File size: 16,427 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
import numpy as np
from numpy.testing import assert_allclose
import pytest
from scipy.spatial import geometric_slerp
def _generate_spherical_points(ndim=3, n_pts=2):
# generate uniform points on sphere
# see: https://stackoverflow.com/a/23785326
# tentatively extended to arbitrary dims
# for 0-sphere it will always produce antipodes
np.random.seed(123)
points = np.random.normal(size=(n_pts, ndim))
points /= np.linalg.norm(points, axis=1)[:, np.newaxis]
return points[0], points[1]
class TestGeometricSlerp:
# Test various properties of the geometric slerp code
@pytest.mark.parametrize("n_dims", [2, 3, 5, 7, 9])
@pytest.mark.parametrize("n_pts", [0, 3, 17])
def test_shape_property(self, n_dims, n_pts):
# geometric_slerp output shape should match
# input dimensionality & requested number
# of interpolation points
start, end = _generate_spherical_points(n_dims, 2)
actual = geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, n_pts))
assert actual.shape == (n_pts, n_dims)
@pytest.mark.parametrize("n_dims", [2, 3, 5, 7, 9])
@pytest.mark.parametrize("n_pts", [3, 17])
def test_include_ends(self, n_dims, n_pts):
# geometric_slerp should return a data structure
# that includes the start and end coordinates
# when t includes 0 and 1 ends
# this is convenient for plotting surfaces represented
# by interpolations for example
# the generator doesn't work so well for the unit
# sphere (it always produces antipodes), so use
# custom values there
start, end = _generate_spherical_points(n_dims, 2)
actual = geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, n_pts))
assert_allclose(actual[0], start)
assert_allclose(actual[-1], end)
@pytest.mark.parametrize("start, end", [
# both arrays are not flat
(np.zeros((1, 3)), np.ones((1, 3))),
# only start array is not flat
(np.zeros((1, 3)), np.ones(3)),
# only end array is not flat
(np.zeros(1), np.ones((3, 1))),
])
def test_input_shape_flat(self, start, end):
# geometric_slerp should handle input arrays that are
# not flat appropriately
with pytest.raises(ValueError, match='one-dimensional'):
geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, 10))
@pytest.mark.parametrize("start, end", [
# 7-D and 3-D ends
(np.zeros(7), np.ones(3)),
# 2-D and 1-D ends
(np.zeros(2), np.ones(1)),
# empty, "3D" will also get caught this way
(np.array([]), np.ones(3)),
])
def test_input_dim_mismatch(self, start, end):
# geometric_slerp must appropriately handle cases where
# an interpolation is attempted across two different
# dimensionalities
with pytest.raises(ValueError, match='dimensions'):
geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, 10))
@pytest.mark.parametrize("start, end", [
# both empty
(np.array([]), np.array([])),
])
def test_input_at_least1d(self, start, end):
# empty inputs to geometric_slerp must
# be handled appropriately when not detected
# by mismatch
with pytest.raises(ValueError, match='at least two-dim'):
geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, 10))
@pytest.mark.thread_unsafe
@pytest.mark.parametrize("start, end, expected", [
# North and South Poles are definitely antipodes
# but should be handled gracefully now
(np.array([0, 0, 1.0]), np.array([0, 0, -1.0]), "warning"),
# this case will issue a warning & be handled
# gracefully as well;
# North Pole was rotated very slightly
# using r = R.from_euler('x', 0.035, degrees=True)
# to achieve Euclidean distance offset from diameter by
# 9.328908379124812e-08, within the default tol
(np.array([0.00000000e+00,
-6.10865200e-04,
9.99999813e-01]), np.array([0, 0, -1.0]), "warning"),
# this case should succeed without warning because a
# sufficiently large
# rotation was applied to North Pole point to shift it
# to a Euclidean distance of 2.3036691931821451e-07
# from South Pole, which is larger than tol
(np.array([0.00000000e+00,
-9.59930941e-04,
9.99999539e-01]), np.array([0, 0, -1.0]), "success"),
])
def test_handle_antipodes(self, start, end, expected):
# antipodal points must be handled appropriately;
# there are an infinite number of possible geodesic
# interpolations between them in higher dims
if expected == "warning":
with pytest.warns(UserWarning, match='antipodes'):
res = geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, 10))
else:
res = geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, 10))
# antipodes or near-antipodes should still produce
# slerp paths on the surface of the sphere (but they
# may be ambiguous):
assert_allclose(np.linalg.norm(res, axis=1), 1.0)
@pytest.mark.parametrize("start, end, expected", [
# 2-D with n_pts=4 (two new interpolation points)
# this is an actual circle
(np.array([1, 0]),
np.array([0, 1]),
np.array([[1, 0],
[np.sqrt(3) / 2, 0.5], # 30 deg on unit circle
[0.5, np.sqrt(3) / 2], # 60 deg on unit circle
[0, 1]])),
# likewise for 3-D (add z = 0 plane)
# this is an ordinary sphere
(np.array([1, 0, 0]),
np.array([0, 1, 0]),
np.array([[1, 0, 0],
[np.sqrt(3) / 2, 0.5, 0],
[0.5, np.sqrt(3) / 2, 0],
[0, 1, 0]])),
# for 5-D, pad more columns with constants
# zeros are easiest--non-zero values on unit
# circle are more difficult to reason about
# at higher dims
(np.array([1, 0, 0, 0, 0]),
np.array([0, 1, 0, 0, 0]),
np.array([[1, 0, 0, 0, 0],
[np.sqrt(3) / 2, 0.5, 0, 0, 0],
[0.5, np.sqrt(3) / 2, 0, 0, 0],
[0, 1, 0, 0, 0]])),
])
def test_straightforward_examples(self, start, end, expected):
# some straightforward interpolation tests, sufficiently
# simple to use the unit circle to deduce expected values;
# for larger dimensions, pad with constants so that the
# data is N-D but simpler to reason about
actual = geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, 4))
assert_allclose(actual, expected, atol=1e-16)
@pytest.mark.parametrize("t", [
# both interval ends clearly violate limits
np.linspace(-20, 20, 300),
# only one interval end violating limit slightly
np.linspace(-0.0001, 0.0001, 17),
])
def test_t_values_limits(self, t):
# geometric_slerp() should appropriately handle
# interpolation parameters < 0 and > 1
with pytest.raises(ValueError, match='interpolation parameter'):
_ = geometric_slerp(start=np.array([1, 0]),
end=np.array([0, 1]),
t=t)
@pytest.mark.parametrize("start, end", [
(np.array([1]),
np.array([0])),
(np.array([0]),
np.array([1])),
(np.array([-17.7]),
np.array([165.9])),
])
def test_0_sphere_handling(self, start, end):
# it does not make sense to interpolate the set of
# two points that is the 0-sphere
with pytest.raises(ValueError, match='at least two-dim'):
_ = geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, 4))
@pytest.mark.parametrize("tol", [
# an integer currently raises
5,
# string raises
"7",
# list and arrays also raise
[5, 6, 7], np.array(9.0),
])
def test_tol_type(self, tol):
# geometric_slerp() should raise if tol is not
# a suitable float type
with pytest.raises(ValueError, match='must be a float'):
_ = geometric_slerp(start=np.array([1, 0]),
end=np.array([0, 1]),
t=np.linspace(0, 1, 5),
tol=tol)
@pytest.mark.parametrize("tol", [
-5e-6,
-7e-10,
])
def test_tol_sign(self, tol):
# geometric_slerp() currently handles negative
# tol values, as long as they are floats
_ = geometric_slerp(start=np.array([1, 0]),
end=np.array([0, 1]),
t=np.linspace(0, 1, 5),
tol=tol)
@pytest.mark.parametrize("start, end", [
# 1-sphere (circle) with one point at origin
# and the other on the circle
(np.array([1, 0]), np.array([0, 0])),
# 2-sphere (normal sphere) with both points
# just slightly off sphere by the same amount
# in different directions
(np.array([1 + 1e-6, 0, 0]),
np.array([0, 1 - 1e-6, 0])),
# same thing in 4-D
(np.array([1 + 1e-6, 0, 0, 0]),
np.array([0, 1 - 1e-6, 0, 0])),
])
def test_unit_sphere_enforcement(self, start, end):
# geometric_slerp() should raise on input that clearly
# cannot be on an n-sphere of radius 1
with pytest.raises(ValueError, match='unit n-sphere'):
geometric_slerp(start=start,
end=end,
t=np.linspace(0, 1, 5))
@pytest.mark.parametrize("start, end", [
# 1-sphere 45 degree case
(np.array([1, 0]),
np.array([np.sqrt(2) / 2.,
np.sqrt(2) / 2.])),
# 2-sphere 135 degree case
(np.array([1, 0]),
np.array([-np.sqrt(2) / 2.,
np.sqrt(2) / 2.])),
])
@pytest.mark.parametrize("t_func", [
np.linspace, np.logspace])
def test_order_handling(self, start, end, t_func):
# geometric_slerp() should handle scenarios with
# ascending and descending t value arrays gracefully;
# results should simply be reversed
# for scrambled / unsorted parameters, the same values
# should be returned, just in scrambled order
num_t_vals = 20
np.random.seed(789)
forward_t_vals = t_func(0, 10, num_t_vals)
# normalize to max of 1
forward_t_vals /= forward_t_vals.max()
reverse_t_vals = np.flipud(forward_t_vals)
shuffled_indices = np.arange(num_t_vals)
np.random.shuffle(shuffled_indices)
scramble_t_vals = forward_t_vals.copy()[shuffled_indices]
forward_results = geometric_slerp(start=start,
end=end,
t=forward_t_vals)
reverse_results = geometric_slerp(start=start,
end=end,
t=reverse_t_vals)
scrambled_results = geometric_slerp(start=start,
end=end,
t=scramble_t_vals)
# check fidelity to input order
assert_allclose(forward_results, np.flipud(reverse_results))
assert_allclose(forward_results[shuffled_indices],
scrambled_results)
@pytest.mark.parametrize("t", [
# string:
"15, 5, 7",
# complex numbers currently produce a warning
# but not sure we need to worry about it too much:
# [3 + 1j, 5 + 2j],
])
def test_t_values_conversion(self, t):
with pytest.raises(ValueError):
_ = geometric_slerp(start=np.array([1]),
end=np.array([0]),
t=t)
def test_accept_arraylike(self):
# array-like support requested by reviewer
# in gh-10380
actual = geometric_slerp([1, 0], [0, 1], [0, 1/3, 0.5, 2/3, 1])
# expected values are based on visual inspection
# of the unit circle for the progressions along
# the circumference provided in t
expected = np.array([[1, 0],
[np.sqrt(3) / 2, 0.5],
[np.sqrt(2) / 2,
np.sqrt(2) / 2],
[0.5, np.sqrt(3) / 2],
[0, 1]], dtype=np.float64)
# Tyler's original Cython implementation of geometric_slerp
# can pass at atol=0 here, but on balance we will accept
# 1e-16 for an implementation that avoids Cython and
# makes up accuracy ground elsewhere
assert_allclose(actual, expected, atol=1e-16)
def test_scalar_t(self):
# when t is a scalar, return value is a single
# interpolated point of the appropriate dimensionality
# requested by reviewer in gh-10380
actual = geometric_slerp([1, 0], [0, 1], 0.5)
expected = np.array([np.sqrt(2) / 2,
np.sqrt(2) / 2], dtype=np.float64)
assert actual.shape == (2,)
assert_allclose(actual, expected)
@pytest.mark.parametrize('start', [
np.array([1, 0, 0]),
np.array([0, 1]),
])
@pytest.mark.parametrize('t', [
np.array(1),
np.array([1]),
np.array([[1]]),
np.array([[[1]]]),
np.array([]),
np.linspace(0, 1, 5),
])
def test_degenerate_input(self, start, t):
if np.asarray(t).ndim > 1:
with pytest.raises(ValueError):
geometric_slerp(start=start, end=start, t=t)
else:
shape = (t.size,) + start.shape
expected = np.full(shape, start)
actual = geometric_slerp(start=start, end=start, t=t)
assert_allclose(actual, expected)
# Check that degenerate and non-degenerate
# inputs yield the same size
non_degenerate = geometric_slerp(start=start, end=start[::-1], t=t)
assert actual.size == non_degenerate.size
@pytest.mark.parametrize('k', np.logspace(-10, -1, 10))
def test_numerical_stability_pi(self, k):
# geometric_slerp should have excellent numerical
# stability for angles approaching pi between
# the start and end points
angle = np.pi - k
ts = np.linspace(0, 1, 100)
P = np.array([1, 0, 0, 0])
Q = np.array([np.cos(angle), np.sin(angle), 0, 0])
# the test should only be enforced for cases where
# geometric_slerp determines that the input is actually
# on the unit sphere
with np.testing.suppress_warnings() as sup:
sup.filter(UserWarning)
result = geometric_slerp(P, Q, ts, 1e-18)
norms = np.linalg.norm(result, axis=1)
error = np.max(np.abs(norms - 1))
assert error < 4e-15
@pytest.mark.parametrize('t', [
[[0, 0.5]],
[[[[[[[[[0, 0.5]]]]]]]]],
])
def test_interpolation_param_ndim(self, t):
# regression test for gh-14465
arr1 = np.array([0, 1])
arr2 = np.array([1, 0])
with pytest.raises(ValueError):
geometric_slerp(start=arr1,
end=arr2,
t=t)
with pytest.raises(ValueError):
geometric_slerp(start=arr1,
end=arr1,
t=t)
|