File size: 8,942 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/* Translated into C++ by SciPy developers in 2024.
 * Original header with Copyright information appears below.
 */

/*                                                     expn.c
 *
 *             Exponential integral En
 *
 *
 *
 * SYNOPSIS:
 *
 * int n;
 * double x, y, expn();
 *
 * y = expn( n, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Evaluates the exponential integral
 *
 *                 inf.
 *                   -
 *                  | |   -xt
 *                  |    e
 *      E (x)  =    |    ----  dt.
 *       n          |      n
 *                | |     t
 *                 -
 *                  1
 *
 *
 * Both n and x must be nonnegative.
 *
 * The routine employs either a power series, a continued
 * fraction, or an asymptotic formula depending on the
 * relative values of n and x.
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0, 30       10000       1.7e-15     3.6e-16
 *
 */

/*                                                     expn.c  */

/* Cephes Math Library Release 1.1:  March, 1985
 * Copyright 1985 by Stephen L. Moshier
 * Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */

/* Sources
 * [1] NIST, "The Digital Library of Mathematical Functions", dlmf.nist.gov
 */

/* Scipy changes:
 * - 09-10-2016: improved asymptotic expansion for large n
 */

#pragma once

#include "../config.h"
#include "../error.h"
#include "const.h"
#include "rgamma.h"
#include "polevl.h"

namespace xsf {
namespace cephes {

    namespace detail {

        constexpr int expn_nA = 13;
        constexpr double expn_A0[] = {1.00000000000000000};
        constexpr double expn_A1[] = {1.00000000000000000};
        constexpr double expn_A2[] = {-2.00000000000000000, 1.00000000000000000};
        constexpr double expn_A3[] = {6.00000000000000000, -8.00000000000000000, 1.00000000000000000};
        constexpr double expn_A4[] = {-24.0000000000000000, 58.0000000000000000, -22.0000000000000000,
                                      1.00000000000000000};
        constexpr double expn_A5[] = {120.000000000000000, -444.000000000000000, 328.000000000000000,
                                      -52.0000000000000000, 1.00000000000000000};
        constexpr double expn_A6[] = {-720.000000000000000, 3708.00000000000000,  -4400.00000000000000,
                                      1452.00000000000000,  -114.000000000000000, 1.00000000000000000};
        constexpr double expn_A7[] = {5040.00000000000000,  -33984.0000000000000, 58140.0000000000000,
                                      -32120.0000000000000, 5610.00000000000000,  -240.000000000000000,
                                      1.00000000000000000};
        constexpr double expn_A8[] = {-40320.0000000000000, 341136.000000000000,  -785304.000000000000,
                                      644020.000000000000,  -195800.000000000000, 19950.0000000000000,
                                      -494.000000000000000, 1.00000000000000000};
        constexpr double expn_A9[] = {362880.000000000000,  -3733920.00000000000, 11026296.0000000000,
                                      -12440064.0000000000, 5765500.00000000000,  -1062500.00000000000,
                                      67260.0000000000000,  -1004.00000000000000, 1.00000000000000000};
        constexpr double expn_A10[] = {-3628800.00000000000, 44339040.0000000000,  -162186912.000000000,
                                       238904904.000000000,  -155357384.000000000, 44765000.0000000000,
                                       -5326160.00000000000, 218848.000000000000,  -2026.00000000000000,
                                       1.00000000000000000};
        constexpr double expn_A11[] = {39916800.0000000000,  -568356480.000000000, 2507481216.00000000,
                                       -4642163952.00000000, 4002695088.00000000,  -1648384304.00000000,
                                       314369720.000000000,  -25243904.0000000000, 695038.000000000000,
                                       -4072.00000000000000, 1.00000000000000000};
        constexpr double expn_A12[] = {-479001600.000000000, 7827719040.00000000,  -40788301824.0000000,
                                       92199790224.0000000,  -101180433024.000000, 56041398784.0000000,
                                       -15548960784.0000000, 2051482776.00000000,  -114876376.000000000,
                                       2170626.00000000000,  -8166.00000000000000, 1.00000000000000000};
        constexpr const double *expn_A[] = {expn_A0, expn_A1, expn_A2, expn_A3,  expn_A4,  expn_A5, expn_A6,
                                            expn_A7, expn_A8, expn_A9, expn_A10, expn_A11, expn_A12};
        constexpr int expn_Adegs[] = {0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};

        /* Asymptotic expansion for large n, DLMF 8.20(ii) */
        XSF_HOST_DEVICE double expn_large_n(int n, double x) {
            int k;
            double p = n;
            double lambda = x / p;
            double multiplier = 1 / p / (lambda + 1) / (lambda + 1);
            double fac = 1;
            double res = 1; /* A[0] = 1 */
            double expfac, term;

            expfac = std::exp(-lambda * p) / (lambda + 1) / p;
            if (expfac == 0) {
                set_error("expn", SF_ERROR_UNDERFLOW, NULL);
                return 0;
            }

            /* Do the k = 1 term outside the loop since A[1] = 1 */
            fac *= multiplier;
            res += fac;

            for (k = 2; k < expn_nA; k++) {
                fac *= multiplier;
                term = fac * polevl(lambda, expn_A[k], expn_Adegs[k]);
                res += term;
                if (std::abs(term) < MACHEP * std::abs(res)) {
                    break;
                }
            }

            return expfac * res;
        }
    } // namespace detail

    XSF_HOST_DEVICE double expn(int n, double x) {
        double ans, r, t, yk, xk;
        double pk, pkm1, pkm2, qk, qkm1, qkm2;
        double psi, z;
        int i, k;
        constexpr double big = 1.44115188075855872E+17;

        if (std::isnan(x)) {
            return std::numeric_limits<double>::quiet_NaN();
        } else if (n < 0 || x < 0) {
            set_error("expn", SF_ERROR_DOMAIN, NULL);
            return std::numeric_limits<double>::quiet_NaN();
        }

        if (x > detail::MAXLOG) {
            return (0.0);
        }

        if (x == 0.0) {
            if (n < 2) {
                set_error("expn", SF_ERROR_SINGULAR, NULL);
                return std::numeric_limits<double>::infinity();
            } else {
                return (1.0 / (n - 1.0));
            }
        }

        if (n == 0) {
            return (std::exp(-x) / x);
        }

        /* Asymptotic expansion for large n, DLMF 8.20(ii) */
        if (n > 50) {
            ans = detail::expn_large_n(n, x);
            return ans;
        }

        /* Continued fraction, DLMF 8.19.17 */
        if (x > 1.0) {
            k = 1;
            pkm2 = 1.0;
            qkm2 = x;
            pkm1 = 1.0;
            qkm1 = x + n;
            ans = pkm1 / qkm1;

            do {
                k += 1;
                if (k & 1) {
                    yk = 1.0;
                    xk = n + (k - 1) / 2;
                } else {
                    yk = x;
                    xk = k / 2;
                }
                pk = pkm1 * yk + pkm2 * xk;
                qk = qkm1 * yk + qkm2 * xk;
                if (qk != 0) {
                    r = pk / qk;
                    t = std::abs((ans - r) / r);
                    ans = r;
                } else {
                    t = 1.0;
                }
                pkm2 = pkm1;
                pkm1 = pk;
                qkm2 = qkm1;
                qkm1 = qk;
                if (std::abs(pk) > big) {
                    pkm2 /= big;
                    pkm1 /= big;
                    qkm2 /= big;
                    qkm1 /= big;
                }
            } while (t > detail::MACHEP);

            ans *= std::exp(-x);
            return ans;
        }

        /* Power series expansion, DLMF 8.19.8 */
        psi = -detail::SCIPY_EULER - std::log(x);
        for (i = 1; i < n; i++) {
            psi = psi + 1.0 / i;
        }

        z = -x;
        xk = 0.0;
        yk = 1.0;
        pk = 1.0 - n;
        if (n == 1) {
            ans = 0.0;
        } else {
            ans = 1.0 / pk;
        }
        do {
            xk += 1.0;
            yk *= z / xk;
            pk += 1.0;
            if (pk != 0.0) {
                ans += yk / pk;
            }
            if (ans != 0.0)
                t = std::abs(yk / ans);
            else
                t = 1.0;
        } while (t > detail::MACHEP);
        k = xk;
        t = n;
        r = n - 1;
        ans = (std::pow(z, r) * psi * rgamma(t)) - ans;
        return ans;
    }

} // namespace cephes
} // namespace xsf