File size: 4,864 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/* Translated into C++ by SciPy developers in 2024.
 * Original header with Copyright information appears below.
 */

/*                                                     k0.c
 *
 *     Modified Bessel function, third kind, order zero
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, k0();
 *
 * y = k0( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns modified Bessel function of the third kind
 * of order zero of the argument.
 *
 * The range is partitioned into the two intervals [0,8] and
 * (8, infinity).  Chebyshev polynomial expansions are employed
 * in each interval.
 *
 *
 *
 * ACCURACY:
 *
 * Tested at 2000 random points between 0 and 8.  Peak absolute
 * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0, 30       30000       1.2e-15     1.6e-16
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 *  K0 domain          x <= 0          INFINITY
 *
 */
/*							k0e()
 *
 *	Modified Bessel function, third kind, order zero,
 *	exponentially scaled
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, k0e();
 *
 * y = k0e( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns exponentially scaled modified Bessel function
 * of the third kind of order zero of the argument.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0, 30       30000       1.4e-15     1.4e-16
 * See k0().
 *
 */

/*
 * Cephes Math Library Release 2.8:  June, 2000
 * Copyright 1984, 1987, 2000 by Stephen L. Moshier
 */
#pragma once

#include "../config.h"
#include "../error.h"

#include "chbevl.h"
#include "i0.h"

namespace xsf {
namespace cephes {

    namespace detail {
        /* Chebyshev coefficients for K0(x) + log(x/2) I0(x)
         * in the interval [0,2].  The odd order coefficients are all
         * zero; only the even order coefficients are listed.
         *
         * lim(x->0){ K0(x) + log(x/2) I0(x) } = -EUL.
         */

        constexpr double k0_A[] = {1.37446543561352307156E-16, 4.25981614279661018399E-14, 1.03496952576338420167E-11,
                                   1.90451637722020886025E-9,  2.53479107902614945675E-7,  2.28621210311945178607E-5,
                                   1.26461541144692592338E-3,  3.59799365153615016266E-2,  3.44289899924628486886E-1,
                                   -5.35327393233902768720E-1};

        /* Chebyshev coefficients for exp(x) sqrt(x) K0(x)
         * in the inverted interval [2,infinity].
         *
         * lim(x->inf){ exp(x) sqrt(x) K0(x) } = sqrt(pi/2).
         */
        constexpr double k0_B[] = {
            5.30043377268626276149E-18,  -1.64758043015242134646E-17, 5.21039150503902756861E-17,
            -1.67823109680541210385E-16, 5.51205597852431940784E-16,  -1.84859337734377901440E-15,
            6.34007647740507060557E-15,  -2.22751332699166985548E-14, 8.03289077536357521100E-14,
            -2.98009692317273043925E-13, 1.14034058820847496303E-12,  -4.51459788337394416547E-12,
            1.85594911495471785253E-11,  -7.95748924447710747776E-11, 3.57739728140030116597E-10,
            -1.69753450938905987466E-9,  8.57403401741422608519E-9,   -4.66048989768794782956E-8,
            2.76681363944501510342E-7,   -1.83175552271911948767E-6,  1.39498137188764993662E-5,
            -1.28495495816278026384E-4,  1.56988388573005337491E-3,   -3.14481013119645005427E-2,
            2.44030308206595545468E0};

    } // namespace detail

    XSF_HOST_DEVICE inline double k0(double x) {
        double y, z;

        if (x == 0.0) {
            set_error("k0", SF_ERROR_SINGULAR, NULL);
            return std::numeric_limits<double>::infinity();
        } else if (x < 0.0) {
            set_error("k0", SF_ERROR_DOMAIN, NULL);
            return std::numeric_limits<double>::quiet_NaN();
        }

        if (x <= 2.0) {
            y = x * x - 2.0;
            y = chbevl(y, detail::k0_A, 10) - std::log(0.5 * x) * i0(x);
            return (y);
        }
        z = 8.0 / x - 2.0;
        y = std::exp(-x) * chbevl(z, detail::k0_B, 25) / std::sqrt(x);
        return (y);
    }

    XSF_HOST_DEVICE double inline k0e(double x) {
        double y;

        if (x == 0.0) {
            set_error("k0e", SF_ERROR_SINGULAR, NULL);
            return std::numeric_limits<double>::infinity();
        } else if (x < 0.0) {
            set_error("k0e", SF_ERROR_DOMAIN, NULL);
            return std::numeric_limits<double>::quiet_NaN();
        }

        if (x <= 2.0) {
            y = x * x - 2.0;
            y = chbevl(y, detail::k0_A, 10) - std::log(0.5 * x) * i0(x);
            return (y * exp(x));
        }

        y = chbevl(8.0 / x - 2.0, detail::k0_B, 25) / std::sqrt(x);
        return (y);
    }

} // namespace cephes
} // namespace xsf