],[0,0,3,0]]))
        cases.append(([a[:3]], [1], (3, 4), [[0,1,0,0],[0,0,2,0],[0,0,0,3]]))
        cases.append(([a[:1]], [-2], (3, 5), [[0,0,0,0,0],[0,0,0,0,0],[1,0,0,0,0]]))
        cases.append(([a[:2]], [-1], (3, 5), [[0,0,0,0,0],[1,0,0,0,0],[0,2,0,0,0]]))
        cases.append(([a[:3]], [0], (3, 5), [[1,0,0,0,0],[0,2,0,0,0],[0,0,3,0,0]]))
        cases.append(([a[:3]], [1], (3, 5), [[0,1,0,0,0],[0,0,2,0,0],[0,0,0,3,0]]))
        cases.append(([a[:3]], [2], (3, 5), [[0,0,1,0,0],[0,0,0,2,0],[0,0,0,0,3]]))
        cases.append(([a[:2]], [3], (3, 5), [[0,0,0,1,0],[0,0,0,0,2],[0,0,0,0,0]]))
        cases.append(([a[:1]], [4], (3, 5), [[0,0,0,0,1],[0,0,0,0,0],[0,0,0,0,0]]))
        cases.append(([a[:1]], [-4], (5, 3), [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[1,0,0]]))
        cases.append(([a[:2]], [-3], (5, 3), [[0,0,0],[0,0,0],[0,0,0],[1,0,0],[0,2,0]]))
        cases.append(([a[:3]], [-2], (5, 3), [[0,0,0],[0,0,0],[1,0,0],[0,2,0],[0,0,3]]))
        cases.append(([a[:3]], [-1], (5, 3), [[0,0,0],[1,0,0],[0,2,0],[0,0,3],[0,0,0]]))
        cases.append(([a[:3]], [0], (5, 3), [[1,0,0],[0,2,0],[0,0,3],[0,0,0],[0,0,0]]))
        cases.append(([a[:2]], [1], (5, 3), [[0,1,0],[0,0,2],[0,0,0],[0,0,0],[0,0,0]]))
        cases.append(([a[:1]], [2], (5, 3), [[0,0,1],[0,0,0],[0,0,0],[0,0,0],[0,0,0]]))

        cases.append(([a[:3],b[:1]], [0,2], (3, 3), [[1,0,6],[0,2,0],[0,0,3]]))
        cases.append(([a[:2],b[:3]], [-1,0], (3, 4), [[6,0,0,0],[1,7,0,0],[0,2,8,0]]))
        cases.append(([a[:4],b[:3]], [2,-3], (6, 6), [[0,0,1,0,0,0],
                                                     [0,0,0,2,0,0],
                                                     [0,0,0,0,3,0],
                                                     [6,0,0,0,0,4],
                                                     [0,7,0,0,0,0],
                                                     [0,0,8,0,0,0]]))

        cases.append(([a[:4],b,c[:4]], [-1,0,1], (5, 5), [[6,11, 0, 0, 0],
                                                            [1, 7,12, 0, 0],
                                                            [0, 2, 8,13, 0],
                                                            [0, 0, 3, 9,14],
                                                            [0, 0, 0, 4,10]]))
        cases.append(([a[:2],b[:3],c], [-4,2,-1], (6, 5), [[0, 0, 6, 0, 0],
                                                          [11, 0, 0, 7, 0],
                                                          [0,12, 0, 0, 8],
                                                          [0, 0,13, 0, 0],
                                                          [1, 0, 0,14, 0],
                                                          [0, 2, 0, 0,15]]))

        # too long arrays are OK
        cases.append(([a], [0], (1, 1), [[1]]))
        cases.append(([a[:3],b], [0,2], (3, 3), [[1, 0, 6], [0, 2, 0], [0, 0, 3]]))
        cases.append((
            np.array([[1, 2, 3], [4, 5, 6]]),
            [0,-1],
            (3, 3),
            [[1, 0, 0], [4, 2, 0], [0, 5, 3]]
        ))

        # scalar case: broadcasting
        cases.append(([1,-2,1], [1,0,-1], (3, 3), [[-2, 1, 0],
                                                    [1, -2, 1],
                                                    [0, 1, -2]]))

        for d, o, shape, result in cases:
            err_msg = f"{d!r} {o!r} {shape!r} {result!r}"
            assert_equal(construct.diags(d, offsets=o, shape=shape).toarray(),
                         result, err_msg=err_msg)

            if (shape[0] == shape[1]
                and hasattr(d[0], '__len__')
                and len(d[0]) <= max(shape)):
                # should be able to find the shape automatically
                assert_equal(construct.diags(d, offsets=o).toarray(), result,
                             err_msg=err_msg)

    def test_diags_default(self):
        a = array([1, 2, 3, 4, 5])
        assert_equal(construct.diags(a).toarray(), np.diag(a))

    def test_diags_default_bad(self):
        a = array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6]])
        assert_raises(ValueError, construct.diags, a)

    def test_diags_bad(self):
        a = array([1, 2, 3, 4, 5])
        b = array([6, 7, 8, 9, 10])
        c = array([11, 12, 13, 14, 15])

        cases = []
        cases.append(([a[:0]], 0, (1, 1)))
        cases.append(([a[:4],b,c[:3]], [-1,0,1], (5, 5)))
        cases.append(([a[:2],c,b[:3]], [-4,2,-1], (6, 5)))
        cases.append(([a[:2],c,b[:3]], [-4,2,-1], None))
        cases.append(([], [-4,2,-1], None))
        cases.append(([1], [-5], (4, 4)))
        cases.append(([a], 0, None))

        for d, o, shape in cases:
            assert_raises(ValueError, construct.diags, d, offsets=o, shape=shape)

        assert_raises(TypeError, construct.diags, [[None]], offsets=[0])

    def test_diags_vs_diag(self):
        # Check that
        #
        #    diags([a, b, ...], [i, j, ...]) == diag(a, i) + diag(b, j) + ...
        #

        rng = np.random.RandomState(1234)

        for n_diags in [1, 2, 3, 4, 5, 10]:
            n = 1 + n_diags//2 + rng.randint(0, 10)

            offsets = np.arange(-n+1, n-1)
            rng.shuffle(offsets)
            offsets = offsets[:n_diags]

            diagonals = [rng.rand(n - abs(q)) for q in offsets]

            mat = construct.diags(diagonals, offsets=offsets)
            dense_mat = sum([np.diag(x, j) for x, j in zip(diagonals, offsets)])

            assert_array_almost_equal_nulp(mat.toarray(), dense_mat)

            if len(offsets) == 1:
                mat = construct.diags(diagonals[0], offsets=offsets[0])
                dense_mat = np.diag(diagonals[0], offsets[0])
                assert_array_almost_equal_nulp(mat.toarray(), dense_mat)

    def test_diags_dtype(self):
        x = construct.diags([2.2], offsets=[0], shape=(2, 2), dtype=int)
        assert_equal(x.dtype, int)
        assert_equal(x.toarray(), [[2, 0], [0, 2]])

    def test_diags_one_diagonal(self):
        d = list(range(5))
        for k in range(-5, 6):
            assert_equal(construct.diags(d, offsets=k).toarray(),
                         construct.diags([d], offsets=[k]).toarray())

    def test_diags_empty(self):
        x = construct.diags([])
        assert_equal(x.shape, (0, 0))

    @pytest.mark.parametrize("identity", [construct.identity, construct.eye_array])
    def test_identity(self, identity):
        assert_equal(identity(1).toarray(), [[1]])
        assert_equal(identity(2).toarray(), [[1,0],[0,1]])

        I = identity(3, dtype='int8', format='dia')
        assert_equal(I.dtype, np.dtype('int8'))
        assert_equal(I.format, 'dia')

        for fmt in sparse_formats:
            I = identity(3, format=fmt)
            assert_equal(I.format, fmt)
            assert_equal(I.toarray(), [[1,0,0],[0,1,0],[0,0,1]])

    @pytest.mark.parametrize("eye", [construct.eye, construct.eye_array])
    def test_eye(self, eye):
        assert_equal(eye(1,1).toarray(), [[1]])
        assert_equal(eye(2,3).toarray(), [[1,0,0],[0,1,0]])
        assert_equal(eye(3,2).toarray(), [[1,0],[0,1],[0,0]])
        assert_equal(eye(3,3).toarray(), [[1,0,0],[0,1,0],[0,0,1]])

        assert_equal(eye(3,3,dtype='int16').dtype, np.dtype('int16'))

        for m in [3, 5]:
            for n in [3, 5]:
                for k in range(-5,6):
                    # scipy.sparse.eye deviates from np.eye here. np.eye will
                    # create arrays of all 0's when the diagonal offset is
                    # greater than the size of the array. For sparse arrays
                    # this makes less sense, especially as it results in dia
                    # arrays with negative diagonals. Therefore sp.sparse.eye
                    # validates that diagonal offsets fall within the shape of
                    # the array. See gh-18555.
                    if (k > 0 and k > n) or (k < 0 and abs(k) > m):
                        with pytest.raises(
                            ValueError, match="Offset.*out of bounds"
                        ):
                            eye(m, n, k=k)

                    else:
                        assert_equal(
                            eye(m, n, k=k).toarray(),
                            np.eye(m, n, k=k)
                        )
                        if m == n:
                            assert_equal(
                                eye(m, k=k).toarray(),
                                np.eye(m, n, k=k)
                            )

    @pytest.mark.parametrize("eye", [construct.eye, construct.eye_array])
    def test_eye_one(self, eye):
        assert_equal(eye(1).toarray(), [[1]])
        assert_equal(eye(2).toarray(), [[1,0],[0,1]])

        I = eye(3, dtype='int8', format='dia')
        assert_equal(I.dtype, np.dtype('int8'))
        assert_equal(I.format, 'dia')

        for fmt in sparse_formats:
            I = eye(3, format=fmt)
            assert_equal(I.format, fmt)
            assert_equal(I.toarray(), [[1,0,0],[0,1,0],[0,0,1]])

    def test_eye_array_vs_matrix(self):
        assert isinstance(construct.eye_array(3), sparray)
        assert not isinstance(construct.eye(3), sparray)

    def test_kron(self):
        cases = []

        cases.append(array([[0]]))
        cases.append(array([[-1]]))
        cases.append(array([[4]]))
        cases.append(array([[10]]))
        cases.append(array([[0],[0]]))
        cases.append(array([[0,0]]))
        cases.append(array([[1,2],[3,4]]))
        cases.append(array([[0,2],[5,0]]))
        cases.append(array([[0,2,-6],[8,0,14]]))
        cases.append(array([[5,4],[0,0],[6,0]]))
        cases.append(array([[5,4,4],[1,0,0],[6,0,8]]))
        cases.append(array([[0,1,0,2,0,5,8]]))
        cases.append(array([[0.5,0.125,0,3.25],[0,2.5,0,0]]))

        # test all cases with some formats
        for a in cases:
            ca = csr_array(a)
            for b in cases:
                cb = csr_array(b)
                expected = np.kron(a, b)
                for fmt in sparse_formats[1:4]:
                    result = construct.kron(ca, cb, format=fmt)
                    assert_equal(result.format, fmt)
                    assert_array_equal(result.toarray(), expected)
                    assert isinstance(result, sparray)

        # test one case with all formats
        a = cases[-1]
        b = cases[-3]
        ca = csr_array(a)
        cb = csr_array(b)

        expected = np.kron(a, b)
        for fmt in sparse_formats:
            result = construct.kron(ca, cb, format=fmt)
            assert_equal(result.format, fmt)
            assert_array_equal(result.toarray(), expected)
            assert isinstance(result, sparray)

        # check that spmatrix returned when both inputs are spmatrix
        result = construct.kron(csr_matrix(a), csr_matrix(b), format=fmt)
        assert_equal(result.format, fmt)
        assert_array_equal(result.toarray(), expected)
        assert isinstance(result, spmatrix)

    def test_kron_ndim_exceptions(self):
        with pytest.raises(ValueError, match='requires 2D input'):
            construct.kron([[0], [1]], csr_array([0, 1]))
        with pytest.raises(ValueError, match='requires 2D input'):
            construct.kron(csr_array([0, 1]), [[0], [1]])
        # no exception if sparse arrays are not input (spmatrix inferred)
        construct.kron([[0], [1]], [0, 1])

    def test_kron_large(self):
        n = 2**16
        a = construct.diags_array([1], shape=(1, n), offsets=n-1)
        b = construct.diags_array([1], shape=(n, 1), offsets=1-n)

        construct.kron(a, a)
        construct.kron(b, b)

    def test_kronsum(self):
        cases = []

        cases.append(array([[0]]))
        cases.append(array([[-1]]))
        cases.append(array([[4]]))
        cases.append(array([[10]]))
        cases.append(array([[1,2],[3,4]]))
        cases.append(array([[0,2],[5,0]]))
        cases.append(array([[0,2,-6],[8,0,14],[0,3,0]]))
        cases.append(array([[1,0,0],[0,5,-1],[4,-2,8]]))

        # test all cases with default format
        for a in cases:
            for b in cases:
                result = construct.kronsum(csr_array(a), csr_array(b)).toarray()
                expected = (np.kron(np.eye(b.shape[0]), a)
                            + np.kron(b, np.eye(a.shape[0])))
                assert_array_equal(result, expected)

        # check that spmatrix returned when both inputs are spmatrix
        result = construct.kronsum(csr_matrix(a), csr_matrix(b)).toarray()
        assert_array_equal(result, expected)

    def test_kronsum_ndim_exceptions(self):
        with pytest.raises(ValueError, match='requires 2D input'):
            construct.kronsum([[0], [1]], csr_array([0, 1]))
        with pytest.raises(ValueError, match='requires 2D input'):
            construct.kronsum(csr_array([0, 1]), [[0], [1]])
        # no exception if sparse arrays are not input (spmatrix inferred)
        construct.kronsum([[0, 1], [1, 0]], [2])

    @pytest.mark.parametrize("coo_cls", [coo_matrix, coo_array])
    def test_vstack(self, coo_cls):
        A = coo_cls([[1,2],[3,4]])
        B = coo_cls([[5,6]])

        expected = array([[1, 2],
                          [3, 4],
                          [5, 6]])
        assert_equal(construct.vstack([A, B]).toarray(), expected)
        assert_equal(construct.vstack([A, B], dtype=np.float32).dtype,
                     np.float32)

        assert_equal(construct.vstack([A.todok(), B.todok()]).toarray(), expected)

        assert_equal(construct.vstack([A.tocsr(), B.tocsr()]).toarray(),
                     expected)
        result = construct.vstack([A.tocsr(), B.tocsr()],
                                  format="csr", dtype=np.float32)
        assert_equal(result.dtype, np.float32)
        assert_equal(result.indices.dtype, np.int32)
        assert_equal(result.indptr.dtype, np.int32)

        assert_equal(construct.vstack([A.tocsc(), B.tocsc()]).toarray(),
                     expected)
        result = construct.vstack([A.tocsc(), B.tocsc()],
                                  format="csc", dtype=np.float32)
        assert_equal(result.dtype, np.float32)
        assert_equal(result.indices.dtype, np.int32)
        assert_equal(result.indptr.dtype, np.int32)

    def test_vstack_maintain64bit_idx_dtype(self):
        # see gh-20389 v/hstack returns int32 idx_dtype with input int64 idx_dtype
        X = csr_array([[1, 0, 0], [0, 1, 0], [0, 1, 0]])
        X.indptr = X.indptr.astype(np.int64)
        X.indices = X.indices.astype(np.int64)
        assert construct.vstack([X, X]).indptr.dtype == np.int64
        assert construct.hstack([X, X]).indptr.dtype == np.int64

        X = csc_array([[1, 0, 0], [0, 1, 0], [0, 1, 0]])
        X.indptr = X.indptr.astype(np.int64)
        X.indices = X.indices.astype(np.int64)
        assert construct.vstack([X, X]).indptr.dtype == np.int64
        assert construct.hstack([X, X]).indptr.dtype == np.int64

        X = coo_array([[1, 0, 0], [0, 1, 0], [0, 1, 0]])
        X.coords = tuple(co.astype(np.int64) for co in X.coords)
        assert construct.vstack([X, X]).coords[0].dtype == np.int64
        assert construct.hstack([X, X]).coords[0].dtype == np.int64

    def test_vstack_matrix_or_array(self):
        A = [[1,2],[3,4]]
        B = [[5,6]]
        assert isinstance(construct.vstack([coo_array(A), coo_array(B)]), sparray)
        assert isinstance(construct.vstack([coo_array(A), coo_matrix(B)]), sparray)
        assert isinstance(construct.vstack([coo_matrix(A), coo_array(B)]), sparray)
        assert isinstance(construct.vstack([coo_matrix(A), coo_matrix(B)]), spmatrix)

    def test_vstack_1d_with_2d(self):
        # fixes gh-21064
        arr = csr_array([[1, 0, 0], [0, 1, 0]])
        arr1d = csr_array([1, 0, 0])
        arr1dcoo = coo_array([1, 0, 0])
        assert construct.vstack([arr, np.array([0, 0, 0])]).shape == (3, 3)
        assert construct.hstack([arr1d, np.array([[0]])]).shape == (1, 4)
        assert construct.hstack([arr1d, arr1d]).shape == (1, 6)
        assert construct.vstack([arr1d, arr1d]).shape == (2, 3)

        # check csr specialty stacking code like _stack_along_minor_axis
        assert construct.hstack([arr, arr]).shape == (2, 6)
        assert construct.hstack([arr1d, arr1d]).shape == (1, 6)

        assert construct.hstack([arr1d, arr1dcoo]).shape == (1, 6)
        assert construct.vstack([arr, arr1dcoo]).shape == (3, 3)
        assert construct.vstack([arr1d, arr1dcoo]).shape == (2, 3)

        with pytest.raises(ValueError, match="incompatible row dimensions"):
            construct.hstack([arr, np.array([0, 0])])
        with pytest.raises(ValueError, match="incompatible column dimensions"):
            construct.vstack([arr, np.array([0, 0])])

    @pytest.mark.parametrize("coo_cls", [coo_matrix, coo_array])
    def test_hstack(self, coo_cls):
        A = coo_cls([[1,2],[3,4]])
        B = coo_cls([[5],[6]])

        expected = array([[1, 2, 5],
                          [3, 4, 6]])
        assert_equal(construct.hstack([A, B]).toarray(), expected)
        assert_equal(construct.hstack([A, B], dtype=np.float32).dtype,
                     np.float32)

        assert_equal(construct.hstack([A.todok(), B.todok()]).toarray(), expected)

        assert_equal(construct.hstack([A.tocsc(), B.tocsc()]).toarray(),
                     expected)
        assert_equal(construct.hstack([A.tocsc(), B.tocsc()],
                                      dtype=np.float32).dtype,
                     np.float32)
        assert_equal(construct.hstack([A.tocsr(), B.tocsr()]).toarray(),
                     expected)
        assert_equal(construct.hstack([A.tocsr(), B.tocsr()],
                                      dtype=np.float32).dtype,
                     np.float32)

    def test_hstack_matrix_or_array(self):
        A = [[1,2],[3,4]]
        B = [[5],[6]]
        assert isinstance(construct.hstack([coo_array(A), coo_array(B)]), sparray)
        assert isinstance(construct.hstack([coo_array(A), coo_matrix(B)]), sparray)
        assert isinstance(construct.hstack([coo_matrix(A), coo_array(B)]), sparray)
        assert isinstance(construct.hstack([coo_matrix(A), coo_matrix(B)]), spmatrix)

    @pytest.mark.parametrize("block_array", (construct.bmat, construct.block_array))
    def test_block_creation(self, block_array):

        A = coo_array([[1, 2], [3, 4]])
        B = coo_array([[5],[6]])
        C = coo_array([[7]])
        D = coo_array((0, 0))

        expected = array([[1, 2, 5],
                          [3, 4, 6],
                          [0, 0, 7]])
        assert_equal(block_array([[A, B], [None, C]]).toarray(), expected)
        E = csr_array((1, 2), dtype=np.int32)
        assert_equal(block_array([[A.tocsr(), B.tocsr()],
                                  [E, C.tocsr()]]).toarray(),
                     expected)
        assert_equal(block_array([[A.tocsc(), B.tocsc()],
                                  [E.tocsc(), C.tocsc()]]).toarray(),
                     expected)

        expected = array([[1, 2, 0],
                          [3, 4, 0],
                          [0, 0, 7]])
        assert_equal(block_array([[A, None], [None, C]]).toarray(), expected)
        assert_equal(block_array([[A.tocsr(), E.T.tocsr()],
                                  [E, C.tocsr()]]).toarray(),
                     expected)
        assert_equal(block_array([[A.tocsc(), E.T.tocsc()],
                                  [E.tocsc(), C.tocsc()]]).toarray(),
                     expected)

        Z = csr_array((1, 1), dtype=np.int32)
        expected = array([[0, 5],
                          [0, 6],
                          [7, 0]])
        assert_equal(block_array([[None, B], [C, None]]).toarray(), expected)
        assert_equal(block_array([[E.T.tocsr(), B.tocsr()],
                                  [C.tocsr(), Z]]).toarray(),
                     expected)
        assert_equal(block_array([[E.T.tocsc(), B.tocsc()],
                                  [C.tocsc(), Z.tocsc()]]).toarray(),
                     expected)

        expected = np.empty((0, 0))
        assert_equal(block_array([[None, None]]).toarray(), expected)
        assert_equal(block_array([[None, D], [D, None]]).toarray(),
                     expected)

        # test bug reported in gh-5976
        expected = array([[7]])
        assert_equal(block_array([[None, D], [C, None]]).toarray(),
                     expected)

        # test failure cases
        with assert_raises(ValueError) as excinfo:
            block_array([[A], [B]])
        excinfo.match(r'Got blocks\[1,0\]\.shape\[1\] == 1, expected 2')

        with assert_raises(ValueError) as excinfo:
            block_array([[A.tocsr()], [B.tocsr()]])
        excinfo.match(r'incompatible dimensions for axis 1')

        with assert_raises(ValueError) as excinfo:
            block_array([[A.tocsc()], [B.tocsc()]])
        excinfo.match(r'Mismatching dimensions along axis 1: ({1, 2}|{2, 1})')

        with assert_raises(ValueError) as excinfo:
            block_array([[A, C]])
        excinfo.match(r'Got blocks\[0,1\]\.shape\[0\] == 1, expected 2')

        with assert_raises(ValueError) as excinfo:
            block_array([[A.tocsr(), C.tocsr()]])
        excinfo.match(r'Mismatching dimensions along axis 0: ({1, 2}|{2, 1})')

        with assert_raises(ValueError) as excinfo:
            block_array([[A.tocsc(), C.tocsc()]])
        excinfo.match(r'incompatible dimensions for axis 0')

    def test_block_return_type(self):
        block = construct.block_array

        # csr format ensures we hit _compressed_sparse_stack
        # shape of F,G ensure we hit _stack_along_minor_axis
        # list version ensure we hit the path with neither helper function
        Fl, Gl = [[1, 2],[3, 4]], [[7], [5]]
        Fm, Gm = csr_matrix(Fl), csr_matrix(Gl)
        assert isinstance(block([[None, Fl], [Gl, None]], format="csr"), sparray)
        assert isinstance(block([[None, Fm], [Gm, None]], format="csr"), sparray)
        assert isinstance(block([[Fm, Gm]], format="csr"), sparray)

    def test_bmat_return_type(self):
        """This can be removed after sparse matrix is removed"""
        bmat = construct.bmat
        # check return type. if any input _is_array output array, else matrix
        Fl, Gl = [[1, 2],[3, 4]], [[7], [5]]
        Fm, Gm = csr_matrix(Fl), csr_matrix(Gl)
        Fa, Ga = csr_array(Fl), csr_array(Gl)
        assert isinstance(bmat([[Fa, Ga]], format="csr"), sparray)
        assert isinstance(bmat([[Fm, Gm]], format="csr"), spmatrix)
        assert isinstance(bmat([[None, Fa], [Ga, None]], format="csr"), sparray)
        assert isinstance(bmat([[None, Fm], [Ga, None]], format="csr"), sparray)
        assert isinstance(bmat([[None, Fm], [Gm, None]], format="csr"), spmatrix)
        assert isinstance(bmat([[None, Fl], [Gl, None]], format="csr"), spmatrix)

        # type returned by _compressed_sparse_stack (all csr)
        assert isinstance(bmat([[Ga, Ga]], format="csr"), sparray)
        assert isinstance(bmat([[Gm, Ga]], format="csr"), sparray)
        assert isinstance(bmat([[Ga, Gm]], format="csr"), sparray)
        assert isinstance(bmat([[Gm, Gm]], format="csr"), spmatrix)
        # shape is 2x2 so no _stack_along_minor_axis
        assert isinstance(bmat([[Fa, Fm]], format="csr"), sparray)
        assert isinstance(bmat([[Fm, Fm]], format="csr"), spmatrix)

        # type returned by _compressed_sparse_stack (all csc)
        assert isinstance(bmat([[Gm.tocsc(), Ga.tocsc()]], format="csc"), sparray)
        assert isinstance(bmat([[Gm.tocsc(), Gm.tocsc()]], format="csc"), spmatrix)
        # shape is 2x2 so no _stack_along_minor_axis
        assert isinstance(bmat([[Fa.tocsc(), Fm.tocsc()]], format="csr"), sparray)
        assert isinstance(bmat([[Fm.tocsc(), Fm.tocsc()]], format="csr"), spmatrix)

        # type returned when mixed input
        assert isinstance(bmat([[Gl, Ga]], format="csr"), sparray)
        assert isinstance(bmat([[Gm.tocsc(), Ga]], format="csr"), sparray)
        assert isinstance(bmat([[Gm.tocsc(), Gm]], format="csr"), spmatrix)
        assert isinstance(bmat([[Gm, Gm]], format="csc"), spmatrix)

    @pytest.mark.slow
    @pytest.mark.thread_unsafe
    @pytest.mark.xfail_on_32bit("Can't create large array for test")
    def test_concatenate_int32_overflow(self):
        """ test for indptr overflow when concatenating matrices """
        check_free_memory(30000)

        n = 33000
        A = csr_array(np.ones((n, n), dtype=bool))
        B = A.copy()
        C = construct._compressed_sparse_stack((A, B), axis=0,
                                               return_spmatrix=False)

        assert_(np.all(np.equal(np.diff(C.indptr), n)))
        assert_equal(C.indices.dtype, np.int64)
        assert_equal(C.indptr.dtype, np.int64)

    def test_block_diag_basic(self):
        """ basic test for block_diag """
        A = coo_array([[1,2],[3,4]])
        B = coo_array([[5],[6]])
        C = coo_array([[7]])

        expected = array([[1, 2, 0, 0],
                          [3, 4, 0, 0],
                          [0, 0, 5, 0],
                          [0, 0, 6, 0],
                          [0, 0, 0, 7]])

        ABC = construct.block_diag((A, B, C))
        assert_equal(ABC.toarray(), expected)
        assert ABC.coords[0].dtype == np.int32

    def test_block_diag_idx_dtype(self):
        X = coo_array([[1, 0, 0], [0, 1, 0], [0, 1, 0]])
        X.coords = tuple(co.astype(np.int64) for co in X.coords)
        assert construct.block_diag([X, X]).coords[0].dtype == np.int64

    def test_block_diag_scalar_1d_args(self):
        """ block_diag with scalar and 1d arguments """
        # one 1d matrix and a scalar
        assert_array_equal(construct.block_diag([[2,3], 4]).toarray(),
                           [[2, 3, 0], [0, 0, 4]])
        # 1d sparse arrays
        A = coo_array([1,0,3])
        B = coo_array([0,4])
        assert_array_equal(construct.block_diag([A, B]).toarray(),
                           [[1, 0, 3, 0, 0], [0, 0, 0, 0, 4]])

    def test_block_diag_1(self):
        """ block_diag with one matrix """
        assert_equal(construct.block_diag([[1, 0]]).toarray(),
                     array([[1, 0]]))
        assert_equal(construct.block_diag([[[1, 0]]]).toarray(),
                     array([[1, 0]]))
        assert_equal(construct.block_diag([[[1], [0]]]).toarray(),
                     array([[1], [0]]))
        # just on scalar
        assert_equal(construct.block_diag([1]).toarray(),
                     array([[1]]))

    def test_block_diag_sparse_arrays(self):
        """ block_diag with sparse arrays """

        A = coo_array([[1, 2, 3]], shape=(1, 3))
        B = coo_array([[4, 5]], shape=(1, 2))
        assert_equal(construct.block_diag([A, B]).toarray(),
                     array([[1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]))

        A = coo_array([[1], [2], [3]], shape=(3, 1))
        B = coo_array([[4], [5]], shape=(2, 1))
        assert_equal(construct.block_diag([A, B]).toarray(),
                     array([[1, 0], [2, 0], [3, 0], [0, 4], [0, 5]]))

    def test_block_diag_return_type(self):
        A, B = coo_array([[1, 2, 3]]), coo_matrix([[2, 3, 4]])
        assert isinstance(construct.block_diag([A, A]), sparray)
        assert isinstance(construct.block_diag([A, B]), sparray)
        assert isinstance(construct.block_diag([B, A]), sparray)
        assert isinstance(construct.block_diag([B, B]), spmatrix)

    def test_random_sampling(self):
        # Simple sanity checks for sparse random sampling.
        for f in sprand, _sprandn:
            for t in [np.float32, np.float64, np.longdouble,
                      np.int32, np.int64, np.complex64, np.complex128]:
                x = f(5, 10, density=0.1, dtype=t)
                assert_equal(x.dtype, t)
                assert_equal(x.shape, (5, 10))
                assert_equal(x.nnz, 5)

            x1 = f(5, 10, density=0.1, rng=4321)
            assert_equal(x1.dtype, np.float64)

            x2 = f(5, 10, density=0.1, rng=np.random.default_rng(4321))

            assert_array_equal(x1.data, x2.data)
            assert_array_equal(x1.row, x2.row)
            assert_array_equal(x1.col, x2.col)

            for density in [0.0, 0.1, 0.5, 1.0]:
                x = f(5, 10, density=density)
                assert_equal(x.nnz, int(density * np.prod(x.shape)))

            for fmt in ['coo', 'csc', 'csr', 'lil']:
                x = f(5, 10, format=fmt)
                assert_equal(x.format, fmt)

            assert_raises(ValueError, lambda: f(5, 10, 1.1))
            assert_raises(ValueError, lambda: f(5, 10, -0.1))

    @pytest.mark.parametrize("rng", [None, 4321, np.random.default_rng(4321)])
    def test_rand(self, rng):
        # Simple distributional checks for sparse.rand.
        x = sprand(10, 20, density=0.5, dtype=np.float64, rng=rng)
        assert_(np.all(np.less_equal(0, x.data)))
        assert_(np.all(np.less_equal(x.data, 1)))

    @pytest.mark.parametrize("rng", [None, 4321, np.random.default_rng(4321)])
    def test_randn(self, rng):
        # Simple distributional checks for sparse.randn.
        # Statistically, some of these should be negative
        # and some should be greater than 1.
        x = _sprandn(10, 20, density=0.5, dtype=np.float64, rng=rng)
        assert_(np.any(np.less(x.data, 0)))
        assert_(np.any(np.less(1, x.data)))
        x = _sprandn_array(10, 20, density=0.5, dtype=np.float64, rng=rng)
        assert_(np.any(np.less(x.data, 0)))
        assert_(np.any(np.less(1, x.data)))

    def test_random_accept_str_dtype(self):
        # anything that np.dtype can convert to a dtype should be accepted
        # for the dtype
        construct.random(10, 10, dtype='d')
        construct.random_array((10, 10), dtype='d')
        construct.random_array((10, 10, 10), dtype='d')
        construct.random_array((10, 10, 10, 10, 10), dtype='d')

    def test_random_array_maintains_array_shape(self):
        # preserve use of old random_state during SPEC 7 transition
        arr = construct.random_array((0, 4), density=0.3, dtype=int, random_state=0)
        assert arr.shape == (0, 4)

        arr = construct.random_array((10, 10, 10), density=0.3, dtype=int, rng=0)
        assert arr.shape == (10, 10, 10)

        arr = construct.random_array((10, 10, 10, 10, 10), density=0.3, dtype=int,
                                     rng=0)
        assert arr.shape == (10, 10, 10, 10, 10)

    def test_random_array_idx_dtype(self):
        A = construct.random_array((10, 10))
        assert A.coords[0].dtype == np.int32

    def test_random_sparse_matrix_returns_correct_number_of_non_zero_elements(self):
        # A 10 x 10 matrix, with density of 12.65%, should have 13 nonzero elements.
        # 10 x 10 x 0.1265 = 12.65, which should be rounded up to 13, not 12.
        sparse_matrix = construct.random(10, 10, density=0.1265)
        assert_equal(sparse_matrix.count_nonzero(),13)
        # check random_array
        sparse_array = construct.random_array((10, 10), density=0.1265)
        assert_equal(sparse_array.count_nonzero(),13)
        assert isinstance(sparse_array, sparray)
        # check big size
        shape = (2**33, 2**33)
        sparse_array = construct.random_array(shape, density=2.7105e-17)
        assert_equal(sparse_array.count_nonzero(),2000)

        # for n-D
        # check random_array
        sparse_array = construct.random_array((10, 10, 10, 10), density=0.12658)
        assert_equal(sparse_array.count_nonzero(),1266)
        assert isinstance(sparse_array, sparray)
        # check big size
        shape = (2**33, 2**33, 2**33)
        sparse_array = construct.random_array(shape, density=2.7105e-28)
        assert_equal(sparse_array.count_nonzero(),172)


def test_diags_array():
    """Tests of diags_array that do not rely on diags wrapper."""
    diag = np.arange(1, 5)

    assert_array_equal(construct.diags_array(diag).toarray(), np.diag(diag))

    assert_array_equal(
        construct.diags_array(diag, offsets=2).toarray(), np.diag(diag, k=2)
    )

    assert_array_equal(
        construct.diags_array(diag, offsets=2, shape=(4, 4)).toarray(),
        np.diag(diag, k=2)[:4, :4]
    )

    # Offset outside bounds when shape specified
    with pytest.raises(ValueError, match=".*out of bounds"):
        construct.diags(np.arange(1, 5), 5, shape=(4, 4))