File size: 6,058 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/* Translated into C++ by SciPy developers in 2024.
 * Original header with Copyright information appears below.
 */

/*                                                     j1.c
 *
 *     Bessel function of order one
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, j1();
 *
 * y = j1( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of order one of the argument.
 *
 * The domain is divided into the intervals [0, 8] and
 * (8, infinity). In the first interval a 24 term Chebyshev
 * expansion is used. In the second, the asymptotic
 * trigonometric representation is employed using two
 * rational functions of degree 5/5.
 *
 *
 *
 * ACCURACY:
 *
 *                      Absolute error:
 * arithmetic   domain      # trials      peak         rms
 *    IEEE      0, 30       30000       2.6e-16     1.1e-16
 *
 *
 */
/*							y1.c
 *
 *	Bessel function of second kind of order one
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, y1();
 *
 * y = y1( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of the second kind of order one
 * of the argument.
 *
 * The domain is divided into the intervals [0, 8] and
 * (8, infinity). In the first interval a 25 term Chebyshev
 * expansion is used, and a call to j1() is required.
 * In the second, the asymptotic trigonometric representation
 * is employed using two rational functions of degree 5/5.
 *
 *
 *
 * ACCURACY:
 *
 *                      Absolute error:
 * arithmetic   domain      # trials      peak         rms
 *    IEEE      0, 30       30000       1.0e-15     1.3e-16
 *
 * (error criterion relative when |y1| > 1).
 *
 */

/*
 * Cephes Math Library Release 2.8:  June, 2000
 * Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
 */

/*
 * #define PIO4 .78539816339744830962
 * #define THPIO4 2.35619449019234492885
 * #define SQ2OPI .79788456080286535588
 */
#pragma once

#include "../config.h"
#include "../error.h"

#include "const.h"
#include "polevl.h"

namespace xsf {
namespace cephes {

    namespace detail {
        constexpr double j1_RP[4] = {
            -8.99971225705559398224E8,
            4.52228297998194034323E11,
            -7.27494245221818276015E13,
            3.68295732863852883286E15,
        };

        constexpr double j1_RQ[8] = {
            /* 1.00000000000000000000E0, */
            6.20836478118054335476E2,  2.56987256757748830383E5,  8.35146791431949253037E7,  2.21511595479792499675E10,
            4.74914122079991414898E12, 7.84369607876235854894E14, 8.95222336184627338078E16, 5.32278620332680085395E18,
        };

        constexpr double j1_PP[7] = {
            7.62125616208173112003E-4, 7.31397056940917570436E-2, 1.12719608129684925192E0, 5.11207951146807644818E0,
            8.42404590141772420927E0,  5.21451598682361504063E0,  1.00000000000000000254E0,
        };

        constexpr double j1_PQ[7] = {
            5.71323128072548699714E-4, 6.88455908754495404082E-2, 1.10514232634061696926E0,  5.07386386128601488557E0,
            8.39985554327604159757E0,  5.20982848682361821619E0,  9.99999999999999997461E-1,
        };

        constexpr double j1_QP[8] = {
            5.10862594750176621635E-2, 4.98213872951233449420E0, 7.58238284132545283818E1, 3.66779609360150777800E2,
            7.10856304998926107277E2,  5.97489612400613639965E2, 2.11688757100572135698E2, 2.52070205858023719784E1,
        };

        constexpr double j1_QQ[7] = {
            /* 1.00000000000000000000E0, */
            7.42373277035675149943E1, 1.05644886038262816351E3, 4.98641058337653607651E3, 9.56231892404756170795E3,
            7.99704160447350683650E3, 2.82619278517639096600E3, 3.36093607810698293419E2,
        };

        constexpr double j1_YP[6] = {
            1.26320474790178026440E9,   -6.47355876379160291031E11, 1.14509511541823727583E14,
            -8.12770255501325109621E15, 2.02439475713594898196E17,  -7.78877196265950026825E17,
        };

        constexpr double j1_YQ[8] = {
            /* 1.00000000000000000000E0, */
            5.94301592346128195359E2,  2.35564092943068577943E5,  7.34811944459721705660E7,  1.87601316108706159478E10,
            3.88231277496238566008E12, 6.20557727146953693363E14, 6.87141087355300489866E16, 3.97270608116560655612E18,
        };

        constexpr double j1_Z1 = 1.46819706421238932572E1;
        constexpr double j1_Z2 = 4.92184563216946036703E1;

    } // namespace detail

    XSF_HOST_DEVICE inline double j1(double x) {
        double w, z, p, q, xn;

        w = x;
        if (x < 0) {
            return -j1(-x);
        }

        if (w <= 5.0) {
            z = x * x;
            w = polevl(z, detail::j1_RP, 3) / p1evl(z, detail::j1_RQ, 8);
            w = w * x * (z - detail::j1_Z1) * (z - detail::j1_Z2);
            return (w);
        }

        w = 5.0 / x;
        z = w * w;
        p = polevl(z, detail::j1_PP, 6) / polevl(z, detail::j1_PQ, 6);
        q = polevl(z, detail::j1_QP, 7) / p1evl(z, detail::j1_QQ, 7);
        xn = x - detail::THPIO4;
        p = p * std::cos(xn) - w * q * std::sin(xn);
        return (p * detail::SQRT2OPI / std::sqrt(x));
    }

    XSF_HOST_DEVICE inline double y1(double x) {
        double w, z, p, q, xn;

        if (x <= 5.0) {
            if (x == 0.0) {
                set_error("y1", SF_ERROR_SINGULAR, NULL);
                return -std::numeric_limits<double>::infinity();
            } else if (x <= 0.0) {
                set_error("y1", SF_ERROR_DOMAIN, NULL);
                return std::numeric_limits<double>::quiet_NaN();
            }
            z = x * x;
            w = x * (polevl(z, detail::j1_YP, 5) / p1evl(z, detail::j1_YQ, 8));
            w += M_2_PI * (j1(x) * std::log(x) - 1.0 / x);
            return (w);
        }

        w = 5.0 / x;
        z = w * w;
        p = polevl(z, detail::j1_PP, 6) / polevl(z, detail::j1_PQ, 6);
        q = polevl(z, detail::j1_QP, 7) / p1evl(z, detail::j1_QQ, 7);
        xn = x - detail::THPIO4;
        p = p * std::sin(xn) + w * q * std::cos(xn);
        return (p * detail::SQRT2OPI / std::sqrt(x));
    }
} // namespace cephes
} // namespace xsf