File size: 5,382 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import numpy as np
from ._ufuncs import _ellip_harm
from ._ellip_harm_2 import _ellipsoid, _ellipsoid_norm
def ellip_harm(h2, k2, n, p, s, signm=1, signn=1):
r"""
Ellipsoidal harmonic functions E^p_n(l)
These are also known as Lame functions of the first kind, and are
solutions to the Lame equation:
.. math:: (s^2 - h^2)(s^2 - k^2)E''(s)
+ s(2s^2 - h^2 - k^2)E'(s) + (a - q s^2)E(s) = 0
where :math:`q = (n+1)n` and :math:`a` is the eigenvalue (not
returned) corresponding to the solutions.
Parameters
----------
h2 : float
``h**2``
k2 : float
``k**2``; should be larger than ``h**2``
n : int
Degree
s : float
Coordinate
p : int
Order, can range between [1,2n+1]
signm : {1, -1}, optional
Sign of prefactor of functions. Can be +/-1. See Notes.
signn : {1, -1}, optional
Sign of prefactor of functions. Can be +/-1. See Notes.
Returns
-------
E : float
the harmonic :math:`E^p_n(s)`
See Also
--------
ellip_harm_2, ellip_normal
Notes
-----
The geometric interpretation of the ellipsoidal functions is
explained in [2]_, [3]_, [4]_. The `signm` and `signn` arguments control the
sign of prefactors for functions according to their type::
K : +1
L : signm
M : signn
N : signm*signn
.. versionadded:: 0.15.0
References
----------
.. [1] Digital Library of Mathematical Functions 29.12
https://dlmf.nist.gov/29.12
.. [2] Bardhan and Knepley, "Computational science and
re-discovery: open-source implementations of
ellipsoidal harmonics for problems in potential theory",
Comput. Sci. Disc. 5, 014006 (2012)
:doi:`10.1088/1749-4699/5/1/014006`.
.. [3] David J.and Dechambre P, "Computation of Ellipsoidal
Gravity Field Harmonics for small solar system bodies"
pp. 30-36, 2000
.. [4] George Dassios, "Ellipsoidal Harmonics: Theory and Applications"
pp. 418, 2012
Examples
--------
>>> from scipy.special import ellip_harm
>>> w = ellip_harm(5,8,1,1,2.5)
>>> w
2.5
Check that the functions indeed are solutions to the Lame equation:
>>> import numpy as np
>>> from scipy.interpolate import UnivariateSpline
>>> def eigenvalue(f, df, ddf):
... r = (((s**2 - h**2) * (s**2 - k**2) * ddf
... + s * (2*s**2 - h**2 - k**2) * df
... - n * (n + 1)*s**2*f) / f)
... return -r.mean(), r.std()
>>> s = np.linspace(0.1, 10, 200)
>>> k, h, n, p = 8.0, 2.2, 3, 2
>>> E = ellip_harm(h**2, k**2, n, p, s)
>>> E_spl = UnivariateSpline(s, E)
>>> a, a_err = eigenvalue(E_spl(s), E_spl(s,1), E_spl(s,2))
>>> a, a_err
(583.44366156701483, 6.4580890640310646e-11)
""" # noqa: E501
return _ellip_harm(h2, k2, n, p, s, signm, signn)
_ellip_harm_2_vec = np.vectorize(_ellipsoid, otypes='d')
def ellip_harm_2(h2, k2, n, p, s):
r"""
Ellipsoidal harmonic functions F^p_n(l)
These are also known as Lame functions of the second kind, and are
solutions to the Lame equation:
.. math:: (s^2 - h^2)(s^2 - k^2)F''(s)
+ s(2s^2 - h^2 - k^2)F'(s) + (a - q s^2)F(s) = 0
where :math:`q = (n+1)n` and :math:`a` is the eigenvalue (not
returned) corresponding to the solutions.
Parameters
----------
h2 : float
``h**2``
k2 : float
``k**2``; should be larger than ``h**2``
n : int
Degree.
p : int
Order, can range between [1,2n+1].
s : float
Coordinate
Returns
-------
F : float
The harmonic :math:`F^p_n(s)`
See Also
--------
ellip_harm, ellip_normal
Notes
-----
Lame functions of the second kind are related to the functions of the first kind:
.. math::
F^p_n(s)=(2n + 1)E^p_n(s)\int_{0}^{1/s}
\frac{du}{(E^p_n(1/u))^2\sqrt{(1-u^2k^2)(1-u^2h^2)}}
.. versionadded:: 0.15.0
Examples
--------
>>> from scipy.special import ellip_harm_2
>>> w = ellip_harm_2(5,8,2,1,10)
>>> w
0.00108056853382
"""
with np.errstate(all='ignore'):
return _ellip_harm_2_vec(h2, k2, n, p, s)
def _ellip_normal_vec(h2, k2, n, p):
return _ellipsoid_norm(h2, k2, n, p)
_ellip_normal_vec = np.vectorize(_ellip_normal_vec, otypes='d')
def ellip_normal(h2, k2, n, p):
r"""
Ellipsoidal harmonic normalization constants gamma^p_n
The normalization constant is defined as
.. math::
\gamma^p_n=8\int_{0}^{h}dx\int_{h}^{k}dy
\frac{(y^2-x^2)(E^p_n(y)E^p_n(x))^2}{\sqrt((k^2-y^2)(y^2-h^2)(h^2-x^2)(k^2-x^2)}
Parameters
----------
h2 : float
``h**2``
k2 : float
``k**2``; should be larger than ``h**2``
n : int
Degree.
p : int
Order, can range between [1,2n+1].
Returns
-------
gamma : float
The normalization constant :math:`\gamma^p_n`
See Also
--------
ellip_harm, ellip_harm_2
Notes
-----
.. versionadded:: 0.15.0
Examples
--------
>>> from scipy.special import ellip_normal
>>> w = ellip_normal(5,8,3,7)
>>> w
1723.38796997
"""
with np.errstate(all='ignore'):
return _ellip_normal_vec(h2, k2, n, p)
|