File size: 6,878 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/* Translated into C++ by SciPy developers in 2024.
 * Original header with Copyright information appears below.
 */

/*                                                     j0.c
 *
 *     Bessel function of order zero
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, j0();
 *
 * y = j0( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of order zero of the argument.
 *
 * The domain is divided into the intervals [0, 5] and
 * (5, infinity). In the first interval the following rational
 * approximation is used:
 *
 *
 *        2         2
 * (w - r  ) (w - r  ) P (w) / Q (w)
 *       1         2    3       8
 *
 *            2
 * where w = x  and the two r's are zeros of the function.
 *
 * In the second interval, the Hankel asymptotic expansion
 * is employed with two rational functions of degree 6/6
 * and 7/7.
 *
 *
 *
 * ACCURACY:
 *
 *                      Absolute error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0, 30       60000       4.2e-16     1.1e-16
 *
 */
/*							y0.c
 *
 *	Bessel function of the second kind, order zero
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, y0();
 *
 * y = y0( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of the second kind, of order
 * zero, of the argument.
 *
 * The domain is divided into the intervals [0, 5] and
 * (5, infinity). In the first interval a rational approximation
 * R(x) is employed to compute
 *   y0(x)  = R(x)  +   2 * log(x) * j0(x) / M_PI.
 * Thus a call to j0() is required.
 *
 * In the second interval, the Hankel asymptotic expansion
 * is employed with two rational functions of degree 6/6
 * and 7/7.
 *
 *
 *
 * ACCURACY:
 *
 *  Absolute error, when y0(x) < 1; else relative error:
 *
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0, 30       30000       1.3e-15     1.6e-16
 *
 */

/*
 * Cephes Math Library Release 2.8:  June, 2000
 * Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
 */

/* Note: all coefficients satisfy the relative error criterion
 * except YP, YQ which are designed for absolute error. */
#pragma once

#include "../config.h"
#include "../error.h"

#include "const.h"
#include "polevl.h"

namespace xsf {
namespace cephes {

    namespace detail {

        constexpr double j0_PP[7] = {
            7.96936729297347051624E-4, 8.28352392107440799803E-2, 1.23953371646414299388E0,  5.44725003058768775090E0,
            8.74716500199817011941E0,  5.30324038235394892183E0,  9.99999999999999997821E-1,
        };

        constexpr double j0_PQ[7] = {
            9.24408810558863637013E-4, 8.56288474354474431428E-2, 1.25352743901058953537E0, 5.47097740330417105182E0,
            8.76190883237069594232E0,  5.30605288235394617618E0,  1.00000000000000000218E0,
        };

        constexpr double j0_QP[8] = {
            -1.13663838898469149931E-2, -1.28252718670509318512E0, -1.95539544257735972385E1, -9.32060152123768231369E1,
            -1.77681167980488050595E2,  -1.47077505154951170175E2, -5.14105326766599330220E1, -6.05014350600728481186E0,
        };

        constexpr double j0_QQ[7] = {
            /*  1.00000000000000000000E0, */
            6.43178256118178023184E1, 8.56430025976980587198E2, 3.88240183605401609683E3, 7.24046774195652478189E3,
            5.93072701187316984827E3, 2.06209331660327847417E3, 2.42005740240291393179E2,
        };

        constexpr double j0_YP[8] = {
            1.55924367855235737965E4,   -1.46639295903971606143E7,  5.43526477051876500413E9,
            -9.82136065717911466409E11, 8.75906394395366999549E13,  -3.46628303384729719441E15,
            4.42733268572569800351E16,  -1.84950800436986690637E16,
        };

        constexpr double j0_YQ[7] = {
            /* 1.00000000000000000000E0, */
            1.04128353664259848412E3,  6.26107330137134956842E5,  2.68919633393814121987E8,  8.64002487103935000337E10,
            2.02979612750105546709E13, 3.17157752842975028269E15, 2.50596256172653059228E17,
        };

        /*  5.783185962946784521175995758455807035071 */
        constexpr double j0_DR1 = 5.78318596294678452118E0;

        /* 30.47126234366208639907816317502275584842 */
        constexpr double j0_DR2 = 3.04712623436620863991E1;

        constexpr double j0_RP[4] = {
            -4.79443220978201773821E9,
            1.95617491946556577543E12,
            -2.49248344360967716204E14,
            9.70862251047306323952E15,
        };

        constexpr double j0_RQ[8] = {
            /* 1.00000000000000000000E0, */
            4.99563147152651017219E2,  1.73785401676374683123E5,  4.84409658339962045305E7,  1.11855537045356834862E10,
            2.11277520115489217587E12, 3.10518229857422583814E14, 3.18121955943204943306E16, 1.71086294081043136091E18,
        };

    } // namespace detail

    XSF_HOST_DEVICE inline double j0(double x) {
        double w, z, p, q, xn;

        if (x < 0) {
            x = -x;
        }

        if (x <= 5.0) {
            z = x * x;
            if (x < 1.0e-5) {
                return (1.0 - z / 4.0);
            }

            p = (z - detail::j0_DR1) * (z - detail::j0_DR2);
            p = p * polevl(z, detail::j0_RP, 3) / p1evl(z, detail::j0_RQ, 8);
            return (p);
        }

        w = 5.0 / x;
        q = 25.0 / (x * x);
        p = polevl(q, detail::j0_PP, 6) / polevl(q, detail::j0_PQ, 6);
        q = polevl(q, detail::j0_QP, 7) / p1evl(q, detail::j0_QQ, 7);
        xn = x - M_PI_4;
        p = p * std::cos(xn) - w * q * std::sin(xn);
        return (p * detail::SQRT2OPI / std::sqrt(x));
    }

    /*                                                     y0() 2  */
    /* Bessel function of second kind, order zero  */

    /* Rational approximation coefficients YP[], YQ[] are used here.
     * The function computed is  y0(x)  -  2 * log(x) * j0(x) / M_PI,
     * whose value at x = 0 is  2 * ( log(0.5) + EUL ) / M_PI
     * = 0.073804295108687225.
     */

    XSF_HOST_DEVICE inline double y0(double x) {
        double w, z, p, q, xn;

        if (x <= 5.0) {
            if (x == 0.0) {
                set_error("y0", SF_ERROR_SINGULAR, NULL);
                return -std::numeric_limits<double>::infinity();
            } else if (x < 0.0) {
                set_error("y0", SF_ERROR_DOMAIN, NULL);
                return std::numeric_limits<double>::quiet_NaN();
            }
            z = x * x;
            w = polevl(z, detail::j0_YP, 7) / p1evl(z, detail::j0_YQ, 7);
            w += M_2_PI * std::log(x) * j0(x);
            return (w);
        }

        w = 5.0 / x;
        z = 25.0 / (x * x);
        p = polevl(z, detail::j0_PP, 6) / polevl(z, detail::j0_PQ, 6);
        q = polevl(z, detail::j0_QP, 7) / p1evl(z, detail::j0_QQ, 7);
        xn = x - M_PI_4;
        p = p * std::sin(xn) + w * q * std::cos(xn);
        return (p * detail::SQRT2OPI / std::sqrt(x));
    }

} // namespace cephes
} // namespace xsf