File size: 19,986 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
/* Translated into C++ by SciPy developers in 2024.
* Original header with Copyright information appears below.
*/
/* hyp2f1.c
*
* Gauss hypergeometric function F
* 2 1
*
*
* SYNOPSIS:
*
* double a, b, c, x, y, hyp2f1();
*
* y = hyp2f1( a, b, c, x );
*
*
* DESCRIPTION:
*
*
* hyp2f1( a, b, c, x ) = F ( a, b; c; x )
* 2 1
*
* inf.
* - a(a+1)...(a+k) b(b+1)...(b+k) k+1
* = 1 + > ----------------------------- x .
* - c(c+1)...(c+k) (k+1)!
* k = 0
*
* Cases addressed are
* Tests and escapes for negative integer a, b, or c
* Linear transformation if c - a or c - b negative integer
* Special case c = a or c = b
* Linear transformation for x near +1
* Transformation for x < -0.5
* Psi function expansion if x > 0.5 and c - a - b integer
* Conditionally, a recurrence on c to make c-a-b > 0
*
* x < -1 AMS 15.3.7 transformation applied (Travis Oliphant)
* valid for b,a,c,(b-a) != integer and (c-a),(c-b) != negative integer
*
* x >= 1 is rejected (unless special cases are present)
*
* The parameters a, b, c are considered to be integer
* valued if they are within 1.0e-14 of the nearest integer
* (1.0e-13 for IEEE arithmetic).
*
* ACCURACY:
*
*
* Relative error (-1 < x < 1):
* arithmetic domain # trials peak rms
* IEEE -1,7 230000 1.2e-11 5.2e-14
*
* Several special cases also tested with a, b, c in
* the range -7 to 7.
*
* ERROR MESSAGES:
*
* A "partial loss of precision" message is printed if
* the internally estimated relative error exceeds 1^-12.
* A "singularity" message is printed on overflow or
* in cases not addressed (such as x < -1).
*/
/*
* Cephes Math Library Release 2.8: June, 2000
* Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
*/
#pragma once
#include "../config.h"
#include "../error.h"
#include "const.h"
#include "gamma.h"
#include "rgamma.h"
#include "psi.h"
namespace xsf {
namespace cephes {
namespace detail {
constexpr double hyp2f1_EPS = 1.0e-13;
constexpr double hyp2f1_ETHRESH = 1.0e-12;
constexpr std::uint64_t hyp2f1_MAXITER = 10000;
/* hys2f1 and hyp2f1ra depend on each other, so we need this prototype */
XSF_HOST_DEVICE double hyp2f1ra(double a, double b, double c, double x, double *loss);
/* Defining power series expansion of Gauss hypergeometric function */
/* The `loss` parameter estimates loss of significance */
XSF_HOST_DEVICE double hys2f1(double a, double b, double c, double x, double *loss) {
double f, g, h, k, m, s, u, umax;
std::uint64_t i;
int ib, intflag = 0;
if (std::abs(b) > std::abs(a)) {
/* Ensure that |a| > |b| ... */
f = b;
b = a;
a = f;
}
ib = std::round(b);
if (std::abs(b - ib) < hyp2f1_EPS && ib <= 0 && std::abs(b) < std::abs(a)) {
/* .. except when `b` is a smaller negative integer */
f = b;
b = a;
a = f;
intflag = 1;
}
if ((std::abs(a) > std::abs(c) + 1 || intflag) && std::abs(c - a) > 2 && std::abs(a) > 2) {
/* |a| >> |c| implies that large cancellation error is to be expected.
*
* We try to reduce it with the recurrence relations
*/
return hyp2f1ra(a, b, c, x, loss);
}
i = 0;
umax = 0.0;
f = a;
g = b;
h = c;
s = 1.0;
u = 1.0;
k = 0.0;
do {
if (std::abs(h) < hyp2f1_EPS) {
*loss = 1.0;
return std::numeric_limits<double>::infinity();
}
m = k + 1.0;
u = u * ((f + k) * (g + k) * x / ((h + k) * m));
s += u;
k = std::abs(u); /* remember largest term summed */
if (k > umax)
umax = k;
k = m;
if (++i > hyp2f1_MAXITER) { /* should never happen */
*loss = 1.0;
return (s);
}
} while (s == 0 || std::abs(u / s) > MACHEP);
/* return estimated relative error */
*loss = (MACHEP * umax) / fabs(s) + (MACHEP * i);
return (s);
}
/* Apply transformations for |x| near 1 then call the power series */
XSF_HOST_DEVICE double hyt2f1(double a, double b, double c, double x, double *loss) {
double p, q, r, s, t, y, w, d, err, err1;
double ax, id, d1, d2, e, y1;
int i, aid, sign;
int ia, ib, neg_int_a = 0, neg_int_b = 0;
ia = std::round(a);
ib = std::round(b);
if (a <= 0 && std::abs(a - ia) < hyp2f1_EPS) { /* a is a negative integer */
neg_int_a = 1;
}
if (b <= 0 && std::abs(b - ib) < hyp2f1_EPS) { /* b is a negative integer */
neg_int_b = 1;
}
err = 0.0;
s = 1.0 - x;
if (x < -0.5 && !(neg_int_a || neg_int_b)) {
if (b > a)
y = std::pow(s, -a) * hys2f1(a, c - b, c, -x / s, &err);
else
y = std::pow(s, -b) * hys2f1(c - a, b, c, -x / s, &err);
goto done;
}
d = c - a - b;
id = std::round(d); /* nearest integer to d */
if (x > 0.9 && !(neg_int_a || neg_int_b)) {
if (std::abs(d - id) > MACHEP) {
int sgngam;
/* test for integer c-a-b */
/* Try the power series first */
y = hys2f1(a, b, c, x, &err);
if (err < hyp2f1_ETHRESH) {
goto done;
}
/* If power series fails, then apply AMS55 #15.3.6 */
q = hys2f1(a, b, 1.0 - d, s, &err);
sign = 1;
w = lgam_sgn(d, &sgngam);
sign *= sgngam;
w -= lgam_sgn(c - a, &sgngam);
sign *= sgngam;
w -= lgam_sgn(c - b, &sgngam);
sign *= sgngam;
q *= sign * std::exp(w);
r = std::pow(s, d) * hys2f1(c - a, c - b, d + 1.0, s, &err1);
sign = 1;
w = lgam_sgn(-d, &sgngam);
sign *= sgngam;
w -= lgam_sgn(a, &sgngam);
sign *= sgngam;
w -= lgam_sgn(b, &sgngam);
sign *= sgngam;
r *= sign * std::exp(w);
y = q + r;
q = std::abs(q); /* estimate cancellation error */
r = std::abs(r);
if (q > r) {
r = q;
}
err += err1 + (MACHEP * r) / y;
y *= xsf::cephes::Gamma(c);
goto done;
} else {
/* Psi function expansion, AMS55 #15.3.10, #15.3.11, #15.3.12
*
* Although AMS55 does not explicitly state it, this expansion fails
* for negative integer a or b, since the psi and Gamma functions
* involved have poles.
*/
if (id >= 0.0) {
e = d;
d1 = d;
d2 = 0.0;
aid = id;
} else {
e = -d;
d1 = 0.0;
d2 = d;
aid = -id;
}
ax = std::log(s);
/* sum for t = 0 */
y = xsf::cephes::psi(1.0) + xsf::cephes::psi(1.0 + e) - xsf::cephes::psi(a + d1) -
xsf::cephes::psi(b + d1) - ax;
y *= xsf::cephes::rgamma(e + 1.0);
p = (a + d1) * (b + d1) * s * xsf::cephes::rgamma(e + 2.0); /* Poch for t=1 */
t = 1.0;
do {
r = xsf::cephes::psi(1.0 + t) + xsf::cephes::psi(1.0 + t + e) -
xsf::cephes::psi(a + t + d1) - xsf::cephes::psi(b + t + d1) - ax;
q = p * r;
y += q;
p *= s * (a + t + d1) / (t + 1.0);
p *= (b + t + d1) / (t + 1.0 + e);
t += 1.0;
if (t > hyp2f1_MAXITER) { /* should never happen */
set_error("hyp2f1", SF_ERROR_SLOW, NULL);
*loss = 1.0;
return std::numeric_limits<double>::quiet_NaN();
}
} while (y == 0 || std::abs(q / y) > hyp2f1_EPS);
if (id == 0.0) {
y *= xsf::cephes::Gamma(c) / (xsf::cephes::Gamma(a) * xsf::cephes::Gamma(b));
goto psidon;
}
y1 = 1.0;
if (aid == 1)
goto nosum;
t = 0.0;
p = 1.0;
for (i = 1; i < aid; i++) {
r = 1.0 - e + t;
p *= s * (a + t + d2) * (b + t + d2) / r;
t += 1.0;
p /= t;
y1 += p;
}
nosum:
p = xsf::cephes::Gamma(c);
y1 *= xsf::cephes::Gamma(e) * p *
(xsf::cephes::rgamma(a + d1) * xsf::cephes::rgamma(b + d1));
y *= p * (xsf::cephes::rgamma(a + d2) * xsf::cephes::rgamma(b + d2));
if ((aid & 1) != 0)
y = -y;
q = std::pow(s, id); /* s to the id power */
if (id > 0.0)
y *= q;
else
y1 *= q;
y += y1;
psidon:
goto done;
}
}
/* Use defining power series if no special cases */
y = hys2f1(a, b, c, x, &err);
done:
*loss = err;
return (y);
}
/*
15.4.2 Abramowitz & Stegun.
*/
XSF_HOST_DEVICE double hyp2f1_neg_c_equal_bc(double a, double b, double x) {
double k;
double collector = 1;
double sum = 1;
double collector_max = 1;
if (!(std::abs(b) < 1e5)) {
return std::numeric_limits<double>::quiet_NaN();
}
for (k = 1; k <= -b; k++) {
collector *= (a + k - 1) * x / k;
collector_max = std::fmax(std::abs(collector), collector_max);
sum += collector;
}
if (1e-16 * (1 + collector_max / std::abs(sum)) > 1e-7) {
return std::numeric_limits<double>::quiet_NaN();
}
return sum;
}
/*
* Evaluate hypergeometric function by two-term recurrence in `a`.
*
* This avoids some of the loss of precision in the strongly alternating
* hypergeometric series, and can be used to reduce the `a` and `b` parameters
* to smaller values.
*
* AMS55 #15.2.10
*/
XSF_HOST_DEVICE double hyp2f1ra(double a, double b, double c, double x, double *loss) {
double f2, f1, f0;
int n;
double t, err, da;
/* Don't cross c or zero */
if ((c < 0 && a <= c) || (c >= 0 && a >= c)) {
da = std::round(a - c);
} else {
da = std::round(a);
}
t = a - da;
*loss = 0;
XSF_ASSERT(da != 0);
if (std::abs(da) > hyp2f1_MAXITER) {
/* Too expensive to compute this value, so give up */
set_error("hyp2f1", SF_ERROR_NO_RESULT, NULL);
*loss = 1.0;
return std::numeric_limits<double>::quiet_NaN();
}
if (da < 0) {
/* Recurse down */
f2 = 0;
f1 = hys2f1(t, b, c, x, &err);
*loss += err;
f0 = hys2f1(t - 1, b, c, x, &err);
*loss += err;
t -= 1;
for (n = 1; n < -da; ++n) {
f2 = f1;
f1 = f0;
f0 = -(2 * t - c - t * x + b * x) / (c - t) * f1 - t * (x - 1) / (c - t) * f2;
t -= 1;
}
} else {
/* Recurse up */
f2 = 0;
f1 = hys2f1(t, b, c, x, &err);
*loss += err;
f0 = hys2f1(t + 1, b, c, x, &err);
*loss += err;
t += 1;
for (n = 1; n < da; ++n) {
f2 = f1;
f1 = f0;
f0 = -((2 * t - c - t * x + b * x) * f1 + (c - t) * f2) / (t * (x - 1));
t += 1;
}
}
return f0;
}
} // namespace detail
XSF_HOST_DEVICE double hyp2f1(double a, double b, double c, double x) {
double d, d1, d2, e;
double p, q, r, s, y, ax;
double ia, ib, ic, id, err;
double t1;
int i, aid;
int neg_int_a = 0, neg_int_b = 0;
int neg_int_ca_or_cb = 0;
err = 0.0;
ax = std::abs(x);
s = 1.0 - x;
ia = std::round(a); /* nearest integer to a */
ib = std::round(b);
if (x == 0.0) {
return 1.0;
}
d = c - a - b;
id = std::round(d);
if ((a == 0 || b == 0) && c != 0) {
return 1.0;
}
if (a <= 0 && std::abs(a - ia) < detail::hyp2f1_EPS) { /* a is a negative integer */
neg_int_a = 1;
}
if (b <= 0 && std::abs(b - ib) < detail::hyp2f1_EPS) { /* b is a negative integer */
neg_int_b = 1;
}
if (d <= -1 && !(std::abs(d - id) > detail::hyp2f1_EPS && s < 0) && !(neg_int_a || neg_int_b)) {
return std::pow(s, d) * hyp2f1(c - a, c - b, c, x);
}
if (d <= 0 && x == 1 && !(neg_int_a || neg_int_b))
goto hypdiv;
if (ax < 1.0 || x == -1.0) {
/* 2F1(a,b;b;x) = (1-x)**(-a) */
if (std::abs(b - c) < detail::hyp2f1_EPS) { /* b = c */
if (neg_int_b) {
y = detail::hyp2f1_neg_c_equal_bc(a, b, x);
} else {
y = std::pow(s, -a); /* s to the -a power */
}
goto hypdon;
}
if (std::abs(a - c) < detail::hyp2f1_EPS) { /* a = c */
y = std::pow(s, -b); /* s to the -b power */
goto hypdon;
}
}
if (c <= 0.0) {
ic = std::round(c); /* nearest integer to c */
if (std::abs(c - ic) < detail::hyp2f1_EPS) { /* c is a negative integer */
/* check if termination before explosion */
if (neg_int_a && (ia > ic))
goto hypok;
if (neg_int_b && (ib > ic))
goto hypok;
goto hypdiv;
}
}
if (neg_int_a || neg_int_b) /* function is a polynomial */
goto hypok;
t1 = std::abs(b - a);
if (x < -2.0 && std::abs(t1 - round(t1)) > detail::hyp2f1_EPS) {
/* This transform has a pole for b-a integer, and
* may produce large cancellation errors for |1/x| close 1
*/
p = hyp2f1(a, 1 - c + a, 1 - b + a, 1.0 / x);
q = hyp2f1(b, 1 - c + b, 1 - a + b, 1.0 / x);
p *= std::pow(-x, -a);
q *= std::pow(-x, -b);
t1 = Gamma(c);
s = t1 * Gamma(b - a) * (rgamma(b) * rgamma(c - a));
y = t1 * Gamma(a - b) * (rgamma(a) * rgamma(c - b));
return s * p + y * q;
} else if (x < -1.0) {
if (std::abs(a) < std::abs(b)) {
return std::pow(s, -a) * hyp2f1(a, c - b, c, x / (x - 1));
} else {
return std::pow(s, -b) * hyp2f1(b, c - a, c, x / (x - 1));
}
}
if (ax > 1.0) /* series diverges */
goto hypdiv;
p = c - a;
ia = std::round(p); /* nearest integer to c-a */
if ((ia <= 0.0) && (std::abs(p - ia) < detail::hyp2f1_EPS)) /* negative int c - a */
neg_int_ca_or_cb = 1;
r = c - b;
ib = std::round(r); /* nearest integer to c-b */
if ((ib <= 0.0) && (std::abs(r - ib) < detail::hyp2f1_EPS)) /* negative int c - b */
neg_int_ca_or_cb = 1;
id = std::round(d); /* nearest integer to d */
q = std::abs(d - id);
/* Thanks to Christian Burger <[email protected]>
* for reporting a bug here. */
if (std::abs(ax - 1.0) < detail::hyp2f1_EPS) { /* |x| == 1.0 */
if (x > 0.0) {
if (neg_int_ca_or_cb) {
if (d >= 0.0)
goto hypf;
else
goto hypdiv;
}
if (d <= 0.0)
goto hypdiv;
y = Gamma(c) * Gamma(d) * (rgamma(p) * rgamma(r));
goto hypdon;
}
if (d <= -1.0)
goto hypdiv;
}
/* Conditionally make d > 0 by recurrence on c
* AMS55 #15.2.27
*/
if (d < 0.0) {
/* Try the power series first */
y = detail::hyt2f1(a, b, c, x, &err);
if (err < detail::hyp2f1_ETHRESH)
goto hypdon;
/* Apply the recurrence if power series fails */
err = 0.0;
aid = 2 - id;
e = c + aid;
d2 = hyp2f1(a, b, e, x);
d1 = hyp2f1(a, b, e + 1.0, x);
q = a + b + 1.0;
for (i = 0; i < aid; i++) {
r = e - 1.0;
y = (e * (r - (2.0 * e - q) * x) * d2 + (e - a) * (e - b) * x * d1) / (e * r * s);
e = r;
d1 = d2;
d2 = y;
}
goto hypdon;
}
if (neg_int_ca_or_cb) {
goto hypf; /* negative integer c-a or c-b */
}
hypok:
y = detail::hyt2f1(a, b, c, x, &err);
hypdon:
if (err > detail::hyp2f1_ETHRESH) {
set_error("hyp2f1", SF_ERROR_LOSS, NULL);
/* printf( "Estimated err = %.2e\n", err ); */
}
return (y);
/* The transformation for c-a or c-b negative integer
* AMS55 #15.3.3
*/
hypf:
y = std::pow(s, d) * detail::hys2f1(c - a, c - b, c, x, &err);
goto hypdon;
/* The alarm exit */
hypdiv:
set_error("hyp2f1", SF_ERROR_OVERFLOW, NULL);
return std::numeric_limits<double>::infinity();
}
} // namespace cephes
} // namespace xsf
|