File size: 7,557 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import numpy as np
from scipy._lib.decorator import decorator as _decorator

__all__ = ['delaunay_plot_2d', 'convex_hull_plot_2d', 'voronoi_plot_2d']


@_decorator
def _held_figure(func, obj, ax=None, **kw):
    import matplotlib.pyplot as plt

    if ax is None:
        fig = plt.figure()
        ax = fig.gca()
        return func(obj, ax=ax, **kw)

    # As of matplotlib 2.0, the "hold" mechanism is deprecated.
    # When matplotlib 1.x is no longer supported, this check can be removed.
    was_held = getattr(ax, 'ishold', lambda: True)()
    if was_held:
        return func(obj, ax=ax, **kw)
    try:
        ax.hold(True)
        return func(obj, ax=ax, **kw)
    finally:
        ax.hold(was_held)


def _adjust_bounds(ax, points):
    margin = 0.1 * np.ptp(points, axis=0)
    xy_min = points.min(axis=0) - margin
    xy_max = points.max(axis=0) + margin
    ax.set_xlim(xy_min[0], xy_max[0])
    ax.set_ylim(xy_min[1], xy_max[1])


@_held_figure
def delaunay_plot_2d(tri, ax=None):
    """
    Plot the given Delaunay triangulation in 2-D

    Parameters
    ----------
    tri : scipy.spatial.Delaunay instance
        Triangulation to plot
    ax : matplotlib.axes.Axes instance, optional
        Axes to plot on

    Returns
    -------
    fig : matplotlib.figure.Figure instance
        Figure for the plot

    See Also
    --------
    Delaunay
    matplotlib.pyplot.triplot

    Notes
    -----
    Requires Matplotlib.

    Examples
    --------

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.spatial import Delaunay, delaunay_plot_2d

    The Delaunay triangulation of a set of random points:

    >>> rng = np.random.default_rng()
    >>> points = rng.random((30, 2))
    >>> tri = Delaunay(points)

    Plot it:

    >>> _ = delaunay_plot_2d(tri)
    >>> plt.show()

    """
    if tri.points.shape[1] != 2:
        raise ValueError("Delaunay triangulation is not 2-D")

    x, y = tri.points.T
    ax.plot(x, y, 'o')
    ax.triplot(x, y, tri.simplices.copy())

    _adjust_bounds(ax, tri.points)

    return ax.figure


@_held_figure
def convex_hull_plot_2d(hull, ax=None):
    """
    Plot the given convex hull diagram in 2-D

    Parameters
    ----------
    hull : scipy.spatial.ConvexHull instance
        Convex hull to plot
    ax : matplotlib.axes.Axes instance, optional
        Axes to plot on

    Returns
    -------
    fig : matplotlib.figure.Figure instance
        Figure for the plot

    See Also
    --------
    ConvexHull

    Notes
    -----
    Requires Matplotlib.


    Examples
    --------

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.spatial import ConvexHull, convex_hull_plot_2d

    The convex hull of a random set of points:

    >>> rng = np.random.default_rng()
    >>> points = rng.random((30, 2))
    >>> hull = ConvexHull(points)

    Plot it:

    >>> _ = convex_hull_plot_2d(hull)
    >>> plt.show()

    """
    from matplotlib.collections import LineCollection

    if hull.points.shape[1] != 2:
        raise ValueError("Convex hull is not 2-D")

    ax.plot(hull.points[:, 0], hull.points[:, 1], 'o')
    line_segments = [hull.points[simplex] for simplex in hull.simplices]
    ax.add_collection(LineCollection(line_segments,
                                     colors='k',
                                     linestyle='solid'))
    _adjust_bounds(ax, hull.points)

    return ax.figure


@_held_figure
def voronoi_plot_2d(vor, ax=None, **kw):
    """
    Plot the given Voronoi diagram in 2-D

    Parameters
    ----------
    vor : scipy.spatial.Voronoi instance
        Diagram to plot
    ax : matplotlib.axes.Axes instance, optional
        Axes to plot on
    show_points : bool, optional
        Add the Voronoi points to the plot.
    show_vertices : bool, optional
        Add the Voronoi vertices to the plot.
    line_colors : string, optional
        Specifies the line color for polygon boundaries
    line_width : float, optional
        Specifies the line width for polygon boundaries
    line_alpha : float, optional
        Specifies the line alpha for polygon boundaries
    point_size : float, optional
        Specifies the size of points

    Returns
    -------
    fig : matplotlib.figure.Figure instance
        Figure for the plot

    See Also
    --------
    Voronoi

    Notes
    -----
    Requires Matplotlib. For degenerate input, including collinearity and
    other violations of general position, it may be preferable to
    calculate the Voronoi diagram with Qhull options ``QJ`` for random
    joggling, or ``Qt`` to enforce triangulated output. Otherwise, some
    Voronoi regions may not be visible.

    Examples
    --------
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.spatial import Voronoi, voronoi_plot_2d

    Create a set of points for the example:

    >>> rng = np.random.default_rng()
    >>> points = rng.random((10,2))

    Generate the Voronoi diagram for the points:

    >>> vor = Voronoi(points)

    Use `voronoi_plot_2d` to plot the diagram:

    >>> fig = voronoi_plot_2d(vor)

    Use `voronoi_plot_2d` to plot the diagram again, with some settings
    customized:

    >>> fig = voronoi_plot_2d(vor, show_vertices=False, line_colors='orange',
    ...                       line_width=2, line_alpha=0.6, point_size=2)
    >>> plt.show()

    """
    from matplotlib.collections import LineCollection

    if vor.points.shape[1] != 2:
        raise ValueError("Voronoi diagram is not 2-D")

    if kw.get('show_points', True):
        point_size = kw.get('point_size', None)
        ax.plot(vor.points[:, 0], vor.points[:, 1], '.', markersize=point_size)
    if kw.get('show_vertices', True):
        ax.plot(vor.vertices[:, 0], vor.vertices[:, 1], 'o')

    line_colors = kw.get('line_colors', 'k')
    line_width = kw.get('line_width', 1.0)
    line_alpha = kw.get('line_alpha', 1.0)

    center = vor.points.mean(axis=0)
    ptp_bound = np.ptp(vor.points, axis=0)

    finite_segments = []
    infinite_segments = []
    for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices):
        simplex = np.asarray(simplex)
        if np.all(simplex >= 0):
            finite_segments.append(vor.vertices[simplex])
        else:
            i = simplex[simplex >= 0][0]  # finite end Voronoi vertex

            t = vor.points[pointidx[1]] - vor.points[pointidx[0]]  # tangent
            t /= np.linalg.norm(t)
            n = np.array([-t[1], t[0]])  # normal

            midpoint = vor.points[pointidx].mean(axis=0)
            direction = np.sign(np.dot(midpoint - center, n)) * n
            if (vor.furthest_site):
                direction = -direction
            aspect_factor = abs(ptp_bound.max() / ptp_bound.min())
            far_point = vor.vertices[i] + direction * ptp_bound.max() * aspect_factor

            infinite_segments.append([vor.vertices[i], far_point])

    ax.add_collection(LineCollection(finite_segments,
                                     colors=line_colors,
                                     lw=line_width,
                                     alpha=line_alpha,
                                     linestyle='solid'))
    ax.add_collection(LineCollection(infinite_segments,
                                     colors=line_colors,
                                     lw=line_width,
                                     alpha=line_alpha,
                                     linestyle='dashed'))

    _adjust_bounds(ax, vor.points)

    return ax.figure