File size: 5,238 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
from typing import (overload, Any, SupportsFloat, Literal, Protocol, SupportsIndex)
import numpy as np
from numpy.typing import ArrayLike, NDArray
# Anything that can be parsed by `np.float64.__init__` and is thus
# compatible with `ndarray.__setitem__` (for a float64 array)
_FloatValue = None | str | bytes | SupportsFloat | SupportsIndex
class _MetricCallback1(Protocol):
def __call__(
self, __XA: NDArray[Any], __XB: NDArray[Any]
) -> _FloatValue: ...
class _MetricCallback2(Protocol):
def __call__(
self, __XA: NDArray[Any], __XB: NDArray[Any], **kwargs: Any
) -> _FloatValue: ...
# TODO: Use a single protocol with a parameter specification variable
# once available (PEP 612)
_MetricCallback = _MetricCallback1 | _MetricCallback2
_MetricKind = Literal[
'braycurtis',
'canberra',
'chebychev', 'chebyshev', 'cheby', 'cheb', 'ch',
'cityblock', 'cblock', 'cb', 'c',
'correlation', 'co',
'cosine', 'cos',
'dice',
'euclidean', 'euclid', 'eu', 'e',
'hamming', 'hamm', 'ha', 'h',
'minkowski', 'mi', 'm', 'pnorm',
'jaccard', 'jacc', 'ja', 'j',
'jensenshannon', 'js',
'kulczynski1',
'mahalanobis', 'mahal', 'mah',
'rogerstanimoto',
'russellrao',
'seuclidean', 'se', 's',
'sokalmichener',
'sokalsneath',
'sqeuclidean', 'sqe', 'sqeuclid',
'yule',
]
# Function annotations
def braycurtis(
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...
def canberra(
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...
# TODO: Add `metric`-specific overloads
# Returns a float64 or float128 array, depending on the input dtype
@overload
def cdist(
XA: ArrayLike,
XB: ArrayLike,
metric: _MetricKind = ...,
*,
out: None | NDArray[np.floating[Any]] = ...,
p: float = ...,
w: ArrayLike | None = ...,
V: ArrayLike | None = ...,
VI: ArrayLike | None = ...,
) -> NDArray[np.floating[Any]]: ...
@overload
def cdist(
XA: ArrayLike,
XB: ArrayLike,
metric: _MetricCallback,
*,
out: None | NDArray[np.floating[Any]] = ...,
**kwargs: Any,
) -> NDArray[np.floating[Any]]: ...
# TODO: Wait for dtype support; the return type is
# dependent on the input arrays dtype
def chebyshev(
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> Any: ...
# TODO: Wait for dtype support; the return type is
# dependent on the input arrays dtype
def cityblock(
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> Any: ...
def correlation(
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ..., centered: bool = ...
) -> np.float64: ...
def cosine(
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...
def dice(
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...
def directed_hausdorff(
u: ArrayLike, v: ArrayLike, seed: int | None = ...
) -> tuple[float, int, int]: ...
def euclidean(
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...
def hamming(
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...
def is_valid_dm(
D: ArrayLike,
tol: float = ...,
throw: bool = ...,
name: str | None = ...,
warning: bool = ...,
) -> bool: ...
def is_valid_y(
y: ArrayLike,
warning: bool = ...,
throw: bool = ...,
name: str | None = ...,
) -> bool: ...
def jaccard(
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...
def jensenshannon(
p: ArrayLike, q: ArrayLike, base: float | None = ...
) -> np.float64: ...
def kulczynski1(
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...
def mahalanobis(
u: ArrayLike, v: ArrayLike, VI: ArrayLike
) -> np.float64: ...
def minkowski(
u: ArrayLike, v: ArrayLike, p: float = ..., w: ArrayLike | None = ...
) -> float: ...
def num_obs_dm(d: ArrayLike) -> int: ...
def num_obs_y(Y: ArrayLike) -> int: ...
# TODO: Add `metric`-specific overloads
@overload
def pdist(
X: ArrayLike,
metric: _MetricKind = ...,
*,
out: None | NDArray[np.floating[Any]] = ...,
p: float = ...,
w: ArrayLike | None = ...,
V: ArrayLike | None = ...,
VI: ArrayLike | None = ...,
) -> NDArray[np.floating[Any]]: ...
@overload
def pdist(
X: ArrayLike,
metric: _MetricCallback,
*,
out: None | NDArray[np.floating[Any]] = ...,
**kwargs: Any,
) -> NDArray[np.floating[Any]]: ...
def seuclidean(
u: ArrayLike, v: ArrayLike, V: ArrayLike
) -> float: ...
def sokalmichener(
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...
def sokalsneath(
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...
def sqeuclidean(
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> np.float64: ...
def squareform(
X: ArrayLike,
force: Literal["no", "tomatrix", "tovector"] = ...,
checks: bool = ...,
) -> NDArray[Any]: ...
def rogerstanimoto(
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...
def russellrao(
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...
def yule(
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
) -> float: ...
|