File size: 9,996 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import pytest
import numpy as np
from numpy.testing import assert_allclose, assert_equal
import scipy.special as sc


class TestHyperu:

    def test_negative_x(self):
        a, b, x = np.meshgrid(
            [-1, -0.5, 0, 0.5, 1],
            [-1, -0.5, 0, 0.5, 1],
            np.linspace(-100, -1, 10),
        )
        assert np.all(np.isnan(sc.hyperu(a, b, x)))

    def test_special_cases(self):
        assert sc.hyperu(0, 1, 1) == 1.0

    @pytest.mark.parametrize('a', [0.5, 1, np.nan])
    @pytest.mark.parametrize('b', [1, 2, np.nan])
    @pytest.mark.parametrize('x', [0.25, 3, np.nan])
    def test_nan_inputs(self, a, b, x):
        assert np.isnan(sc.hyperu(a, b, x)) == np.any(np.isnan([a, b, x]))

    @pytest.mark.parametrize(
        'a,b,x,expected',
        [(0.21581740448533887, 1.0, 1e-05, 3.6030558839391325),
         (0.21581740448533887, 1.0, 0.00021544346900318823, 2.8783254988948976),
         (0.21581740448533887, 1.0, 0.004641588833612777, 2.154928216691109),
         (0.21581740448533887, 1.0, 0.1, 1.446546638718792),
         (0.0030949064301273865, 1.0, 1e-05, 1.0356696454116199),
         (0.0030949064301273865, 1.0, 0.00021544346900318823, 1.0261510362481985),
         (0.0030949064301273865, 1.0, 0.004641588833612777, 1.0166326903402296),
         (0.0030949064301273865, 1.0, 0.1, 1.0071174207698674),
         (0.1509924314279033, 1.0, 1e-05, 2.806173846998948),
         (0.1509924314279033, 1.0, 0.00021544346900318823, 2.3092158526816124),
         (0.1509924314279033, 1.0, 0.004641588833612777, 1.812905980588048),
         (0.1509924314279033, 1.0, 0.1, 1.3239738117634872),
         (-0.010678995342969011, 1.0, 1e-05, 0.8775194903781114),
         (-0.010678995342969011, 1.0, 0.00021544346900318823, 0.9101008998540128),
         (-0.010678995342969011, 1.0, 0.004641588833612777, 0.9426854294058609),
         (-0.010678995342969011, 1.0, 0.1, 0.9753065150174902),
         (-0.06556622211831487, 1.0, 1e-05, 0.26435429752668904),
         (-0.06556622211831487, 1.0, 0.00021544346900318823, 0.4574756033875781),
         (-0.06556622211831487, 1.0, 0.004641588833612777, 0.6507121093358457),
         (-0.06556622211831487, 1.0, 0.1, 0.8453129788602187),
         (-0.21628242470175185, 1.0, 1e-05, -1.2318314201114489),
         (-0.21628242470175185, 1.0, 0.00021544346900318823, -0.6704694233529538),
         (-0.21628242470175185, 1.0, 0.004641588833612777, -0.10795098653682857),
         (-0.21628242470175185, 1.0, 0.1, 0.4687227684115524)]
    )
    def test_gh_15650_mp(self, a, b, x, expected):
        # See https://github.com/scipy/scipy/issues/15650
        # b == 1, |a| < 0.25, 0 < x < 1
        #
        # This purpose of this test is to check the accuracy of results
        # in the region that was impacted by gh-15650.
        #
        # Reference values computed with mpmath using the script:
        #
        # import itertools as it
        # import numpy as np
        #
        # from mpmath import mp
        #
        # rng = np.random.default_rng(1234)
        #
        # cases = []
        # for a, x in it.product(
        #         np.random.uniform(-0.25, 0.25, size=6),
        #         np.logspace(-5, -1, 4),
        # ):
        #     with mp.workdps(100):
        #         cases.append((float(a), 1.0, float(x), float(mp.hyperu(a, 1.0, x))))
        assert_allclose(sc.hyperu(a, b, x), expected, rtol=1e-13)

    def test_gh_15650_sanity(self):
        # The purpose of this test is to sanity check hyperu in the region that
        # was impacted by gh-15650 by making sure there are no excessively large
        # results, as were reported there.
        a = np.linspace(-0.5, 0.5, 500)
        x = np.linspace(1e-6, 1e-1, 500)
        a, x = np.meshgrid(a, x)
        results = sc.hyperu(a, 1.0, x)
        assert np.all(np.abs(results) < 1e3)


class TestHyp1f1:

    @pytest.mark.parametrize('a, b, x', [
        (np.nan, 1, 1),
        (1, np.nan, 1),
        (1, 1, np.nan)
    ])
    def test_nan_inputs(self, a, b, x):
        assert np.isnan(sc.hyp1f1(a, b, x))

    def test_poles(self):
        assert_equal(sc.hyp1f1(1, [0, -1, -2, -3, -4], 0.5), np.inf)

    @pytest.mark.parametrize('a, b, x, result', [
        (-1, 1, 0.5, 0.5),
        (1, 1, 0.5, 1.6487212707001281468),
        (2, 1, 0.5, 2.4730819060501922203),
        (1, 2, 0.5, 1.2974425414002562937),
        (-10, 1, 0.5, -0.38937441413785204475)
    ])
    def test_special_cases(self, a, b, x, result):
        # Hit all the special case branches at the beginning of the
        # function. Desired answers computed using Mpmath.
        assert_allclose(sc.hyp1f1(a, b, x), result, atol=0, rtol=1e-15)

    @pytest.mark.parametrize('a, b, x, result', [
        (1, 1, 0.44, 1.5527072185113360455),
        (-1, 1, 0.44, 0.55999999999999999778),
        (100, 100, 0.89, 2.4351296512898745592),
        (-100, 100, 0.89, 0.40739062490768104667),
        (1.5, 100, 59.99, 3.8073513625965598107),
        (-1.5, 100, 59.99, 0.25099240047125826943)
    ])
    def test_geometric_convergence(self, a, b, x, result):
        # Test the region where we are relying on the ratio of
        #
        # (|a| + 1) * |x| / |b|
        #
        # being small. Desired answers computed using Mpmath
        assert_allclose(sc.hyp1f1(a, b, x), result, atol=0, rtol=1e-15)

    @pytest.mark.parametrize('a, b, x, result', [
        (-1, 1, 1.5, -0.5),
        (-10, 1, 1.5, 0.41801777430943080357),
        (-25, 1, 1.5, 0.25114491646037839809),
        (-50, 1, 1.5, -0.25683643975194756115),
        (-80, 1, 1.5, -0.24554329325751503601),
        (-150, 1, 1.5, -0.173364795515420454496),
    ])
    def test_a_negative_integer(self, a, b, x, result):
        # Desired answers computed using Mpmath.
        assert_allclose(sc.hyp1f1(a, b, x), result, atol=0, rtol=2e-14)

    @pytest.mark.parametrize('a, b, x, expected', [
        (0.01, 150, -4, 0.99973683897677527773),        # gh-3492
        (1, 5, 0.01, 1.0020033381011970966),            # gh-3593
        (50, 100, 0.01, 1.0050126452421463411),         # gh-3593
        (1, 0.3, -1e3, -7.011932249442947651455e-04),   # gh-14149
        (1, 0.3, -1e4, -7.001190321418937164734e-05),   # gh-14149
        (9, 8.5, -350, -5.224090831922378361082e-20),   # gh-17120
        (9, 8.5, -355, -4.595407159813368193322e-20),   # gh-17120
        (75, -123.5, 15, 3.425753920814889017493e+06),
    ])
    def test_assorted_cases(self, a, b, x, expected):
        # Expected values were computed with mpmath.hyp1f1(a, b, x).
        assert_allclose(sc.hyp1f1(a, b, x), expected, atol=0, rtol=1e-14)

    def test_a_neg_int_and_b_equal_x(self):
        # This is a case where the Boost wrapper will call hypergeometric_pFq
        # instead of hypergeometric_1F1.  When we use a version of Boost in
        # which https://github.com/boostorg/math/issues/833 is fixed, this
        # test case can probably be moved into test_assorted_cases.
        # The expected value was computed with mpmath.hyp1f1(a, b, x).
        a = -10.0
        b = 2.5
        x = 2.5
        expected = 0.0365323664364104338721
        computed = sc.hyp1f1(a, b, x)
        assert_allclose(computed, expected, atol=0, rtol=1e-13)

    @pytest.mark.parametrize('a, b, x, desired', [
        (-1, -2, 2, 2),
        (-1, -4, 10, 3.5),
        (-2, -2, 1, 2.5)
    ])
    def test_gh_11099(self, a, b, x, desired):
        # All desired results computed using Mpmath
        assert sc.hyp1f1(a, b, x) == desired

    @pytest.mark.parametrize('a', [-3, -2])
    def test_x_zero_a_and_b_neg_ints_and_a_ge_b(self, a):
        assert sc.hyp1f1(a, -3, 0) == 1

    # In the following tests with complex z, the reference values
    # were computed with mpmath.hyp1f1(a, b, z), and verified with
    # Wolfram Alpha Hypergeometric1F1(a, b, z), except for the
    # case a=0.1, b=1, z=7-24j, where Wolfram Alpha reported
    # "Standard computation time exceeded".  That reference value
    # was confirmed in an online Matlab session, with the commands
    #
    #  > format long
    #  > hypergeom(0.1, 1, 7-24i)
    #  ans =
    #   -3.712349651834209 + 4.554636556672912i
    #
    @pytest.mark.parametrize(
        'a, b, z, ref',
        [(-0.25, 0.5, 1+2j, 1.1814553180903435-1.2792130661292984j),
         (0.25, 0.5, 1+2j, 0.24636797405707597+1.293434354945675j),
         (25, 1.5, -2j, -516.1771262822523+407.04142751922024j),
         (12, -1.5, -10+20j, -5098507.422706547-1341962.8043508842j),
         pytest.param(
             10, 250, 10-15j, 1.1985998416598884-0.8613474402403436j,
             marks=pytest.mark.xfail,
         ),
         pytest.param(
             0.1, 1, 7-24j, -3.712349651834209+4.554636556672913j,
             marks=pytest.mark.xfail,
         )
         ],
    )
    def test_complex_z(self, a, b, z, ref):
        h = sc.hyp1f1(a, b, z)
        assert_allclose(h, ref, rtol=4e-15)

    # The "legacy edge cases" mentioned in the comments in the following
    # tests refers to the behavior of hyp1f1(a, b, x) when b is a nonpositive
    # integer.  In some subcases, the behavior of SciPy does not match that
    # of Boost (1.81+), mpmath and Mathematica (via Wolfram Alpha online).
    # If the handling of these edges cases is changed to agree with those
    # libraries, these test will have to be updated.

    @pytest.mark.parametrize('b', [0, -1, -5])
    def test_legacy_case1(self, b):
        # Test results of hyp1f1(0, n, x) for n <= 0.
        # This is a legacy edge case.
        # Boost (versions greater than 1.80), Mathematica (via Wolfram Alpha
        # online) and mpmath all return 1 in this case, but SciPy's hyp1f1
        # returns inf.
        assert_equal(sc.hyp1f1(0, b, [-1.5, 0, 1.5]), [np.inf, np.inf, np.inf])

    def test_legacy_case2(self):
        # This is a legacy edge case.
        # In software such as boost (1.81+), mpmath and Mathematica,
        # the value is 1.
        assert sc.hyp1f1(-4, -3, 0) == np.inf