File size: 87,892 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
#
# Author: Damian Eads
# Date: April 17, 2008
#
# Copyright (C) 2008 Damian Eads
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
#    copyright notice, this list of conditions and the following
#    disclaimer in the documentation and/or other materials provided
#    with the distribution.
#
# 3. The name of the author may not be used to endorse or promote
#    products derived from this software without specific prior
#    written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import sys
import os.path

from functools import wraps, partial
import weakref

import numpy as np
import warnings
from numpy.linalg import norm
from numpy.testing import (verbose, assert_,
                           assert_array_equal, assert_equal,
                           assert_almost_equal, assert_allclose,
                           break_cycles, IS_PYPY)
import pytest

import scipy.spatial.distance

from scipy.spatial.distance import (
    squareform, pdist, cdist, num_obs_y, num_obs_dm, is_valid_dm, is_valid_y,
    _validate_vector, _METRICS_NAMES)

# these were missing: chebyshev cityblock
# jensenshannon  and seuclidean are referenced by string name.
from scipy.spatial.distance import (braycurtis, canberra, chebyshev, cityblock,
                                    correlation, cosine, dice, euclidean,
                                    hamming, jaccard, jensenshannon,
                                    kulczynski1, mahalanobis,
                                    minkowski, rogerstanimoto,
                                    russellrao, seuclidean, sokalmichener,  # noqa: F401
                                    sokalsneath, sqeuclidean, yule)
from scipy._lib._util import np_long, np_ulong


@pytest.fixture(params=_METRICS_NAMES, scope="session")
def metric(request):
    """
    Fixture for all metrics in scipy.spatial.distance
    """
    return request.param


_filenames = [
              "cdist-X1.txt",
              "cdist-X2.txt",
              "iris.txt",
              "pdist-boolean-inp.txt",
              "pdist-chebyshev-ml-iris.txt",
              "pdist-chebyshev-ml.txt",
              "pdist-cityblock-ml-iris.txt",
              "pdist-cityblock-ml.txt",
              "pdist-correlation-ml-iris.txt",
              "pdist-correlation-ml.txt",
              "pdist-cosine-ml-iris.txt",
              "pdist-cosine-ml.txt",
              "pdist-double-inp.txt",
              "pdist-euclidean-ml-iris.txt",
              "pdist-euclidean-ml.txt",
              "pdist-hamming-ml.txt",
              "pdist-jaccard-ml.txt",
              "pdist-jensenshannon-ml-iris.txt",
              "pdist-jensenshannon-ml.txt",
              "pdist-minkowski-3.2-ml-iris.txt",
              "pdist-minkowski-3.2-ml.txt",
              "pdist-minkowski-5.8-ml-iris.txt",
              "pdist-seuclidean-ml-iris.txt",
              "pdist-seuclidean-ml.txt",
              "pdist-spearman-ml.txt",
              "random-bool-data.txt",
              "random-double-data.txt",
              "random-int-data.txt",
              "random-uint-data.txt",
              ]

_tdist = np.array([[0, 662, 877, 255, 412, 996],
                      [662, 0, 295, 468, 268, 400],
                      [877, 295, 0, 754, 564, 138],
                      [255, 468, 754, 0, 219, 869],
                      [412, 268, 564, 219, 0, 669],
                      [996, 400, 138, 869, 669, 0]], dtype='double')

_ytdist = squareform(_tdist)

# A hashmap of expected output arrays for the tests. These arrays
# come from a list of text files, which are read prior to testing.
# Each test loads inputs and outputs from this dictionary.
eo = {}


def load_testing_files():
    for fn in _filenames:
        name = fn.replace(".txt", "").replace("-ml", "")
        fqfn = os.path.join(os.path.dirname(__file__), 'data', fn)
        fp = open(fqfn)
        eo[name] = np.loadtxt(fp)
        fp.close()
    eo['pdist-boolean-inp'] = np.bool_(eo['pdist-boolean-inp'])
    eo['random-bool-data'] = np.bool_(eo['random-bool-data'])
    eo['random-float32-data'] = np.float32(eo['random-double-data'])
    eo['random-int-data'] = np_long(eo['random-int-data'])
    eo['random-uint-data'] = np_ulong(eo['random-uint-data'])


load_testing_files()


def _is_32bit():
    return np.intp(0).itemsize < 8


def _chk_asarrays(arrays, axis=None):
    arrays = [np.asanyarray(a) for a in arrays]
    if axis is None:
        # np < 1.10 ravel removes subclass from arrays
        arrays = [np.ravel(a) if a.ndim != 1 else a
                  for a in arrays]
        axis = 0
    arrays = tuple(np.atleast_1d(a) for a in arrays)
    if axis < 0:
        if not all(a.ndim == arrays[0].ndim for a in arrays):
            raise ValueError("array ndim must be the same for neg axis")
        axis = range(arrays[0].ndim)[axis]
    return arrays + (axis,)


def _chk_weights(arrays, weights=None, axis=None,
                 force_weights=False, simplify_weights=True,
                 pos_only=False, neg_check=False,
                 nan_screen=False, mask_screen=False,
                 ddof=None):
    chked = _chk_asarrays(arrays, axis=axis)
    arrays, axis = chked[:-1], chked[-1]

    simplify_weights = simplify_weights and not force_weights
    if not force_weights and mask_screen:
        force_weights = any(np.ma.getmask(a) is not np.ma.nomask for a in arrays)

    if nan_screen:
        has_nans = [np.isnan(np.sum(a)) for a in arrays]
        if any(has_nans):
            mask_screen = True
            force_weights = True
            arrays = tuple(np.ma.masked_invalid(a) if has_nan else a
                           for a, has_nan in zip(arrays, has_nans))

    if weights is not None:
        weights = np.asanyarray(weights)
    elif force_weights:
        weights = np.ones(arrays[0].shape[axis])
    else:
        return arrays + (weights, axis)

    if ddof:
        weights = _freq_weights(weights)

    if mask_screen:
        weights = _weight_masked(arrays, weights, axis)

    if not all(weights.shape == (a.shape[axis],) for a in arrays):
        raise ValueError("weights shape must match arrays along axis")
    if neg_check and (weights < 0).any():
        raise ValueError("weights cannot be negative")

    if pos_only:
        pos_weights = np.nonzero(weights > 0)[0]
        if pos_weights.size < weights.size:
            arrays = tuple(np.take(a, pos_weights, axis=axis) for a in arrays)
            weights = weights[pos_weights]
    if simplify_weights and (weights == 1).all():
        weights = None
    return arrays + (weights, axis)


def _freq_weights(weights):
    if weights is None:
        return weights
    int_weights = weights.astype(int)
    if (weights != int_weights).any():
        raise ValueError(f"frequency (integer count-type) weights required {weights}")
    return int_weights


def _weight_masked(arrays, weights, axis):
    if axis is None:
        axis = 0
    weights = np.asanyarray(weights)
    for a in arrays:
        axis_mask = np.ma.getmask(a)
        if axis_mask is np.ma.nomask:
            continue
        if a.ndim > 1:
            not_axes = tuple(i for i in range(a.ndim) if i != axis)
            axis_mask = axis_mask.any(axis=not_axes)
        weights *= 1 - axis_mask.astype(int)
    return weights


def _rand_split(arrays, weights, axis, split_per, seed=None):
    # Coerce `arrays` to float64 if integer, to avoid nan-to-integer issues
    arrays = [arr.astype(np.float64) if np.issubdtype(arr.dtype, np.integer)
              else arr for arr in arrays]

    # inverse operation for stats.collapse_weights
    weights = np.array(weights, dtype=np.float64)  # modified inplace; need a copy
    seeded_rand = np.random.RandomState(seed)

    def mytake(a, ix, axis):
        record = np.asanyarray(np.take(a, ix, axis=axis))
        return record.reshape([a.shape[i] if i != axis else 1
                               for i in range(a.ndim)])

    n_obs = arrays[0].shape[axis]
    assert all(a.shape[axis] == n_obs for a in arrays), \
           "data must be aligned on sample axis"
    for i in range(int(split_per) * n_obs):
        split_ix = seeded_rand.randint(n_obs + i)
        prev_w = weights[split_ix]
        q = seeded_rand.rand()
        weights[split_ix] = q * prev_w
        weights = np.append(weights, (1. - q) * prev_w)
        arrays = [np.append(a, mytake(a, split_ix, axis=axis),
                            axis=axis) for a in arrays]
    return arrays, weights


assert_allclose_forgiving = partial(assert_allclose, atol=1e-5)


def _rough_check(a, b, compare_assert=assert_allclose_forgiving,
                  key=lambda x: x, w=None):
    check_a = key(a)
    check_b = key(b)
    try:
        if np.array(check_a != check_b).any():  # try strict equality for string types
            compare_assert(check_a, check_b)
    except AttributeError:  # masked array
        compare_assert(check_a, check_b)
    except (TypeError, ValueError):  # nested data structure
        for a_i, b_i in zip(check_a, check_b):
            _rough_check(a_i, b_i, compare_assert=compare_assert)

# diff from test_stats:
#  n_args=2, weight_arg='w', default_axis=None
#  ma_safe = False, nan_safe = False
def _weight_checked(fn, n_args=2, default_axis=None, key=lambda x: x, weight_arg='w',
                    squeeze=True, silent=False,
                    ones_test=True, const_test=True, dup_test=True,
                    split_test=True, dud_test=True, ma_safe=False, ma_very_safe=False,
                    nan_safe=False, split_per=1.0, seed=0,
                    compare_assert=assert_allclose_forgiving):
    """runs fn on its arguments 2 or 3 ways, checks that the results are the same,
       then returns the same thing it would have returned before"""
    @wraps(fn)
    def wrapped(*args, **kwargs):
        result = fn(*args, **kwargs)

        arrays = args[:n_args]
        rest = args[n_args:]
        weights = kwargs.get(weight_arg, None)
        axis = kwargs.get('axis', default_axis)

        chked = _chk_weights(arrays, weights=weights, axis=axis,
                             force_weights=True, mask_screen=True)
        arrays, weights, axis = chked[:-2], chked[-2], chked[-1]
        if squeeze:
            arrays = [np.atleast_1d(a.squeeze()) for a in arrays]

        try:
            # WEIGHTS CHECK 1: EQUAL WEIGHTED OBSERVATIONS
            args = tuple(arrays) + rest
            if ones_test:
                kwargs[weight_arg] = weights
                _rough_check(result, fn(*args, **kwargs), key=key)
            if const_test:
                kwargs[weight_arg] = weights * 101.0
                _rough_check(result, fn(*args, **kwargs), key=key)
                kwargs[weight_arg] = weights * 0.101
                try:
                    _rough_check(result, fn(*args, **kwargs), key=key)
                except Exception as e:
                    raise type(e)((e, arrays, weights)) from e

            # WEIGHTS CHECK 2: ADDL 0-WEIGHTED OBS
            if dud_test:
                # add randomly resampled rows, weighted at 0
                dud_arrays, dud_weights = _rand_split(arrays, weights, axis,
                                                      split_per=split_per, seed=seed)
                dud_weights[:weights.size] = weights # not exactly 1 because of masked arrays  # noqa: E501
                dud_weights[weights.size:] = 0
                dud_args = tuple(dud_arrays) + rest
                kwargs[weight_arg] = dud_weights
                _rough_check(result, fn(*dud_args, **kwargs), key=key)
                # increase the value of those 0-weighted rows
                for a in dud_arrays:
                    indexer = [slice(None)] * a.ndim
                    indexer[axis] = slice(weights.size, None)
                    indexer = tuple(indexer)
                    a[indexer] = a[indexer] * 101
                dud_args = tuple(dud_arrays) + rest
                _rough_check(result, fn(*dud_args, **kwargs), key=key)
                # set those 0-weighted rows to NaNs
                for a in dud_arrays:
                    indexer = [slice(None)] * a.ndim
                    indexer[axis] = slice(weights.size, None)
                    indexer = tuple(indexer)
                    a[indexer] = a[indexer] * np.nan
                if kwargs.get("nan_policy", None) == "omit" and nan_safe:
                    dud_args = tuple(dud_arrays) + rest
                    _rough_check(result, fn(*dud_args, **kwargs), key=key)
                # mask out those nan values
                if ma_safe:
                    dud_arrays = [np.ma.masked_invalid(a) for a in dud_arrays]
                    dud_args = tuple(dud_arrays) + rest
                    _rough_check(result, fn(*dud_args, **kwargs), key=key)
                    if ma_very_safe:
                        kwargs[weight_arg] = None
                        _rough_check(result, fn(*dud_args, **kwargs), key=key)
                del dud_arrays, dud_args, dud_weights

            # WEIGHTS CHECK 3: DUPLICATE DATA (DUMB SPLITTING)
            if dup_test:
                dup_arrays = [np.append(a, a, axis=axis) for a in arrays]
                dup_weights = np.append(weights, weights) / 2.0
                dup_args = tuple(dup_arrays) + rest
                kwargs[weight_arg] = dup_weights
                _rough_check(result, fn(*dup_args, **kwargs), key=key)
                del dup_args, dup_arrays, dup_weights

            # WEIGHT CHECK 3: RANDOM SPLITTING
            if split_test and split_per > 0:
                split = _rand_split(arrays, weights, axis,
                                    split_per=split_per, seed=seed)
                split_arrays, split_weights = split
                split_args = tuple(split_arrays) + rest
                kwargs[weight_arg] = split_weights
                _rough_check(result, fn(*split_args, **kwargs), key=key)
        except NotImplementedError as e:
            # when some combination of arguments makes weighting impossible,
            #  this is the desired response
            if not silent:
                warnings.warn(f"{fn.__name__} NotImplemented weights: {e}",
                              stacklevel=3)
        return result
    return wrapped


class DummyContextManager:
    def __enter__(self):
        pass
    def __exit__(self, *args):
        pass


def maybe_deprecated(metric: str):
    if metric in ('kulczynski1', 'sokalmichener'):
        return pytest.deprecated_call()
    else:
        return DummyContextManager()


wcdist = _weight_checked(cdist, default_axis=1, squeeze=False)
wcdist_no_const = _weight_checked(cdist, default_axis=1,
                                  squeeze=False, const_test=False)
wpdist = _weight_checked(pdist, default_axis=1, squeeze=False, n_args=1)
wpdist_no_const = _weight_checked(pdist, default_axis=1, squeeze=False,
                                  const_test=False, n_args=1)
wrogerstanimoto = _weight_checked(rogerstanimoto)
wmatching = whamming = _weight_checked(hamming, dud_test=False)
wyule = _weight_checked(yule)
wdice = _weight_checked(dice)
wcityblock = _weight_checked(cityblock)
wchebyshev = _weight_checked(chebyshev)
wcosine = _weight_checked(cosine)
wcorrelation = _weight_checked(correlation)
wkulczynski1 = _weight_checked(kulczynski1)
wjaccard = _weight_checked(jaccard)
weuclidean = _weight_checked(euclidean, const_test=False)
wsqeuclidean = _weight_checked(sqeuclidean, const_test=False)
wbraycurtis = _weight_checked(braycurtis)
wcanberra = _weight_checked(canberra, const_test=False)
wsokalsneath = _weight_checked(sokalsneath)
wsokalmichener = _weight_checked(sokalmichener)
wrussellrao = _weight_checked(russellrao)


class TestCdist:

    def setup_method(self):
        self.rnd_eo_names = ['random-float32-data', 'random-int-data',
                             'random-uint-data', 'random-double-data',
                             'random-bool-data']
        self.valid_upcasts = {'bool': [np_ulong, np_long, np.float32, np.float64],
                              'uint': [np_long, np.float32, np.float64],
                              'int': [np.float32, np.float64],
                              'float32': [np.float64]}

    @pytest.mark.thread_unsafe
    def test_cdist_extra_args(self, metric):
        # Tests that args and kwargs are correctly handled

        X1 = [[1., 2., 3.], [1.2, 2.3, 3.4], [2.2, 2.3, 4.4]]
        X2 = [[7., 5., 8.], [7.5, 5.8, 8.4], [5.5, 5.8, 4.4]]
        kwargs = {"N0tV4l1D_p4raM": 3.14, "w": np.arange(3)}
        args = [3.14] * 200

        with pytest.raises(TypeError):
            with maybe_deprecated(metric):
                cdist(X1, X2, metric=metric, **kwargs)
        with pytest.raises(TypeError):
            with maybe_deprecated(metric):
                cdist(X1, X2, metric=eval(metric), **kwargs)
        with pytest.raises(TypeError):
            with maybe_deprecated(metric):
                cdist(X1, X2, metric="test_" + metric, **kwargs)
        with pytest.raises(TypeError):
            cdist(X1, X2, metric=metric, *args)
        with pytest.raises(TypeError):
            cdist(X1, X2, metric=eval(metric), *args)
        with pytest.raises(TypeError):
            cdist(X1, X2, metric="test_" + metric, *args)

    def test_cdist_extra_args_custom(self):
        # Tests that args and kwargs are correctly handled
        # also for custom metric
        def _my_metric(x, y, arg, kwarg=1, kwarg2=2):
            return arg + kwarg + kwarg2

        X1 = [[1., 2., 3.], [1.2, 2.3, 3.4], [2.2, 2.3, 4.4]]
        X2 = [[7., 5., 8.], [7.5, 5.8, 8.4], [5.5, 5.8, 4.4]]
        kwargs = {"N0tV4l1D_p4raM": 3.14, "w": np.arange(3)}
        args = [3.14] * 200

        with pytest.raises(TypeError):
            cdist(X1, X2, _my_metric)
        with pytest.raises(TypeError):
            cdist(X1, X2, _my_metric, *args)
        with pytest.raises(TypeError):
            cdist(X1, X2, _my_metric, **kwargs)
        with pytest.raises(TypeError):
            cdist(X1, X2, _my_metric, kwarg=2.2, kwarg2=3.3)
        with pytest.raises(TypeError):
            cdist(X1, X2, _my_metric, 1, 2, kwarg=2.2)
        with pytest.raises(TypeError):
            cdist(X1, X2, _my_metric, 1, 2, kwarg=2.2)
        with pytest.raises(TypeError):
            cdist(X1, X2, _my_metric, 1.1, 2.2, 3.3)
        with pytest.raises(TypeError):
            cdist(X1, X2, _my_metric, 1.1, 2.2)
        with pytest.raises(TypeError):
            cdist(X1, X2, _my_metric, 1.1)
        with pytest.raises(TypeError):
            cdist(X1, X2, _my_metric, 1.1, kwarg=2.2, kwarg2=3.3)

        # this should work
        assert_allclose(cdist(X1, X2, metric=_my_metric,
                              arg=1.1, kwarg2=3.3), 5.4)

    def test_cdist_euclidean_random_unicode(self):
        eps = 1e-15
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = wcdist_no_const(X1, X2, 'euclidean')
        Y2 = wcdist_no_const(X1, X2, 'test_euclidean')
        assert_allclose(Y1, Y2, rtol=eps, verbose=verbose > 2)

    @pytest.mark.parametrize("p", [0.1, 0.25, 1.0, 1.23,
                                   2.0, 3.8, 4.6, np.inf])
    def test_cdist_minkowski_random(self, p):
        eps = 1e-13
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = wcdist_no_const(X1, X2, 'minkowski', p=p)
        Y2 = wcdist_no_const(X1, X2, 'test_minkowski', p=p)
        assert_allclose(Y1, Y2, atol=0, rtol=eps, verbose=verbose > 2)

    def test_cdist_cosine_random(self):
        eps = 1e-14
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = wcdist(X1, X2, 'cosine')

        # Naive implementation
        def norms(X):
            return np.linalg.norm(X, axis=1).reshape(-1, 1)

        Y2 = 1 - np.dot((X1 / norms(X1)), (X2 / norms(X2)).T)

        assert_allclose(Y1, Y2, rtol=eps, verbose=verbose > 2)

    def test_cdist_mahalanobis(self):
        # 1-dimensional observations
        x1 = np.array([[2], [3]])
        x2 = np.array([[2], [5]])
        dist = cdist(x1, x2, metric='mahalanobis')
        assert_allclose(dist, [[0.0, np.sqrt(4.5)], [np.sqrt(0.5), np.sqrt(2)]])

        # 2-dimensional observations
        x1 = np.array([[0, 0], [-1, 0]])
        x2 = np.array([[0, 2], [1, 0], [0, -2]])
        dist = cdist(x1, x2, metric='mahalanobis')
        rt2 = np.sqrt(2)
        assert_allclose(dist, [[rt2, rt2, rt2], [2, 2 * rt2, 2]])

        # Too few observations
        with pytest.raises(ValueError):
            cdist([[0, 1]], [[2, 3]], metric='mahalanobis')

    def test_cdist_custom_notdouble(self):
        class myclass:
            pass

        def _my_metric(x, y):
            if not isinstance(x[0], myclass) or not isinstance(y[0], myclass):
                raise ValueError("Type has been changed")
            return 1.123
        data = np.array([[myclass()]], dtype=object)
        cdist_y = cdist(data, data, metric=_my_metric)
        right_y = 1.123
        assert_equal(cdist_y, right_y, verbose=verbose > 2)

    def _check_calling_conventions(self, X1, X2, metric, eps=1e-07, **kwargs):
        # helper function for test_cdist_calling_conventions
        try:
            y1 = cdist(X1, X2, metric=metric, **kwargs)
            y2 = cdist(X1, X2, metric=eval(metric), **kwargs)
            y3 = cdist(X1, X2, metric="test_" + metric, **kwargs)
        except Exception as e:
            e_cls = e.__class__
            if verbose > 2:
                print(e_cls.__name__)
                print(e)
            with pytest.raises(e_cls):
                cdist(X1, X2, metric=metric, **kwargs)
            with pytest.raises(e_cls):
                cdist(X1, X2, metric=eval(metric), **kwargs)
            with pytest.raises(e_cls):
                cdist(X1, X2, metric="test_" + metric, **kwargs)
        else:
            assert_allclose(y1, y2, rtol=eps, verbose=verbose > 2)
            assert_allclose(y1, y3, rtol=eps, verbose=verbose > 2)

    def test_cdist_calling_conventions(self, metric):
        # Ensures that specifying the metric with a str or scipy function
        # gives the same behaviour (i.e. same result or same exception).
        # NOTE: The correctness should be checked within each metric tests.
        for eo_name in self.rnd_eo_names:
            # subsampling input data to speed-up tests
            # NOTE: num samples needs to be > than dimensions for mahalanobis
            X1 = eo[eo_name][::5, ::-2]
            X2 = eo[eo_name][1::5, ::2]
            if verbose > 2:
                print("testing: ", metric, " with: ", eo_name)
            if metric in {'dice', 'yule',
                          'rogerstanimoto',
                          'russellrao', 'sokalmichener',
                          'sokalsneath',
                          'kulczynski1'} and 'bool' not in eo_name:
                # python version permits non-bools e.g. for fuzzy logic
                continue
            self._check_calling_conventions(X1, X2, metric)

            # Testing built-in metrics with extra args
            if metric == "seuclidean":
                X12 = np.vstack([X1, X2]).astype(np.float64)
                V = np.var(X12, axis=0, ddof=1)
                self._check_calling_conventions(X1, X2, metric, V=V)
            elif metric == "mahalanobis":
                X12 = np.vstack([X1, X2]).astype(np.float64)
                V = np.atleast_2d(np.cov(X12.T))
                VI = np.array(np.linalg.inv(V).T)
                self._check_calling_conventions(X1, X2, metric, VI=VI)

    def test_cdist_dtype_equivalence(self, metric):
        # Tests that the result is not affected by type up-casting
        eps = 1e-07
        tests = [(eo['random-bool-data'], self.valid_upcasts['bool']),
                 (eo['random-uint-data'], self.valid_upcasts['uint']),
                 (eo['random-int-data'], self.valid_upcasts['int']),
                 (eo['random-float32-data'], self.valid_upcasts['float32'])]
        for test in tests:
            X1 = test[0][::5, ::-2]
            X2 = test[0][1::5, ::2]
            try:
                y1 = cdist(X1, X2, metric=metric)
            except Exception as e:
                e_cls = e.__class__
                if verbose > 2:
                    print(e_cls.__name__)
                    print(e)
                for new_type in test[1]:
                    X1new = new_type(X1)
                    X2new = new_type(X2)
                    with pytest.raises(e_cls):
                        cdist(X1new, X2new, metric=metric)
            else:
                for new_type in test[1]:
                    y2 = cdist(new_type(X1), new_type(X2), metric=metric)
                    assert_allclose(y1, y2, rtol=eps, verbose=verbose > 2)

    @pytest.mark.thread_unsafe
    def test_cdist_out(self, metric):
        # Test that out parameter works properly
        eps = 1e-15
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        out_r, out_c = X1.shape[0], X2.shape[0]

        kwargs = dict()
        if metric == 'minkowski':
            kwargs['p'] = 1.23
        out1 = np.empty((out_r, out_c), dtype=np.float64)
        with maybe_deprecated(metric):
            Y1 = cdist(X1, X2, metric, **kwargs)
        with maybe_deprecated(metric):
            Y2 = cdist(X1, X2, metric, out=out1, **kwargs)

        # test that output is numerically equivalent
        assert_allclose(Y1, Y2, rtol=eps, verbose=verbose > 2)

        # test that Y_test1 and out1 are the same object
        assert_(Y2 is out1)

        # test for incorrect shape
        out2 = np.empty((out_r-1, out_c+1), dtype=np.float64)
        with pytest.raises(ValueError):
            with maybe_deprecated(metric):
                cdist(X1, X2, metric, out=out2, **kwargs)

        # test for C-contiguous order
        out3 = np.empty(
            (2 * out_r, 2 * out_c), dtype=np.float64)[::2, ::2]
        out4 = np.empty((out_r, out_c), dtype=np.float64, order='F')
        with pytest.raises(ValueError):
            with maybe_deprecated(metric):
                cdist(X1, X2, metric, out=out3, **kwargs)
        with pytest.raises(ValueError):
            with maybe_deprecated(metric):
                cdist(X1, X2, metric, out=out4, **kwargs)

        # test for incorrect dtype
        out5 = np.empty((out_r, out_c), dtype=np.int64)
        with pytest.raises(ValueError):
            with maybe_deprecated(metric):
                cdist(X1, X2, metric, out=out5, **kwargs)

    @pytest.mark.thread_unsafe
    def test_striding(self, metric):
        # test that striding is handled correct with calls to
        # _copy_array_if_base_present
        eps = 1e-15
        X1 = eo['cdist-X1'][::2, ::2]
        X2 = eo['cdist-X2'][::2, ::2]
        X1_copy = X1.copy()
        X2_copy = X2.copy()

        # confirm equivalence
        assert_equal(X1, X1_copy)
        assert_equal(X2, X2_copy)
        # confirm contiguity
        assert_(not X1.flags.c_contiguous)
        assert_(not X2.flags.c_contiguous)
        assert_(X1_copy.flags.c_contiguous)
        assert_(X2_copy.flags.c_contiguous)

        kwargs = dict()
        if metric == 'minkowski':
            kwargs['p'] = 1.23
        with maybe_deprecated(metric):
            Y1 = cdist(X1, X2, metric, **kwargs)
        with maybe_deprecated(metric):
            Y2 = cdist(X1_copy, X2_copy, metric, **kwargs)
        # test that output is numerically equivalent
        assert_allclose(Y1, Y2, rtol=eps, verbose=verbose > 2)

    @pytest.mark.thread_unsafe
    def test_cdist_refcount(self, metric):
        x1 = np.random.rand(10, 10)
        x2 = np.random.rand(10, 10)

        kwargs = dict()
        if metric == 'minkowski':
            kwargs['p'] = 1.23

        with maybe_deprecated(metric):
            out = cdist(x1, x2, metric=metric, **kwargs)

        # Check reference counts aren't messed up. If we only hold weak
        # references, the arrays should be deallocated.
        weak_refs = [weakref.ref(v) for v in (x1, x2, out)]
        del x1, x2, out

        if IS_PYPY:
            break_cycles()
        assert all(weak_ref() is None for weak_ref in weak_refs)


class TestPdist:

    def setup_method(self):
        self.rnd_eo_names = ['random-float32-data', 'random-int-data',
                             'random-uint-data', 'random-double-data',
                             'random-bool-data']
        self.valid_upcasts = {'bool': [np_ulong, np_long, np.float32, np.float64],
                              'uint': [np_long, np.float32, np.float64],
                              'int': [np.float32, np.float64],
                              'float32': [np.float64]}

    @pytest.mark.thread_unsafe
    def test_pdist_extra_args(self, metric):
        # Tests that args and kwargs are correctly handled
        X1 = [[1., 2.], [1.2, 2.3], [2.2, 2.3]]
        kwargs = {"N0tV4l1D_p4raM": 3.14, "w": np.arange(2)}
        args = [3.14] * 200

        with pytest.raises(TypeError):
            with maybe_deprecated(metric):
                pdist(X1, metric=metric, **kwargs)
        with pytest.raises(TypeError):
            with maybe_deprecated(metric):
                pdist(X1, metric=eval(metric), **kwargs)
        with pytest.raises(TypeError):
            with maybe_deprecated(metric):
                pdist(X1, metric="test_" + metric, **kwargs)
        with pytest.raises(TypeError):
            pdist(X1, metric=metric, *args)
        with pytest.raises(TypeError):
            pdist(X1, metric=eval(metric), *args)
        with pytest.raises(TypeError):
            pdist(X1, metric="test_" + metric, *args)

    def test_pdist_extra_args_custom(self):
        # Tests that args and kwargs are correctly handled
        # also for custom metric
        def _my_metric(x, y, arg, kwarg=1, kwarg2=2):
            return arg + kwarg + kwarg2

        X1 = [[1., 2.], [1.2, 2.3], [2.2, 2.3]]
        kwargs = {"N0tV4l1D_p4raM": 3.14, "w": np.arange(2)}
        args = [3.14] * 200

        with pytest.raises(TypeError):
            pdist(X1, _my_metric)
        with pytest.raises(TypeError):
            pdist(X1, _my_metric, *args)
        with pytest.raises(TypeError):
            pdist(X1, _my_metric, **kwargs)
        with pytest.raises(TypeError):
            pdist(X1, _my_metric, kwarg=2.2, kwarg2=3.3)
        with pytest.raises(TypeError):
            pdist(X1, _my_metric, 1, 2, kwarg=2.2)
        with pytest.raises(TypeError):
            pdist(X1, _my_metric, 1, 2, kwarg=2.2)
        with pytest.raises(TypeError):
            pdist(X1, _my_metric, 1.1, 2.2, 3.3)
        with pytest.raises(TypeError):
            pdist(X1, _my_metric, 1.1, 2.2)
        with pytest.raises(TypeError):
            pdist(X1, _my_metric, 1.1)
        with pytest.raises(TypeError):
            pdist(X1, _my_metric, 1.1, kwarg=2.2, kwarg2=3.3)

        # these should work
        assert_allclose(pdist(X1, metric=_my_metric,
                              arg=1.1, kwarg2=3.3), 5.4)

    def test_pdist_euclidean_random(self):
        eps = 1e-07
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-euclidean']
        Y_test1 = wpdist_no_const(X, 'euclidean')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_euclidean_random_u(self):
        eps = 1e-07
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-euclidean']
        Y_test1 = wpdist_no_const(X, 'euclidean')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_euclidean_random_float32(self):
        eps = 1e-07
        X = np.float32(eo['pdist-double-inp'])
        Y_right = eo['pdist-euclidean']
        Y_test1 = wpdist_no_const(X, 'euclidean')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_euclidean_random_nonC(self):
        eps = 1e-07
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-euclidean']
        Y_test2 = wpdist_no_const(X, 'test_euclidean')
        assert_allclose(Y_test2, Y_right, rtol=eps)

    @pytest.mark.slow
    def test_pdist_euclidean_iris_double(self):
        eps = 1e-7
        X = eo['iris']
        Y_right = eo['pdist-euclidean-iris']
        Y_test1 = wpdist_no_const(X, 'euclidean')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    @pytest.mark.slow
    def test_pdist_euclidean_iris_float32(self):
        eps = 1e-5
        X = np.float32(eo['iris'])
        Y_right = eo['pdist-euclidean-iris']
        Y_test1 = wpdist_no_const(X, 'euclidean')
        assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2)

    @pytest.mark.slow
    def test_pdist_euclidean_iris_nonC(self):
        # Test pdist(X, 'test_euclidean') [the non-C implementation] on the
        # Iris data set.
        eps = 1e-7
        X = eo['iris']
        Y_right = eo['pdist-euclidean-iris']
        Y_test2 = wpdist_no_const(X, 'test_euclidean')
        assert_allclose(Y_test2, Y_right, rtol=eps)

    def test_pdist_seuclidean_random(self):
        eps = 1e-7
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-seuclidean']
        Y_test1 = pdist(X, 'seuclidean')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_seuclidean_random_float32(self):
        eps = 1e-7
        X = np.float32(eo['pdist-double-inp'])
        Y_right = eo['pdist-seuclidean']
        Y_test1 = pdist(X, 'seuclidean')
        assert_allclose(Y_test1, Y_right, rtol=eps)

        # Check no error is raise when V has float32 dtype (#11171).
        V = np.var(X, axis=0, ddof=1)
        Y_test2 = pdist(X, 'seuclidean', V=V)
        assert_allclose(Y_test2, Y_right, rtol=eps)

    def test_pdist_seuclidean_random_nonC(self):
        # Test pdist(X, 'test_sqeuclidean') [the non-C implementation]
        eps = 1e-07
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-seuclidean']
        Y_test2 = pdist(X, 'test_seuclidean')
        assert_allclose(Y_test2, Y_right, rtol=eps)

    def test_pdist_seuclidean_iris(self):
        eps = 1e-7
        X = eo['iris']
        Y_right = eo['pdist-seuclidean-iris']
        Y_test1 = pdist(X, 'seuclidean')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_seuclidean_iris_float32(self):
        # Tests pdist(X, 'seuclidean') on the Iris data set (float32).
        eps = 1e-5
        X = np.float32(eo['iris'])
        Y_right = eo['pdist-seuclidean-iris']
        Y_test1 = pdist(X, 'seuclidean')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_seuclidean_iris_nonC(self):
        # Test pdist(X, 'test_seuclidean') [the non-C implementation] on the
        # Iris data set.
        eps = 1e-7
        X = eo['iris']
        Y_right = eo['pdist-seuclidean-iris']
        Y_test2 = pdist(X, 'test_seuclidean')
        assert_allclose(Y_test2, Y_right, rtol=eps)

    def test_pdist_cosine_random(self):
        eps = 1e-7
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-cosine']
        Y_test1 = wpdist(X, 'cosine')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_cosine_random_float32(self):
        eps = 1e-7
        X = np.float32(eo['pdist-double-inp'])
        Y_right = eo['pdist-cosine']
        Y_test1 = wpdist(X, 'cosine')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_cosine_random_nonC(self):
        # Test pdist(X, 'test_cosine') [the non-C implementation]
        eps = 1e-7
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-cosine']
        Y_test2 = wpdist(X, 'test_cosine')
        assert_allclose(Y_test2, Y_right, rtol=eps)

    @pytest.mark.slow
    def test_pdist_cosine_iris(self):
        eps = 1e-05
        X = eo['iris']
        Y_right = eo['pdist-cosine-iris']
        Y_test1 = wpdist(X, 'cosine')
        assert_allclose(Y_test1, Y_right, atol=eps)

    @pytest.mark.slow
    def test_pdist_cosine_iris_float32(self):
        eps = 1e-05
        X = np.float32(eo['iris'])
        Y_right = eo['pdist-cosine-iris']
        Y_test1 = wpdist(X, 'cosine')
        assert_allclose(Y_test1, Y_right, atol=eps, verbose=verbose > 2)

    @pytest.mark.slow
    def test_pdist_cosine_iris_nonC(self):
        eps = 1e-05
        X = eo['iris']
        Y_right = eo['pdist-cosine-iris']
        Y_test2 = wpdist(X, 'test_cosine')
        assert_allclose(Y_test2, Y_right, atol=eps)

    def test_pdist_cosine_bounds(self):
        # Test adapted from @joernhees's example at gh-5208: case where
        # cosine distance used to be negative. XXX: very sensitive to the
        # specific norm computation.
        x = np.abs(np.random.RandomState(1337).rand(91))
        X = np.vstack([x, x])
        assert_(wpdist(X, 'cosine')[0] >= 0,
                msg='cosine distance should be non-negative')

    def test_pdist_cityblock_random(self):
        eps = 1e-7
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-cityblock']
        Y_test1 = wpdist_no_const(X, 'cityblock')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_cityblock_random_float32(self):
        eps = 1e-7
        X = np.float32(eo['pdist-double-inp'])
        Y_right = eo['pdist-cityblock']
        Y_test1 = wpdist_no_const(X, 'cityblock')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_cityblock_random_nonC(self):
        eps = 1e-7
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-cityblock']
        Y_test2 = wpdist_no_const(X, 'test_cityblock')
        assert_allclose(Y_test2, Y_right, rtol=eps)

    @pytest.mark.slow
    def test_pdist_cityblock_iris(self):
        eps = 1e-14
        X = eo['iris']
        Y_right = eo['pdist-cityblock-iris']
        Y_test1 = wpdist_no_const(X, 'cityblock')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    @pytest.mark.slow
    def test_pdist_cityblock_iris_float32(self):
        eps = 1e-5
        X = np.float32(eo['iris'])
        Y_right = eo['pdist-cityblock-iris']
        Y_test1 = wpdist_no_const(X, 'cityblock')
        assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2)

    @pytest.mark.slow
    def test_pdist_cityblock_iris_nonC(self):
        # Test pdist(X, 'test_cityblock') [the non-C implementation] on the
        # Iris data set.
        eps = 1e-14
        X = eo['iris']
        Y_right = eo['pdist-cityblock-iris']
        Y_test2 = wpdist_no_const(X, 'test_cityblock')
        assert_allclose(Y_test2, Y_right, rtol=eps)

    def test_pdist_correlation_random(self):
        eps = 1e-7
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-correlation']
        Y_test1 = wpdist(X, 'correlation')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_correlation_random_float32(self):
        eps = 1e-7
        X = np.float32(eo['pdist-double-inp'])
        Y_right = eo['pdist-correlation']
        Y_test1 = wpdist(X, 'correlation')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_correlation_random_nonC(self):
        eps = 1e-7
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-correlation']
        Y_test2 = wpdist(X, 'test_correlation')
        assert_allclose(Y_test2, Y_right, rtol=eps)

    @pytest.mark.slow
    def test_pdist_correlation_iris(self):
        eps = 1e-7
        X = eo['iris']
        Y_right = eo['pdist-correlation-iris']
        Y_test1 = wpdist(X, 'correlation')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    @pytest.mark.slow
    def test_pdist_correlation_iris_float32(self):
        eps = 1e-7
        X = eo['iris']
        Y_right = np.float32(eo['pdist-correlation-iris'])
        Y_test1 = wpdist(X, 'correlation')
        assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2)

    @pytest.mark.slow
    def test_pdist_correlation_iris_nonC(self):
        if sys.maxsize > 2**32:
            eps = 1e-7
        else:
            pytest.skip("see gh-16456")
        X = eo['iris']
        Y_right = eo['pdist-correlation-iris']
        Y_test2 = wpdist(X, 'test_correlation')
        assert_allclose(Y_test2, Y_right, rtol=eps)

    @pytest.mark.parametrize("p", [0.1, 0.25, 1.0, 2.0, 3.2, np.inf])
    def test_pdist_minkowski_random_p(self, p):
        eps = 1e-13
        X = eo['pdist-double-inp']
        Y1 = wpdist_no_const(X, 'minkowski', p=p)
        Y2 = wpdist_no_const(X, 'test_minkowski', p=p)
        assert_allclose(Y1, Y2, atol=0, rtol=eps)

    def test_pdist_minkowski_random(self):
        eps = 1e-7
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-minkowski-3.2']
        Y_test1 = wpdist_no_const(X, 'minkowski', p=3.2)
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_minkowski_random_float32(self):
        eps = 1e-7
        X = np.float32(eo['pdist-double-inp'])
        Y_right = eo['pdist-minkowski-3.2']
        Y_test1 = wpdist_no_const(X, 'minkowski', p=3.2)
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_minkowski_random_nonC(self):
        eps = 1e-7
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-minkowski-3.2']
        Y_test2 = wpdist_no_const(X, 'test_minkowski', p=3.2)
        assert_allclose(Y_test2, Y_right, rtol=eps)

    @pytest.mark.slow
    def test_pdist_minkowski_3_2_iris(self):
        eps = 1e-7
        X = eo['iris']
        Y_right = eo['pdist-minkowski-3.2-iris']
        Y_test1 = wpdist_no_const(X, 'minkowski', p=3.2)
        assert_allclose(Y_test1, Y_right, rtol=eps)

    @pytest.mark.slow
    def test_pdist_minkowski_3_2_iris_float32(self):
        eps = 1e-5
        X = np.float32(eo['iris'])
        Y_right = eo['pdist-minkowski-3.2-iris']
        Y_test1 = wpdist_no_const(X, 'minkowski', p=3.2)
        assert_allclose(Y_test1, Y_right, rtol=eps)

    @pytest.mark.slow
    def test_pdist_minkowski_3_2_iris_nonC(self):
        eps = 1e-7
        X = eo['iris']
        Y_right = eo['pdist-minkowski-3.2-iris']
        Y_test2 = wpdist_no_const(X, 'test_minkowski', p=3.2)
        assert_allclose(Y_test2, Y_right, rtol=eps)

    @pytest.mark.slow
    def test_pdist_minkowski_5_8_iris(self):
        eps = 1e-7
        X = eo['iris']
        Y_right = eo['pdist-minkowski-5.8-iris']
        Y_test1 = wpdist_no_const(X, 'minkowski', p=5.8)
        assert_allclose(Y_test1, Y_right, rtol=eps)

    @pytest.mark.slow
    def test_pdist_minkowski_5_8_iris_float32(self):
        eps = 1e-5
        X = np.float32(eo['iris'])
        Y_right = eo['pdist-minkowski-5.8-iris']
        Y_test1 = wpdist_no_const(X, 'minkowski', p=5.8)
        assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2)

    @pytest.mark.slow
    def test_pdist_minkowski_5_8_iris_nonC(self):
        eps = 1e-7
        X = eo['iris']
        Y_right = eo['pdist-minkowski-5.8-iris']
        Y_test2 = wpdist_no_const(X, 'test_minkowski', p=5.8)
        assert_allclose(Y_test2, Y_right, rtol=eps)

    def test_pdist_mahalanobis(self):
        # 1-dimensional observations
        x = np.array([2.0, 2.0, 3.0, 5.0]).reshape(-1, 1)
        dist = pdist(x, metric='mahalanobis')
        assert_allclose(dist, [0.0, np.sqrt(0.5), np.sqrt(4.5),
                               np.sqrt(0.5), np.sqrt(4.5), np.sqrt(2.0)])

        # 2-dimensional observations
        x = np.array([[0, 0], [-1, 0], [0, 2], [1, 0], [0, -2]])
        dist = pdist(x, metric='mahalanobis')
        rt2 = np.sqrt(2)
        assert_allclose(dist, [rt2, rt2, rt2, rt2, 2, 2 * rt2, 2, 2, 2 * rt2, 2])

        # Too few observations
        with pytest.raises(ValueError):
            wpdist([[0, 1], [2, 3]], metric='mahalanobis')

    def test_pdist_hamming_random(self):
        eps = 1e-15
        X = eo['pdist-boolean-inp']
        Y_right = eo['pdist-hamming']
        Y_test1 = wpdist(X, 'hamming')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_hamming_random_float32(self):
        eps = 1e-15
        X = np.float32(eo['pdist-boolean-inp'])
        Y_right = eo['pdist-hamming']
        Y_test1 = wpdist(X, 'hamming')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_hamming_random_nonC(self):
        eps = 1e-15
        X = eo['pdist-boolean-inp']
        Y_right = eo['pdist-hamming']
        Y_test2 = wpdist(X, 'test_hamming')
        assert_allclose(Y_test2, Y_right, rtol=eps)

    def test_pdist_dhamming_random(self):
        eps = 1e-15
        X = np.float64(eo['pdist-boolean-inp'])
        Y_right = eo['pdist-hamming']
        Y_test1 = wpdist(X, 'hamming')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_dhamming_random_float32(self):
        eps = 1e-15
        X = np.float32(eo['pdist-boolean-inp'])
        Y_right = eo['pdist-hamming']
        Y_test1 = wpdist(X, 'hamming')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_dhamming_random_nonC(self):
        eps = 1e-15
        X = np.float64(eo['pdist-boolean-inp'])
        Y_right = eo['pdist-hamming']
        Y_test2 = wpdist(X, 'test_hamming')
        assert_allclose(Y_test2, Y_right, rtol=eps)

    def test_pdist_jensenshannon_random(self):
        eps = 1e-11
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-jensenshannon']
        Y_test1 = pdist(X, 'jensenshannon')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_jensenshannon_random_float32(self):
        eps = 1e-8
        X = np.float32(eo['pdist-double-inp'])
        Y_right = eo['pdist-jensenshannon']
        Y_test1 = pdist(X, 'jensenshannon')
        assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2)

    def test_pdist_jensenshannon_random_nonC(self):
        eps = 1e-11
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-jensenshannon']
        Y_test2 = pdist(X, 'test_jensenshannon')
        assert_allclose(Y_test2, Y_right, rtol=eps)

    def test_pdist_jensenshannon_iris(self):
        if _is_32bit():
            # Test failing on 32-bit Linux on Azure otherwise, see gh-12810
            eps = 2.5e-10
        else:
            eps = 1e-12

        X = eo['iris']
        Y_right = eo['pdist-jensenshannon-iris']
        Y_test1 = pdist(X, 'jensenshannon')
        assert_allclose(Y_test1, Y_right, atol=eps)

    def test_pdist_jensenshannon_iris_float32(self):
        eps = 1e-06
        X = np.float32(eo['iris'])
        Y_right = eo['pdist-jensenshannon-iris']
        Y_test1 = pdist(X, 'jensenshannon')
        assert_allclose(Y_test1, Y_right, atol=eps, verbose=verbose > 2)

    def test_pdist_jensenshannon_iris_nonC(self):
        eps = 5e-5
        X = eo['iris']
        Y_right = eo['pdist-jensenshannon-iris']
        Y_test2 = pdist(X, 'test_jensenshannon')
        assert_allclose(Y_test2, Y_right, rtol=eps)

    def test_pdist_matching_mtica1(self):
        # Test matching(*,*) with mtica example #1 (nums).
        m = wmatching(np.array([1, 0, 1, 1, 0]),
                      np.array([1, 1, 0, 1, 1]))
        m2 = wmatching(np.array([1, 0, 1, 1, 0], dtype=bool),
                       np.array([1, 1, 0, 1, 1], dtype=bool))
        assert_allclose(m, 0.6, rtol=0, atol=1e-10)
        assert_allclose(m2, 0.6, rtol=0, atol=1e-10)

    def test_pdist_matching_mtica2(self):
        # Test matching(*,*) with mtica example #2.
        m = wmatching(np.array([1, 0, 1]),
                     np.array([1, 1, 0]))
        m2 = wmatching(np.array([1, 0, 1], dtype=bool),
                      np.array([1, 1, 0], dtype=bool))
        assert_allclose(m, 2 / 3, rtol=0, atol=1e-10)
        assert_allclose(m2, 2 / 3, rtol=0, atol=1e-10)

    def test_pdist_yule_mtica1(self):
        m = wyule(np.array([1, 0, 1, 1, 0]),
                  np.array([1, 1, 0, 1, 1]))
        m2 = wyule(np.array([1, 0, 1, 1, 0], dtype=bool),
                   np.array([1, 1, 0, 1, 1], dtype=bool))
        if verbose > 2:
            print(m)
        assert_allclose(m, 2, rtol=0, atol=1e-10)
        assert_allclose(m2, 2, rtol=0, atol=1e-10)

    def test_pdist_yule_mtica2(self):
        m = wyule(np.array([1, 0, 1]),
                  np.array([1, 1, 0]))
        m2 = wyule(np.array([1, 0, 1], dtype=bool),
                   np.array([1, 1, 0], dtype=bool))
        if verbose > 2:
            print(m)
        assert_allclose(m, 2, rtol=0, atol=1e-10)
        assert_allclose(m2, 2, rtol=0, atol=1e-10)

    def test_pdist_dice_mtica1(self):
        m = wdice(np.array([1, 0, 1, 1, 0]),
                  np.array([1, 1, 0, 1, 1]))
        m2 = wdice(np.array([1, 0, 1, 1, 0], dtype=bool),
                   np.array([1, 1, 0, 1, 1], dtype=bool))
        if verbose > 2:
            print(m)
        assert_allclose(m, 3 / 7, rtol=0, atol=1e-10)
        assert_allclose(m2, 3 / 7, rtol=0, atol=1e-10)

    def test_pdist_dice_mtica2(self):
        m = wdice(np.array([1, 0, 1]),
                  np.array([1, 1, 0]))
        m2 = wdice(np.array([1, 0, 1], dtype=bool),
                   np.array([1, 1, 0], dtype=bool))
        if verbose > 2:
            print(m)
        assert_allclose(m, 0.5, rtol=0, atol=1e-10)
        assert_allclose(m2, 0.5, rtol=0, atol=1e-10)

    def test_pdist_sokalsneath_mtica1(self):
        m = sokalsneath(np.array([1, 0, 1, 1, 0]),
                        np.array([1, 1, 0, 1, 1]))
        m2 = sokalsneath(np.array([1, 0, 1, 1, 0], dtype=bool),
                         np.array([1, 1, 0, 1, 1], dtype=bool))
        if verbose > 2:
            print(m)
        assert_allclose(m, 3 / 4, rtol=0, atol=1e-10)
        assert_allclose(m2, 3 / 4, rtol=0, atol=1e-10)

    def test_pdist_sokalsneath_mtica2(self):
        m = wsokalsneath(np.array([1, 0, 1]),
                         np.array([1, 1, 0]))
        m2 = wsokalsneath(np.array([1, 0, 1], dtype=bool),
                          np.array([1, 1, 0], dtype=bool))
        if verbose > 2:
            print(m)
        assert_allclose(m, 4 / 5, rtol=0, atol=1e-10)
        assert_allclose(m2, 4 / 5, rtol=0, atol=1e-10)

    def test_pdist_rogerstanimoto_mtica1(self):
        m = wrogerstanimoto(np.array([1, 0, 1, 1, 0]),
                            np.array([1, 1, 0, 1, 1]))
        m2 = wrogerstanimoto(np.array([1, 0, 1, 1, 0], dtype=bool),
                             np.array([1, 1, 0, 1, 1], dtype=bool))
        if verbose > 2:
            print(m)
        assert_allclose(m, 3 / 4, rtol=0, atol=1e-10)
        assert_allclose(m2, 3 / 4, rtol=0, atol=1e-10)

    def test_pdist_rogerstanimoto_mtica2(self):
        m = wrogerstanimoto(np.array([1, 0, 1]),
                            np.array([1, 1, 0]))
        m2 = wrogerstanimoto(np.array([1, 0, 1], dtype=bool),
                             np.array([1, 1, 0], dtype=bool))
        if verbose > 2:
            print(m)
        assert_allclose(m, 4 / 5, rtol=0, atol=1e-10)
        assert_allclose(m2, 4 / 5, rtol=0, atol=1e-10)

    def test_pdist_russellrao_mtica1(self):
        m = wrussellrao(np.array([1, 0, 1, 1, 0]),
                        np.array([1, 1, 0, 1, 1]))
        m2 = wrussellrao(np.array([1, 0, 1, 1, 0], dtype=bool),
                         np.array([1, 1, 0, 1, 1], dtype=bool))
        if verbose > 2:
            print(m)
        assert_allclose(m, 3 / 5, rtol=0, atol=1e-10)
        assert_allclose(m2, 3 / 5, rtol=0, atol=1e-10)

    def test_pdist_russellrao_mtica2(self):
        m = wrussellrao(np.array([1, 0, 1]),
                        np.array([1, 1, 0]))
        m2 = wrussellrao(np.array([1, 0, 1], dtype=bool),
                         np.array([1, 1, 0], dtype=bool))
        if verbose > 2:
            print(m)
        assert_allclose(m, 2 / 3, rtol=0, atol=1e-10)
        assert_allclose(m2, 2 / 3, rtol=0, atol=1e-10)

    @pytest.mark.slow
    def test_pdist_canberra_match(self):
        D = eo['iris']
        if verbose > 2:
            print(D.shape, D.dtype)
        eps = 1e-15
        y1 = wpdist_no_const(D, "canberra")
        y2 = wpdist_no_const(D, "test_canberra")
        assert_allclose(y1, y2, rtol=eps, verbose=verbose > 2)

    def test_pdist_canberra_ticket_711(self):
        # Test pdist(X, 'canberra') to see if Canberra gives the right result
        # as reported on gh-1238.
        eps = 1e-8
        pdist_y = wpdist_no_const(([3.3], [3.4]), "canberra")
        right_y = 0.01492537
        assert_allclose(pdist_y, right_y, atol=eps, verbose=verbose > 2)

    def test_pdist_custom_notdouble(self):
        # tests that when using a custom metric the data type is not altered
        class myclass:
            pass

        def _my_metric(x, y):
            if not isinstance(x[0], myclass) or not isinstance(y[0], myclass):
                raise ValueError("Type has been changed")
            return 1.123
        data = np.array([[myclass()], [myclass()]], dtype=object)
        pdist_y = pdist(data, metric=_my_metric)
        right_y = 1.123
        assert_equal(pdist_y, right_y, verbose=verbose > 2)

    def _check_calling_conventions(self, X, metric, eps=1e-07, **kwargs):
        # helper function for test_pdist_calling_conventions
        try:
            y1 = pdist(X, metric=metric, **kwargs)
            y2 = pdist(X, metric=eval(metric), **kwargs)
            y3 = pdist(X, metric="test_" + metric, **kwargs)
        except Exception as e:
            e_cls = e.__class__
            if verbose > 2:
                print(e_cls.__name__)
                print(e)
            with pytest.raises(e_cls):
                pdist(X, metric=metric, **kwargs)
            with pytest.raises(e_cls):
                pdist(X, metric=eval(metric), **kwargs)
            with pytest.raises(e_cls):
                pdist(X, metric="test_" + metric, **kwargs)
        else:
            assert_allclose(y1, y2, rtol=eps, verbose=verbose > 2)
            assert_allclose(y1, y3, rtol=eps, verbose=verbose > 2)

    def test_pdist_calling_conventions(self, metric):
        # Ensures that specifying the metric with a str or scipy function
        # gives the same behaviour (i.e. same result or same exception).
        # NOTE: The correctness should be checked within each metric tests.
        # NOTE: Extra args should be checked with a dedicated test
        for eo_name in self.rnd_eo_names:
            # subsampling input data to speed-up tests
            # NOTE: num samples needs to be > than dimensions for mahalanobis
            X = eo[eo_name][::5, ::2]
            if verbose > 2:
                print("testing: ", metric, " with: ", eo_name)
            if metric in {'dice', 'yule', 'matching',
                          'rogerstanimoto', 'russellrao', 'sokalmichener',
                          'sokalsneath',
                          'kulczynski1'} and 'bool' not in eo_name:
                # python version permits non-bools e.g. for fuzzy logic
                continue
            self._check_calling_conventions(X, metric)

            # Testing built-in metrics with extra args
            if metric == "seuclidean":
                V = np.var(X.astype(np.float64), axis=0, ddof=1)
                self._check_calling_conventions(X, metric, V=V)
            elif metric == "mahalanobis":
                V = np.atleast_2d(np.cov(X.astype(np.float64).T))
                VI = np.array(np.linalg.inv(V).T)
                self._check_calling_conventions(X, metric, VI=VI)

    def test_pdist_dtype_equivalence(self, metric):
        # Tests that the result is not affected by type up-casting
        eps = 1e-07
        tests = [(eo['random-bool-data'], self.valid_upcasts['bool']),
                 (eo['random-uint-data'], self.valid_upcasts['uint']),
                 (eo['random-int-data'], self.valid_upcasts['int']),
                 (eo['random-float32-data'], self.valid_upcasts['float32'])]
        for test in tests:
            X1 = test[0][::5, ::2]
            try:
                y1 = pdist(X1, metric=metric)
            except Exception as e:
                e_cls = e.__class__
                if verbose > 2:
                    print(e_cls.__name__)
                    print(e)
                for new_type in test[1]:
                    X2 = new_type(X1)
                    with pytest.raises(e_cls):
                        pdist(X2, metric=metric)
            else:
                for new_type in test[1]:
                    y2 = pdist(new_type(X1), metric=metric)
                    assert_allclose(y1, y2, rtol=eps, verbose=verbose > 2)

    @pytest.mark.thread_unsafe
    def test_pdist_out(self, metric):
        # Test that out parameter works properly
        eps = 1e-15
        X = eo['random-float32-data'][::5, ::2]
        out_size = int((X.shape[0] * (X.shape[0] - 1)) / 2)

        kwargs = dict()
        if metric == 'minkowski':
            kwargs['p'] = 1.23
        out1 = np.empty(out_size, dtype=np.float64)
        with maybe_deprecated(metric):
            Y_right = pdist(X, metric, **kwargs)
        with maybe_deprecated(metric):
            Y_test1 = pdist(X, metric, out=out1, **kwargs)

        # test that output is numerically equivalent
        assert_allclose(Y_test1, Y_right, rtol=eps)

        # test that Y_test1 and out1 are the same object
        assert_(Y_test1 is out1)

        # test for incorrect shape
        out2 = np.empty(out_size + 3, dtype=np.float64)
        with pytest.raises(ValueError):
            with maybe_deprecated(metric):
                pdist(X, metric, out=out2, **kwargs)

        # test for (C-)contiguous output
        out3 = np.empty(2 * out_size, dtype=np.float64)[::2]
        with pytest.raises(ValueError):
            with maybe_deprecated(metric):
                pdist(X, metric, out=out3, **kwargs)

        # test for incorrect dtype
        out5 = np.empty(out_size, dtype=np.int64)
        with pytest.raises(ValueError):
            with maybe_deprecated(metric):
                pdist(X, metric, out=out5, **kwargs)

    @pytest.mark.thread_unsafe
    def test_striding(self, metric):
        # test that striding is handled correct with calls to
        # _copy_array_if_base_present
        eps = 1e-15
        X = eo['random-float32-data'][::5, ::2]
        X_copy = X.copy()

        # confirm contiguity
        assert_(not X.flags.c_contiguous)
        assert_(X_copy.flags.c_contiguous)

        kwargs = dict()
        if metric == 'minkowski':
            kwargs['p'] = 1.23
        with maybe_deprecated(metric):
            Y1 = pdist(X, metric, **kwargs)
        with maybe_deprecated(metric):
            Y2 = pdist(X_copy, metric, **kwargs)
        # test that output is numerically equivalent
        assert_allclose(Y1, Y2, rtol=eps, verbose=verbose > 2)

class TestSomeDistanceFunctions:

    def setup_method(self):
        # 1D arrays
        x = np.array([1.0, 2.0, 3.0])
        y = np.array([1.0, 1.0, 5.0])

        self.cases = [(x, y)]

    def test_minkowski(self):
        for x, y in self.cases:
            dist1 = minkowski(x, y, p=1)
            assert_almost_equal(dist1, 3.0)
            dist1p5 = minkowski(x, y, p=1.5)
            assert_almost_equal(dist1p5, (1.0 + 2.0**1.5)**(2. / 3))
            dist2 = minkowski(x, y, p=2)
            assert_almost_equal(dist2, 5.0 ** 0.5)
            dist0p25 = minkowski(x, y, p=0.25)
            assert_almost_equal(dist0p25, (1.0 + 2.0 ** 0.25) ** 4)

        # Check that casting input to minimum scalar type doesn't affect result
        # (issue #10262). This could be extended to more test inputs with
        # np.min_scalar_type(np.max(input_matrix)).
        a = np.array([352, 916])
        b = np.array([350, 660])
        assert_equal(minkowski(a, b),
                     minkowski(a.astype('uint16'), b.astype('uint16')))

    def test_euclidean(self):
        for x, y in self.cases:
            dist = weuclidean(x, y)
            assert_almost_equal(dist, np.sqrt(5))

    def test_sqeuclidean(self):
        for x, y in self.cases:
            dist = wsqeuclidean(x, y)
            assert_almost_equal(dist, 5.0)

    def test_cosine(self):
        for x, y in self.cases:
            dist = wcosine(x, y)
            assert_almost_equal(dist, 1.0 - 18.0 / (np.sqrt(14) * np.sqrt(27)))

    def test_cosine_output_dtype(self):
        # Regression test for gh-19541
        assert isinstance(wcorrelation([1, 1], [1, 1], centered=False), float)
        assert isinstance(wcosine([1, 1], [1, 1]), float)

    def test_correlation(self):
        xm = np.array([-1.0, 0, 1.0])
        ym = np.array([-4.0 / 3, -4.0 / 3, 5.0 - 7.0 / 3])
        for x, y in self.cases:
            dist = wcorrelation(x, y)
            assert_almost_equal(dist, 1.0 - np.dot(xm, ym) / (norm(xm) * norm(ym)))

    def test_correlation_positive(self):
        # Regression test for gh-12320 (negative return value due to rounding
        x = np.array([0., 0., 0., 0., 0., 0., -2., 0., 0., 0., -2., -2., -2.,
                      0., -2., 0., -2., 0., 0., -1., -2., 0., 1., 0., 0., -2.,
                      0., 0., -2., 0., -2., -2., -2., -2., -2., -2., 0.])
        y = np.array([1., 1., 1., 1., 1., 1., -1., 1., 1., 1., -1., -1., -1.,
                      1., -1., 1., -1., 1., 1., 0., -1., 1., 2., 1., 1., -1.,
                      1., 1., -1., 1., -1., -1., -1., -1., -1., -1., 1.])
        dist = correlation(x, y)
        assert 0 <= dist <= 10 * np.finfo(np.float64).eps

    @pytest.mark.thread_unsafe
    @pytest.mark.filterwarnings('ignore:Casting complex')
    @pytest.mark.parametrize("func", [correlation, cosine])
    def test_corr_dep_complex(self, func):
        x = [1+0j, 2+0j]
        y = [3+0j, 4+0j]
        with pytest.deprecated_call(match="Complex `u` and `v` are deprecated"):
            func(x, y)

    def test_mahalanobis(self):
        x = np.array([1.0, 2.0, 3.0])
        y = np.array([1.0, 1.0, 5.0])
        vi = np.array([[2.0, 1.0, 0.0], [1.0, 2.0, 1.0], [0.0, 1.0, 2.0]])
        for x, y in self.cases:
            dist = mahalanobis(x, y, vi)
            assert_almost_equal(dist, np.sqrt(6.0))


class TestSquareForm:
    checked_dtypes = [np.float64, np.float32, np.int32, np.int8, bool]

    def test_squareform_matrix(self):
        for dtype in self.checked_dtypes:
            self.check_squareform_matrix(dtype)

    def test_squareform_vector(self):
        for dtype in self.checked_dtypes:
            self.check_squareform_vector(dtype)

    def check_squareform_matrix(self, dtype):
        A = np.zeros((0, 0), dtype=dtype)
        rA = squareform(A)
        assert_equal(rA.shape, (0,))
        assert_equal(rA.dtype, dtype)

        A = np.zeros((1, 1), dtype=dtype)
        rA = squareform(A)
        assert_equal(rA.shape, (0,))
        assert_equal(rA.dtype, dtype)

        A = np.array([[0, 4.2], [4.2, 0]], dtype=dtype)
        rA = squareform(A)
        assert_equal(rA.shape, (1,))
        assert_equal(rA.dtype, dtype)
        assert_array_equal(rA, np.array([4.2], dtype=dtype))

    def check_squareform_vector(self, dtype):
        v = np.zeros((0,), dtype=dtype)
        rv = squareform(v)
        assert_equal(rv.shape, (1, 1))
        assert_equal(rv.dtype, dtype)
        assert_array_equal(rv, [[0]])

        v = np.array([8.3], dtype=dtype)
        rv = squareform(v)
        assert_equal(rv.shape, (2, 2))
        assert_equal(rv.dtype, dtype)
        assert_array_equal(rv, np.array([[0, 8.3], [8.3, 0]], dtype=dtype))

    def test_squareform_multi_matrix(self):
        for n in range(2, 5):
            self.check_squareform_multi_matrix(n)

    def check_squareform_multi_matrix(self, n):
        X = np.random.rand(n, 4)
        Y = wpdist_no_const(X)
        assert_equal(len(Y.shape), 1)
        A = squareform(Y)
        Yr = squareform(A)
        s = A.shape
        k = 0
        if verbose >= 3:
            print(A.shape, Y.shape, Yr.shape)
        assert_equal(len(s), 2)
        assert_equal(len(Yr.shape), 1)
        assert_equal(s[0], s[1])
        for i in range(0, s[0]):
            for j in range(i + 1, s[1]):
                if i != j:
                    assert_equal(A[i, j], Y[k])
                    k += 1
                else:
                    assert_equal(A[i, j], 0)


class TestNumObsY:

    def test_num_obs_y_multi_matrix(self):
        for n in range(2, 10):
            X = np.random.rand(n, 4)
            Y = wpdist_no_const(X)
            assert_equal(num_obs_y(Y), n)

    def test_num_obs_y_1(self):
        # Tests num_obs_y(y) on a condensed distance matrix over 1
        # observations. Expecting exception.
        with pytest.raises(ValueError):
            self.check_y(1)

    def test_num_obs_y_2(self):
        # Tests num_obs_y(y) on a condensed distance matrix over 2
        # observations.
        assert_(self.check_y(2))

    def test_num_obs_y_3(self):
        assert_(self.check_y(3))

    def test_num_obs_y_4(self):
        assert_(self.check_y(4))

    def test_num_obs_y_5_10(self):
        for i in range(5, 16):
            self.minit(i)

    def test_num_obs_y_2_100(self):
        # Tests num_obs_y(y) on 100 improper condensed distance matrices.
        # Expecting exception.
        a = set()
        for n in range(2, 16):
            a.add(n * (n - 1) / 2)
        for i in range(5, 105):
            if i not in a:
                with pytest.raises(ValueError):
                    self.bad_y(i)

    def minit(self, n):
        assert_(self.check_y(n))

    def bad_y(self, n):
        y = np.random.rand(n)
        return num_obs_y(y)

    def check_y(self, n):
        return num_obs_y(self.make_y(n)) == n

    def make_y(self, n):
        return np.random.rand((n * (n - 1)) // 2)


class TestNumObsDM:

    def test_num_obs_dm_multi_matrix(self):
        for n in range(1, 10):
            X = np.random.rand(n, 4)
            Y = wpdist_no_const(X)
            A = squareform(Y)
            if verbose >= 3:
                print(A.shape, Y.shape)
            assert_equal(num_obs_dm(A), n)

    def test_num_obs_dm_0(self):
        # Tests num_obs_dm(D) on a 0x0 distance matrix. Expecting exception.
        assert_(self.check_D(0))

    def test_num_obs_dm_1(self):
        # Tests num_obs_dm(D) on a 1x1 distance matrix.
        assert_(self.check_D(1))

    def test_num_obs_dm_2(self):
        assert_(self.check_D(2))

    def test_num_obs_dm_3(self):
        assert_(self.check_D(2))

    def test_num_obs_dm_4(self):
        assert_(self.check_D(4))

    def check_D(self, n):
        return num_obs_dm(self.make_D(n)) == n

    def make_D(self, n):
        return np.random.rand(n, n)


def is_valid_dm_throw(D):
    return is_valid_dm(D, throw=True)


class TestIsValidDM:

    def test_is_valid_dm_improper_shape_1D_E(self):
        D = np.zeros((5,), dtype=np.float64)
        with pytest.raises(ValueError):
            is_valid_dm_throw(D)

    def test_is_valid_dm_improper_shape_1D_F(self):
        D = np.zeros((5,), dtype=np.float64)
        assert_equal(is_valid_dm(D), False)

    def test_is_valid_dm_improper_shape_3D_E(self):
        D = np.zeros((3, 3, 3), dtype=np.float64)
        with pytest.raises(ValueError):
            is_valid_dm_throw(D)

    def test_is_valid_dm_improper_shape_3D_F(self):
        D = np.zeros((3, 3, 3), dtype=np.float64)
        assert_equal(is_valid_dm(D), False)

    def test_is_valid_dm_nonzero_diagonal_E(self):
        y = np.random.rand(10)
        D = squareform(y)
        for i in range(0, 5):
            D[i, i] = 2.0
        with pytest.raises(ValueError):
            is_valid_dm_throw(D)

    def test_is_valid_dm_nonzero_diagonal_F(self):
        y = np.random.rand(10)
        D = squareform(y)
        for i in range(0, 5):
            D[i, i] = 2.0
        assert_equal(is_valid_dm(D), False)

    def test_is_valid_dm_asymmetric_E(self):
        y = np.random.rand(10)
        D = squareform(y)
        D[1, 3] = D[3, 1] + 1
        with pytest.raises(ValueError):
            is_valid_dm_throw(D)

    def test_is_valid_dm_asymmetric_F(self):
        y = np.random.rand(10)
        D = squareform(y)
        D[1, 3] = D[3, 1] + 1
        assert_equal(is_valid_dm(D), False)

    def test_is_valid_dm_correct_1_by_1(self):
        D = np.zeros((1, 1), dtype=np.float64)
        assert_equal(is_valid_dm(D), True)

    def test_is_valid_dm_correct_2_by_2(self):
        y = np.random.rand(1)
        D = squareform(y)
        assert_equal(is_valid_dm(D), True)

    def test_is_valid_dm_correct_3_by_3(self):
        y = np.random.rand(3)
        D = squareform(y)
        assert_equal(is_valid_dm(D), True)

    def test_is_valid_dm_correct_4_by_4(self):
        y = np.random.rand(6)
        D = squareform(y)
        assert_equal(is_valid_dm(D), True)

    def test_is_valid_dm_correct_5_by_5(self):
        y = np.random.rand(10)
        D = squareform(y)
        assert_equal(is_valid_dm(D), True)


def is_valid_y_throw(y):
    return is_valid_y(y, throw=True)


class TestIsValidY:
    # If test case name ends on "_E" then an exception is expected for the
    # given input, if it ends in "_F" then False is expected for the is_valid_y
    # check.  Otherwise the input is expected to be valid.

    def test_is_valid_y_improper_shape_2D_E(self):
        y = np.zeros((3, 3,), dtype=np.float64)
        with pytest.raises(ValueError):
            is_valid_y_throw(y)

    def test_is_valid_y_improper_shape_2D_F(self):
        y = np.zeros((3, 3,), dtype=np.float64)
        assert_equal(is_valid_y(y), False)

    def test_is_valid_y_improper_shape_3D_E(self):
        y = np.zeros((3, 3, 3), dtype=np.float64)
        with pytest.raises(ValueError):
            is_valid_y_throw(y)

    def test_is_valid_y_improper_shape_3D_F(self):
        y = np.zeros((3, 3, 3), dtype=np.float64)
        assert_equal(is_valid_y(y), False)

    def test_is_valid_y_correct_2_by_2(self):
        y = self.correct_n_by_n(2)
        assert_equal(is_valid_y(y), True)

    def test_is_valid_y_correct_3_by_3(self):
        y = self.correct_n_by_n(3)
        assert_equal(is_valid_y(y), True)

    def test_is_valid_y_correct_4_by_4(self):
        y = self.correct_n_by_n(4)
        assert_equal(is_valid_y(y), True)

    def test_is_valid_y_correct_5_by_5(self):
        y = self.correct_n_by_n(5)
        assert_equal(is_valid_y(y), True)

    def test_is_valid_y_2_100(self):
        a = set()
        for n in range(2, 16):
            a.add(n * (n - 1) / 2)
        for i in range(5, 105):
            if i not in a:
                with pytest.raises(ValueError):
                    self.bad_y(i)

    def bad_y(self, n):
        y = np.random.rand(n)
        return is_valid_y(y, throw=True)

    def correct_n_by_n(self, n):
        y = np.random.rand((n * (n - 1)) // 2)
        return y


@pytest.mark.parametrize("p", [-10.0, -0.5, 0.0])
def test_bad_p(p):
    # Raise ValueError if p <=0.
    with pytest.raises(ValueError):
        minkowski([1, 2], [3, 4], p)
    with pytest.raises(ValueError):
        minkowski([1, 2], [3, 4], p, [1, 1])


def test_sokalsneath_all_false():
    # Regression test for ticket #876
    with pytest.raises(ValueError):
        sokalsneath([False, False, False], [False, False, False])


def test_canberra():
    # Regression test for ticket #1430.
    assert_equal(wcanberra([1, 2, 3], [2, 4, 6]), 1)
    assert_equal(wcanberra([1, 1, 0, 0], [1, 0, 1, 0]), 2)


def test_braycurtis():
    # Regression test for ticket #1430.
    assert_almost_equal(wbraycurtis([1, 2, 3], [2, 4, 6]), 1. / 3, decimal=15)
    assert_almost_equal(wbraycurtis([1, 1, 0, 0], [1, 0, 1, 0]), 0.5, decimal=15)


def test_euclideans():
    # Regression test for ticket #1328.
    x1 = np.array([1, 1, 1])
    x2 = np.array([0, 0, 0])

    # Basic test of the calculation.
    assert_almost_equal(wsqeuclidean(x1, x2), 3.0, decimal=14)
    assert_almost_equal(weuclidean(x1, x2), np.sqrt(3), decimal=14)

    # Check flattening for (1, N) or (N, 1) inputs
    with pytest.raises(ValueError, match="Input vector should be 1-D"):
        weuclidean(x1[np.newaxis, :], x2[np.newaxis, :]), np.sqrt(3)
    with pytest.raises(ValueError, match="Input vector should be 1-D"):
        wsqeuclidean(x1[np.newaxis, :], x2[np.newaxis, :])
    with pytest.raises(ValueError, match="Input vector should be 1-D"):
        wsqeuclidean(x1[:, np.newaxis], x2[:, np.newaxis])

    # Distance metrics only defined for vectors (= 1-D)
    x = np.arange(4).reshape(2, 2)
    with pytest.raises(ValueError):
        weuclidean(x, x)
    with pytest.raises(ValueError):
        wsqeuclidean(x, x)

    # Another check, with random data.
    rs = np.random.RandomState(1234567890)
    x = rs.rand(10)
    y = rs.rand(10)
    d1 = weuclidean(x, y)
    d2 = wsqeuclidean(x, y)
    assert_almost_equal(d1**2, d2, decimal=14)


def test_hamming_unequal_length():
    # Regression test for gh-4290.
    x = [0, 0, 1]
    y = [1, 0, 1, 0]
    # Used to give an AttributeError from ndarray.mean called on bool
    with pytest.raises(ValueError):
        whamming(x, y)


def test_hamming_unequal_length_with_w():
    u = [0, 0, 1]
    v = [0, 0, 1]
    w = [1, 0, 1, 0]
    msg = "'w' should have the same length as 'u' and 'v'."
    with pytest.raises(ValueError, match=msg):
        whamming(u, v, w)


def test_hamming_string_array():
    # https://github.com/scikit-learn/scikit-learn/issues/4014
    a = np.array(['eggs', 'spam', 'spam', 'eggs', 'spam', 'spam', 'spam',
                  'spam', 'spam', 'spam', 'spam', 'eggs', 'eggs', 'spam',
                  'eggs', 'eggs', 'eggs', 'eggs', 'eggs', 'spam'],
                  dtype='|S4')
    b = np.array(['eggs', 'spam', 'spam', 'eggs', 'eggs', 'spam', 'spam',
                  'spam', 'spam', 'eggs', 'spam', 'eggs', 'spam', 'eggs',
                  'spam', 'spam', 'eggs', 'spam', 'spam', 'eggs'],
                  dtype='|S4')
    desired = 0.45
    assert_allclose(whamming(a, b), desired)


def test_minkowski_w():
    # Regression test for gh-8142.
    arr_in = np.array([[83.33333333, 100., 83.33333333, 100., 36.,
                        60., 90., 150., 24., 48.],
                       [83.33333333, 100., 83.33333333, 100., 36.,
                        60., 90., 150., 24., 48.]])
    p0 = pdist(arr_in, metric='minkowski', p=1, w=None)
    c0 = cdist(arr_in, arr_in, metric='minkowski', p=1, w=None)
    p1 = pdist(arr_in, metric='minkowski', p=1)
    c1 = cdist(arr_in, arr_in, metric='minkowski', p=1)

    assert_allclose(p0, p1, rtol=1e-15)
    assert_allclose(c0, c1, rtol=1e-15)


def test_sqeuclidean_dtypes():
    # Assert that sqeuclidean returns the right types of values.
    # Integer types should be converted to floating for stability.
    # Floating point types should be the same as the input.
    x = [1, 2, 3]
    y = [4, 5, 6]

    for dtype in [np.int8, np.int16, np.int32, np.int64]:
        d = wsqeuclidean(np.asarray(x, dtype=dtype), np.asarray(y, dtype=dtype))
        assert_(np.issubdtype(d.dtype, np.floating))

    for dtype in [np.uint8, np.uint16, np.uint32, np.uint64]:
        umax = np.iinfo(dtype).max
        d1 = wsqeuclidean([0], np.asarray([umax], dtype=dtype))
        d2 = wsqeuclidean(np.asarray([umax], dtype=dtype), [0])

        assert_equal(d1, d2)
        assert_equal(d1, np.float64(umax)**2)

    dtypes = [np.float32, np.float64, np.complex64, np.complex128]
    for dtype in ['float16', 'float128']:
        # These aren't present in older numpy versions; float128 may also not
        # be present on all platforms.
        if hasattr(np, dtype):
            dtypes.append(getattr(np, dtype))

    for dtype in dtypes:
        d = wsqeuclidean(np.asarray(x, dtype=dtype), np.asarray(y, dtype=dtype))
        assert_equal(d.dtype, dtype)


@pytest.mark.thread_unsafe
def test_sokalmichener():
    # Test that sokalmichener has the same result for bool and int inputs.
    p = [True, True, False]
    q = [True, False, True]
    x = [int(b) for b in p]
    y = [int(b) for b in q]
    with pytest.deprecated_call():
        dist1 = sokalmichener(p, q)
    with pytest.deprecated_call():
        dist2 = sokalmichener(x, y)
    # These should be exactly the same.
    assert_equal(dist1, dist2)


@pytest.mark.thread_unsafe
def test_sokalmichener_with_weight():
    # from: | 1 |   | 0 |
    # to:   | 1 |   | 1 |
    # weight|   | 1 |   | 0.2
    ntf = 0 * 1 + 0 * 0.2
    nft = 0 * 1 + 1 * 0.2
    ntt = 1 * 1 + 0 * 0.2
    nff = 0 * 1 + 0 * 0.2
    expected = 2 * (nft + ntf) / (ntt + nff + 2 * (nft + ntf))
    assert_almost_equal(expected, 0.2857143)
    with pytest.deprecated_call():
        actual = sokalmichener([1, 0], [1, 1], w=[1, 0.2])
    assert_almost_equal(expected, actual)

    a1 = [False, False, True, True, True, False, False, True, True, True, True,
          True, True, False, True, False, False, False, True, True]
    a2 = [True, True, True, False, False, True, True, True, False, True,
          True, True, True, True, False, False, False, True, True, True]

    for w in [0.05, 0.1, 1.0, 20.0]:
        with pytest.deprecated_call():
            assert_almost_equal(sokalmichener(a2, a1, [w]), 0.6666666666666666)


@pytest.mark.thread_unsafe
def test_modifies_input(metric):
    # test whether cdist or pdist modifies input arrays
    X1 = np.asarray([[1., 2., 3.],
                     [1.2, 2.3, 3.4],
                     [2.2, 2.3, 4.4],
                     [22.2, 23.3, 44.4]])
    X1_copy = X1.copy()
    with maybe_deprecated(metric):
        cdist(X1, X1, metric)
    with maybe_deprecated(metric):
        pdist(X1, metric)
    assert_array_equal(X1, X1_copy)


@pytest.mark.thread_unsafe
def test_Xdist_deprecated_args(metric):
    # testing both cdist and pdist deprecated warnings
    X1 = np.asarray([[1., 2., 3.],
                     [1.2, 2.3, 3.4],
                     [2.2, 2.3, 4.4],
                     [22.2, 23.3, 44.4]])

    with pytest.raises(TypeError):
        cdist(X1, X1, metric, 2.)

    with pytest.raises(TypeError):
        pdist(X1, metric, 2.)

    for arg in ["p", "V", "VI"]:
        kwargs = {arg: "foo"}

        if ((arg == "V" and metric == "seuclidean")
                or (arg == "VI" and metric == "mahalanobis")
                or (arg == "p" and metric == "minkowski")):
            continue

        with pytest.raises(TypeError):
            with maybe_deprecated(metric):
                cdist(X1, X1, metric, **kwargs)

        with pytest.raises(TypeError):
            with maybe_deprecated(metric):
                pdist(X1, metric, **kwargs)


@pytest.mark.thread_unsafe
def test_Xdist_non_negative_weights(metric):
    X = eo['random-float32-data'][::5, ::2]
    w = np.ones(X.shape[1])
    w[::5] = -w[::5]

    if metric in ['seuclidean', 'mahalanobis', 'jensenshannon']:
        pytest.skip("not applicable")

    for m in [metric, eval(metric), "test_" + metric]:
        with pytest.raises(ValueError):
            with maybe_deprecated(metric):
                pdist(X, m, w=w)
        with pytest.raises(ValueError):
            with maybe_deprecated(metric):
                cdist(X, X, m, w=w)


def test__validate_vector():
    x = [1, 2, 3]
    y = _validate_vector(x)
    assert_array_equal(y, x)

    y = _validate_vector(x, dtype=np.float64)
    assert_array_equal(y, x)
    assert_equal(y.dtype, np.float64)

    x = [1]
    y = _validate_vector(x)
    assert_equal(y.ndim, 1)
    assert_equal(y, x)

    x = 1
    with pytest.raises(ValueError, match="Input vector should be 1-D"):
        _validate_vector(x)

    x = np.arange(5).reshape(1, -1, 1)
    with pytest.raises(ValueError, match="Input vector should be 1-D"):
        _validate_vector(x)

    x = [[1, 2], [3, 4]]
    with pytest.raises(ValueError, match="Input vector should be 1-D"):
        _validate_vector(x)

def test_yule_all_same():
    # Test yule avoids a divide by zero when exactly equal
    x = np.ones((2, 6), dtype=bool)
    d = wyule(x[0], x[0])
    assert d == 0.0

    d = pdist(x, 'yule')
    assert_equal(d, [0.0])

    d = cdist(x[:1], x[:1], 'yule')
    assert_equal(d, [[0.0]])


def test_jensenshannon():
    assert_almost_equal(jensenshannon([1.0, 0.0, 0.0], [0.0, 1.0, 0.0], 2.0),
                        1.0)
    assert_almost_equal(jensenshannon([1.0, 0.0], [0.5, 0.5]),
                        0.46450140402245893)
    assert_almost_equal(jensenshannon([1.0, 0.0, 0.0], [1.0, 0.0, 0.0]), 0.0)

    assert_almost_equal(jensenshannon([[1.0, 2.0]], [[0.5, 1.5]], axis=0),
                        [0.0, 0.0])
    assert_almost_equal(jensenshannon([[1.0, 2.0]], [[0.5, 1.5]], axis=1),
                        [0.0649045])
    assert_almost_equal(jensenshannon([[1.0, 2.0]], [[0.5, 1.5]], axis=0,
                                      keepdims=True), [[0.0, 0.0]])
    assert_almost_equal(jensenshannon([[1.0, 2.0]], [[0.5, 1.5]], axis=1,
                                      keepdims=True), [[0.0649045]])

    a = np.array([[1, 2, 3, 4],
                  [5, 6, 7, 8],
                  [9, 10, 11, 12]])
    b = np.array([[13, 14, 15, 16],
                  [17, 18, 19, 20],
                  [21, 22, 23, 24]])

    assert_almost_equal(jensenshannon(a, b, axis=0),
                        [0.1954288, 0.1447697, 0.1138377, 0.0927636])
    assert_almost_equal(jensenshannon(a, b, axis=1),
                        [0.1402339, 0.0399106, 0.0201815])


def test_gh_17703():
    arr_1 = np.array([1, 0, 0])
    arr_2 = np.array([2, 0, 0])
    expected = dice(arr_1, arr_2)
    actual = pdist([arr_1, arr_2], metric='dice')
    assert_allclose(actual, expected)
    actual = cdist(np.atleast_2d(arr_1),
                   np.atleast_2d(arr_2), metric='dice')
    assert_allclose(actual, expected)


@pytest.mark.thread_unsafe
def test_immutable_input(metric):
    if metric in ("jensenshannon", "mahalanobis", "seuclidean"):
        pytest.skip("not applicable")
    x = np.arange(10, dtype=np.float64)
    x.setflags(write=False)
    with maybe_deprecated(metric):
        getattr(scipy.spatial.distance, metric)(x, x, w=x)


class TestJaccard:

    def test_pdist_jaccard_random(self):
        eps = 1e-8
        X = eo['pdist-boolean-inp']
        Y_right = eo['pdist-jaccard']
        Y_test1 = wpdist(X, 'jaccard')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_jaccard_random_float32(self):
        eps = 1e-8
        X = np.float32(eo['pdist-boolean-inp'])
        Y_right = eo['pdist-jaccard']
        Y_test1 = wpdist(X, 'jaccard')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_jaccard_random_nonC(self):
        eps = 1e-8
        X = eo['pdist-boolean-inp']
        Y_right = eo['pdist-jaccard']
        Y_test2 = wpdist(X, 'test_jaccard')
        assert_allclose(Y_test2, Y_right, rtol=eps)

    def test_pdist_djaccard_random(self):
        eps = 1e-8
        X = np.float64(eo['pdist-boolean-inp'])
        Y_right = eo['pdist-jaccard']
        Y_test1 = wpdist(X, 'jaccard')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_djaccard_random_float32(self):
        eps = 1e-8
        X = np.float32(eo['pdist-boolean-inp'])
        Y_right = eo['pdist-jaccard']
        Y_test1 = wpdist(X, 'jaccard')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_djaccard_allzeros(self):
        eps = 1e-15
        Y = pdist(np.zeros((5, 3)), 'jaccard')
        assert_allclose(np.zeros(10), Y, rtol=eps)

    def test_pdist_djaccard_random_nonC(self):
        eps = 1e-8
        X = np.float64(eo['pdist-boolean-inp'])
        Y_right = eo['pdist-jaccard']
        Y_test2 = wpdist(X, 'test_jaccard')
        assert_allclose(Y_test2, Y_right, rtol=eps)

    def test_pdist_djaccard_allzeros_nonC(self):
        eps = 1e-15
        Y = pdist(np.zeros((5, 3)), 'test_jaccard')
        assert_allclose(np.zeros(10), Y, rtol=eps)

    def test_pdist_jaccard_mtica1(self):
        m = wjaccard(np.array([1, 0, 1, 1, 0]),
                     np.array([1, 1, 0, 1, 1]))
        m2 = wjaccard(np.array([1, 0, 1, 1, 0], dtype=bool),
                      np.array([1, 1, 0, 1, 1], dtype=bool))
        assert_allclose(m, 0.6, rtol=0, atol=1e-10)
        assert_allclose(m2, 0.6, rtol=0, atol=1e-10)

    def test_pdist_jaccard_mtica2(self):
        m = wjaccard(np.array([1, 0, 1]),
                     np.array([1, 1, 0]))
        m2 = wjaccard(np.array([1, 0, 1], dtype=bool),
                      np.array([1, 1, 0], dtype=bool))
        assert_allclose(m, 2 / 3, rtol=0, atol=1e-10)
        assert_allclose(m2, 2 / 3, rtol=0, atol=1e-10)

    def test_non_01_input(self):
        # Non-0/1 numeric input should be cast to bool before computation.
        # See gh-21176.
        x = np.array([-10, 2.5, 0])  # [True, True, False]
        y = np.array([ 2,   -5, 2])  # [True, True, True]
        eps = np.finfo(float).eps
        assert_allclose(jaccard(x, y), 1/3, rtol=eps)
        assert_allclose(cdist([x], [y], 'jaccard'), [[1/3]])
        assert_allclose(pdist([x, y], 'jaccard'), [1/3])


class TestChebyshev:

    def test_pdist_chebyshev_random(self):
        eps = 1e-8
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-chebyshev']
        Y_test1 = pdist(X, 'chebyshev')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_chebyshev_random_float32(self):
        eps = 1e-7
        X = np.float32(eo['pdist-double-inp'])
        Y_right = eo['pdist-chebyshev']
        Y_test1 = pdist(X, 'chebyshev')
        assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2)

    def test_pdist_chebyshev_random_nonC(self):
        eps = 1e-8
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-chebyshev']
        Y_test2 = pdist(X, 'test_chebyshev')
        assert_allclose(Y_test2, Y_right, rtol=eps)

    def test_pdist_chebyshev_iris(self):
        eps = 1e-14
        X = eo['iris']
        Y_right = eo['pdist-chebyshev-iris']
        Y_test1 = pdist(X, 'chebyshev')
        assert_allclose(Y_test1, Y_right, rtol=eps)

    def test_pdist_chebyshev_iris_float32(self):
        eps = 1e-5
        X = np.float32(eo['iris'])
        Y_right = eo['pdist-chebyshev-iris']
        Y_test1 = pdist(X, 'chebyshev')
        assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2)

    def test_pdist_chebyshev_iris_nonC(self):
        eps = 1e-14
        X = eo['iris']
        Y_right = eo['pdist-chebyshev-iris']
        Y_test2 = pdist(X, 'test_chebyshev')
        assert_allclose(Y_test2, Y_right, rtol=eps)

    def test_weighted(self):
        # Basic test for weighted Chebyshev.  Only components with non-zero
        # weight participate in the 'max'.
        x = [1, 2, 3]
        y = [6, 5, 4]
        w = [0, 1, 5]
        assert_equal(chebyshev(x, y, w), 3)
        assert_equal(pdist([x, y], 'chebyshev', w=w), [3])
        assert_equal(cdist([x], [y], 'chebyshev', w=w), [[3]])

    def test_zero_weight(self):
        # If the weight is identically zero, the distance should be zero.
        x = [1, 2, 3]
        y = [6, 5, 4]
        w = [0, 0, 0]
        assert_equal(chebyshev(x, y, w), 0)
        assert_equal(pdist([x, y], 'chebyshev', w=w), [0])
        assert_equal(cdist([x], [y], 'chebyshev', w=w), [[0]])