File size: 49,141 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 |
"""Hierarchical Agglomerative Clustering
These routines perform some hierarchical agglomerative clustering of some
input data.
Authors : Vincent Michel, Bertrand Thirion, Alexandre Gramfort,
Gael Varoquaux
License: BSD 3 clause
"""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import warnings
from heapq import heapify, heappop, heappush, heappushpop
from numbers import Integral, Real
import numpy as np
from scipy import sparse
from scipy.sparse.csgraph import connected_components
from ..base import (
BaseEstimator,
ClassNamePrefixFeaturesOutMixin,
ClusterMixin,
_fit_context,
)
from ..metrics import DistanceMetric
from ..metrics._dist_metrics import METRIC_MAPPING64
from ..metrics.pairwise import _VALID_METRICS, paired_distances
from ..utils import check_array
from ..utils._fast_dict import IntFloatDict
from ..utils._param_validation import (
HasMethods,
Interval,
StrOptions,
validate_params,
)
from ..utils.graph import _fix_connected_components
from ..utils.validation import check_memory, validate_data
# mypy error: Module 'sklearn.cluster' has no attribute '_hierarchical_fast'
from . import _hierarchical_fast as _hierarchical # type: ignore
from ._feature_agglomeration import AgglomerationTransform
###############################################################################
# For non fully-connected graphs
def _fix_connectivity(X, connectivity, affinity):
"""
Fixes the connectivity matrix.
The different steps are:
- copies it
- makes it symmetric
- converts it to LIL if necessary
- completes it if necessary.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Feature matrix representing `n_samples` samples to be clustered.
connectivity : sparse matrix, default=None
Connectivity matrix. Defines for each sample the neighboring samples
following a given structure of the data. The matrix is assumed to
be symmetric and only the upper triangular half is used.
Default is `None`, i.e, the Ward algorithm is unstructured.
affinity : {"euclidean", "precomputed"}, default="euclidean"
Which affinity to use. At the moment `precomputed` and
``euclidean`` are supported. `euclidean` uses the
negative squared Euclidean distance between points.
Returns
-------
connectivity : sparse matrix
The fixed connectivity matrix.
n_connected_components : int
The number of connected components in the graph.
"""
n_samples = X.shape[0]
if connectivity.shape[0] != n_samples or connectivity.shape[1] != n_samples:
raise ValueError(
"Wrong shape for connectivity matrix: %s when X is %s"
% (connectivity.shape, X.shape)
)
# Make the connectivity matrix symmetric:
connectivity = connectivity + connectivity.T
# Convert connectivity matrix to LIL
if not sparse.issparse(connectivity):
connectivity = sparse.lil_matrix(connectivity)
# `connectivity` is a sparse matrix at this point
if connectivity.format != "lil":
connectivity = connectivity.tolil()
# Compute the number of nodes
n_connected_components, labels = connected_components(connectivity)
if n_connected_components > 1:
warnings.warn(
"the number of connected components of the "
"connectivity matrix is %d > 1. Completing it to avoid "
"stopping the tree early." % n_connected_components,
stacklevel=2,
)
# XXX: Can we do without completing the matrix?
connectivity = _fix_connected_components(
X=X,
graph=connectivity,
n_connected_components=n_connected_components,
component_labels=labels,
metric=affinity,
mode="connectivity",
)
return connectivity, n_connected_components
def _single_linkage_tree(
connectivity,
n_samples,
n_nodes,
n_clusters,
n_connected_components,
return_distance,
):
"""
Perform single linkage clustering on sparse data via the minimum
spanning tree from scipy.sparse.csgraph, then using union-find to label.
The parent array is then generated by walking through the tree.
"""
from scipy.sparse.csgraph import minimum_spanning_tree
# explicitly cast connectivity to ensure safety
connectivity = connectivity.astype(np.float64, copy=False)
# Ensure zero distances aren't ignored by setting them to "epsilon"
epsilon_value = np.finfo(dtype=connectivity.data.dtype).eps
connectivity.data[connectivity.data == 0] = epsilon_value
# Use scipy.sparse.csgraph to generate a minimum spanning tree
mst = minimum_spanning_tree(connectivity.tocsr())
# Convert the graph to scipy.cluster.hierarchy array format
mst = mst.tocoo()
# Undo the epsilon values
mst.data[mst.data == epsilon_value] = 0
mst_array = np.vstack([mst.row, mst.col, mst.data]).T
# Sort edges of the min_spanning_tree by weight
mst_array = mst_array[np.argsort(mst_array.T[2], kind="mergesort"), :]
# Convert edge list into standard hierarchical clustering format
single_linkage_tree = _hierarchical._single_linkage_label(mst_array)
children_ = single_linkage_tree[:, :2].astype(int)
# Compute parents
parent = np.arange(n_nodes, dtype=np.intp)
for i, (left, right) in enumerate(children_, n_samples):
if n_clusters is not None and i >= n_nodes:
break
if left < n_nodes:
parent[left] = i
if right < n_nodes:
parent[right] = i
if return_distance:
distances = single_linkage_tree[:, 2]
return children_, n_connected_components, n_samples, parent, distances
return children_, n_connected_components, n_samples, parent
###############################################################################
# Hierarchical tree building functions
@validate_params(
{
"X": ["array-like"],
"connectivity": ["array-like", "sparse matrix", None],
"n_clusters": [Interval(Integral, 1, None, closed="left"), None],
"return_distance": ["boolean"],
},
prefer_skip_nested_validation=True,
)
def ward_tree(X, *, connectivity=None, n_clusters=None, return_distance=False):
"""Ward clustering based on a Feature matrix.
Recursively merges the pair of clusters that minimally increases
within-cluster variance.
The inertia matrix uses a Heapq-based representation.
This is the structured version, that takes into account some topological
structure between samples.
Read more in the :ref:`User Guide <hierarchical_clustering>`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Feature matrix representing `n_samples` samples to be clustered.
connectivity : {array-like, sparse matrix}, default=None
Connectivity matrix. Defines for each sample the neighboring samples
following a given structure of the data. The matrix is assumed to
be symmetric and only the upper triangular half is used.
Default is None, i.e, the Ward algorithm is unstructured.
n_clusters : int, default=None
`n_clusters` should be less than `n_samples`. Stop early the
construction of the tree at `n_clusters.` This is useful to decrease
computation time if the number of clusters is not small compared to the
number of samples. In this case, the complete tree is not computed, thus
the 'children' output is of limited use, and the 'parents' output should
rather be used. This option is valid only when specifying a connectivity
matrix.
return_distance : bool, default=False
If `True`, return the distance between the clusters.
Returns
-------
children : ndarray of shape (n_nodes-1, 2)
The children of each non-leaf node. Values less than `n_samples`
correspond to leaves of the tree which are the original samples.
A node `i` greater than or equal to `n_samples` is a non-leaf
node and has children `children_[i - n_samples]`. Alternatively
at the i-th iteration, children[i][0] and children[i][1]
are merged to form node `n_samples + i`.
n_connected_components : int
The number of connected components in the graph.
n_leaves : int
The number of leaves in the tree.
parents : ndarray of shape (n_nodes,) or None
The parent of each node. Only returned when a connectivity matrix
is specified, elsewhere 'None' is returned.
distances : ndarray of shape (n_nodes-1,)
Only returned if `return_distance` is set to `True` (for compatibility).
The distances between the centers of the nodes. `distances[i]`
corresponds to a weighted Euclidean distance between
the nodes `children[i, 1]` and `children[i, 2]`. If the nodes refer to
leaves of the tree, then `distances[i]` is their unweighted Euclidean
distance. Distances are updated in the following way
(from scipy.hierarchy.linkage):
The new entry :math:`d(u,v)` is computed as follows,
.. math::
d(u,v) = \\sqrt{\\frac{|v|+|s|}
{T}d(v,s)^2
+ \\frac{|v|+|t|}
{T}d(v,t)^2
- \\frac{|v|}
{T}d(s,t)^2}
where :math:`u` is the newly joined cluster consisting of
clusters :math:`s` and :math:`t`, :math:`v` is an unused
cluster in the forest, :math:`T=|v|+|s|+|t|`, and
:math:`|*|` is the cardinality of its argument. This is also
known as the incremental algorithm.
Examples
--------
>>> import numpy as np
>>> from sklearn.cluster import ward_tree
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [4, 2], [4, 4], [4, 0]])
>>> children, n_connected_components, n_leaves, parents = ward_tree(X)
>>> children
array([[0, 1],
[3, 5],
[2, 6],
[4, 7],
[8, 9]])
>>> n_connected_components
1
>>> n_leaves
6
"""
X = np.asarray(X)
if X.ndim == 1:
X = np.reshape(X, (-1, 1))
n_samples, n_features = X.shape
if connectivity is None:
from scipy.cluster import hierarchy # imports PIL
if n_clusters is not None:
warnings.warn(
(
"Partial build of the tree is implemented "
"only for structured clustering (i.e. with "
"explicit connectivity). The algorithm "
"will build the full tree and only "
"retain the lower branches required "
"for the specified number of clusters"
),
stacklevel=2,
)
X = np.require(X, requirements="W")
out = hierarchy.ward(X)
children_ = out[:, :2].astype(np.intp)
if return_distance:
distances = out[:, 2]
return children_, 1, n_samples, None, distances
else:
return children_, 1, n_samples, None
connectivity, n_connected_components = _fix_connectivity(
X, connectivity, affinity="euclidean"
)
if n_clusters is None:
n_nodes = 2 * n_samples - 1
else:
if n_clusters > n_samples:
raise ValueError(
"Cannot provide more clusters than samples. "
"%i n_clusters was asked, and there are %i "
"samples." % (n_clusters, n_samples)
)
n_nodes = 2 * n_samples - n_clusters
# create inertia matrix
coord_row = []
coord_col = []
A = []
for ind, row in enumerate(connectivity.rows):
A.append(row)
# We keep only the upper triangular for the moments
# Generator expressions are faster than arrays on the following
row = [i for i in row if i < ind]
coord_row.extend(
len(row)
* [
ind,
]
)
coord_col.extend(row)
coord_row = np.array(coord_row, dtype=np.intp, order="C")
coord_col = np.array(coord_col, dtype=np.intp, order="C")
# build moments as a list
moments_1 = np.zeros(n_nodes, order="C")
moments_1[:n_samples] = 1
moments_2 = np.zeros((n_nodes, n_features), order="C")
moments_2[:n_samples] = X
inertia = np.empty(len(coord_row), dtype=np.float64, order="C")
_hierarchical.compute_ward_dist(moments_1, moments_2, coord_row, coord_col, inertia)
inertia = list(zip(inertia, coord_row, coord_col))
heapify(inertia)
# prepare the main fields
parent = np.arange(n_nodes, dtype=np.intp)
used_node = np.ones(n_nodes, dtype=bool)
children = []
if return_distance:
distances = np.empty(n_nodes - n_samples)
not_visited = np.empty(n_nodes, dtype=bool, order="C")
# recursive merge loop
for k in range(n_samples, n_nodes):
# identify the merge
while True:
inert, i, j = heappop(inertia)
if used_node[i] and used_node[j]:
break
parent[i], parent[j] = k, k
children.append((i, j))
used_node[i] = used_node[j] = False
if return_distance: # store inertia value
distances[k - n_samples] = inert
# update the moments
moments_1[k] = moments_1[i] + moments_1[j]
moments_2[k] = moments_2[i] + moments_2[j]
# update the structure matrix A and the inertia matrix
coord_col = []
not_visited.fill(1)
not_visited[k] = 0
_hierarchical._get_parents(A[i], coord_col, parent, not_visited)
_hierarchical._get_parents(A[j], coord_col, parent, not_visited)
# List comprehension is faster than a for loop
[A[col].append(k) for col in coord_col]
A.append(coord_col)
coord_col = np.array(coord_col, dtype=np.intp, order="C")
coord_row = np.empty(coord_col.shape, dtype=np.intp, order="C")
coord_row.fill(k)
n_additions = len(coord_row)
ini = np.empty(n_additions, dtype=np.float64, order="C")
_hierarchical.compute_ward_dist(moments_1, moments_2, coord_row, coord_col, ini)
# List comprehension is faster than a for loop
[heappush(inertia, (ini[idx], k, coord_col[idx])) for idx in range(n_additions)]
# Separate leaves in children (empty lists up to now)
n_leaves = n_samples
# sort children to get consistent output with unstructured version
children = [c[::-1] for c in children]
children = np.array(children) # return numpy array for efficient caching
if return_distance:
# 2 is scaling factor to compare w/ unstructured version
distances = np.sqrt(2.0 * distances)
return children, n_connected_components, n_leaves, parent, distances
else:
return children, n_connected_components, n_leaves, parent
# single average and complete linkage
def linkage_tree(
X,
connectivity=None,
n_clusters=None,
linkage="complete",
affinity="euclidean",
return_distance=False,
):
"""Linkage agglomerative clustering based on a Feature matrix.
The inertia matrix uses a Heapq-based representation.
This is the structured version, that takes into account some topological
structure between samples.
Read more in the :ref:`User Guide <hierarchical_clustering>`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Feature matrix representing `n_samples` samples to be clustered.
connectivity : sparse matrix, default=None
Connectivity matrix. Defines for each sample the neighboring samples
following a given structure of the data. The matrix is assumed to
be symmetric and only the upper triangular half is used.
Default is `None`, i.e, the Ward algorithm is unstructured.
n_clusters : int, default=None
Stop early the construction of the tree at `n_clusters`. This is
useful to decrease computation time if the number of clusters is
not small compared to the number of samples. In this case, the
complete tree is not computed, thus the 'children' output is of
limited use, and the 'parents' output should rather be used.
This option is valid only when specifying a connectivity matrix.
linkage : {"average", "complete", "single"}, default="complete"
Which linkage criteria to use. The linkage criterion determines which
distance to use between sets of observation.
- "average" uses the average of the distances of each observation of
the two sets.
- "complete" or maximum linkage uses the maximum distances between
all observations of the two sets.
- "single" uses the minimum of the distances between all
observations of the two sets.
affinity : str or callable, default='euclidean'
Which metric to use. Can be 'euclidean', 'manhattan', or any
distance known to paired distance (see metric.pairwise).
return_distance : bool, default=False
Whether or not to return the distances between the clusters.
Returns
-------
children : ndarray of shape (n_nodes-1, 2)
The children of each non-leaf node. Values less than `n_samples`
correspond to leaves of the tree which are the original samples.
A node `i` greater than or equal to `n_samples` is a non-leaf
node and has children `children_[i - n_samples]`. Alternatively
at the i-th iteration, children[i][0] and children[i][1]
are merged to form node `n_samples + i`.
n_connected_components : int
The number of connected components in the graph.
n_leaves : int
The number of leaves in the tree.
parents : ndarray of shape (n_nodes, ) or None
The parent of each node. Only returned when a connectivity matrix
is specified, elsewhere 'None' is returned.
distances : ndarray of shape (n_nodes-1,)
Returned when `return_distance` is set to `True`.
distances[i] refers to the distance between children[i][0] and
children[i][1] when they are merged.
See Also
--------
ward_tree : Hierarchical clustering with ward linkage.
"""
X = np.asarray(X)
if X.ndim == 1:
X = np.reshape(X, (-1, 1))
n_samples, n_features = X.shape
linkage_choices = {
"complete": _hierarchical.max_merge,
"average": _hierarchical.average_merge,
"single": None,
} # Single linkage is handled differently
try:
join_func = linkage_choices[linkage]
except KeyError as e:
raise ValueError(
"Unknown linkage option, linkage should be one of %s, but %s was given"
% (linkage_choices.keys(), linkage)
) from e
if affinity == "cosine" and np.any(~np.any(X, axis=1)):
raise ValueError("Cosine affinity cannot be used when X contains zero vectors")
if connectivity is None:
from scipy.cluster import hierarchy # imports PIL
if n_clusters is not None:
warnings.warn(
(
"Partial build of the tree is implemented "
"only for structured clustering (i.e. with "
"explicit connectivity). The algorithm "
"will build the full tree and only "
"retain the lower branches required "
"for the specified number of clusters"
),
stacklevel=2,
)
if affinity == "precomputed":
# for the linkage function of hierarchy to work on precomputed
# data, provide as first argument an ndarray of the shape returned
# by sklearn.metrics.pairwise_distances.
if X.shape[0] != X.shape[1]:
raise ValueError(
f"Distance matrix should be square, got matrix of shape {X.shape}"
)
i, j = np.triu_indices(X.shape[0], k=1)
X = X[i, j]
elif affinity == "l2":
# Translate to something understood by scipy
affinity = "euclidean"
elif affinity in ("l1", "manhattan"):
affinity = "cityblock"
elif callable(affinity):
X = affinity(X)
i, j = np.triu_indices(X.shape[0], k=1)
X = X[i, j]
if (
linkage == "single"
and affinity != "precomputed"
and not callable(affinity)
and affinity in METRIC_MAPPING64
):
# We need the fast cythonized metric from neighbors
dist_metric = DistanceMetric.get_metric(affinity)
# The Cython routines used require contiguous arrays
X = np.ascontiguousarray(X, dtype=np.double)
mst = _hierarchical.mst_linkage_core(X, dist_metric)
# Sort edges of the min_spanning_tree by weight
mst = mst[np.argsort(mst.T[2], kind="mergesort"), :]
# Convert edge list into standard hierarchical clustering format
out = _hierarchical.single_linkage_label(mst)
else:
out = hierarchy.linkage(X, method=linkage, metric=affinity)
children_ = out[:, :2].astype(int, copy=False)
if return_distance:
distances = out[:, 2]
return children_, 1, n_samples, None, distances
return children_, 1, n_samples, None
connectivity, n_connected_components = _fix_connectivity(
X, connectivity, affinity=affinity
)
connectivity = connectivity.tocoo()
# Put the diagonal to zero
diag_mask = connectivity.row != connectivity.col
connectivity.row = connectivity.row[diag_mask]
connectivity.col = connectivity.col[diag_mask]
connectivity.data = connectivity.data[diag_mask]
del diag_mask
if affinity == "precomputed":
distances = X[connectivity.row, connectivity.col].astype(np.float64, copy=False)
else:
# FIXME We compute all the distances, while we could have only computed
# the "interesting" distances
distances = paired_distances(
X[connectivity.row], X[connectivity.col], metric=affinity
)
connectivity.data = distances
if n_clusters is None:
n_nodes = 2 * n_samples - 1
else:
assert n_clusters <= n_samples
n_nodes = 2 * n_samples - n_clusters
if linkage == "single":
return _single_linkage_tree(
connectivity,
n_samples,
n_nodes,
n_clusters,
n_connected_components,
return_distance,
)
if return_distance:
distances = np.empty(n_nodes - n_samples)
# create inertia heap and connection matrix
A = np.empty(n_nodes, dtype=object)
inertia = list()
# LIL seems to the best format to access the rows quickly,
# without the numpy overhead of slicing CSR indices and data.
connectivity = connectivity.tolil()
# We are storing the graph in a list of IntFloatDict
for ind, (data, row) in enumerate(zip(connectivity.data, connectivity.rows)):
A[ind] = IntFloatDict(
np.asarray(row, dtype=np.intp), np.asarray(data, dtype=np.float64)
)
# We keep only the upper triangular for the heap
# Generator expressions are faster than arrays on the following
inertia.extend(
_hierarchical.WeightedEdge(d, ind, r) for r, d in zip(row, data) if r < ind
)
del connectivity
heapify(inertia)
# prepare the main fields
parent = np.arange(n_nodes, dtype=np.intp)
used_node = np.ones(n_nodes, dtype=np.intp)
children = []
# recursive merge loop
for k in range(n_samples, n_nodes):
# identify the merge
while True:
edge = heappop(inertia)
if used_node[edge.a] and used_node[edge.b]:
break
i = edge.a
j = edge.b
if return_distance:
# store distances
distances[k - n_samples] = edge.weight
parent[i] = parent[j] = k
children.append((i, j))
# Keep track of the number of elements per cluster
n_i = used_node[i]
n_j = used_node[j]
used_node[k] = n_i + n_j
used_node[i] = used_node[j] = False
# update the structure matrix A and the inertia matrix
# a clever 'min', or 'max' operation between A[i] and A[j]
coord_col = join_func(A[i], A[j], used_node, n_i, n_j)
for col, d in coord_col:
A[col].append(k, d)
# Here we use the information from coord_col (containing the
# distances) to update the heap
heappush(inertia, _hierarchical.WeightedEdge(d, k, col))
A[k] = coord_col
# Clear A[i] and A[j] to save memory
A[i] = A[j] = 0
# Separate leaves in children (empty lists up to now)
n_leaves = n_samples
# # return numpy array for efficient caching
children = np.array(children)[:, ::-1]
if return_distance:
return children, n_connected_components, n_leaves, parent, distances
return children, n_connected_components, n_leaves, parent
# Matching names to tree-building strategies
def _complete_linkage(*args, **kwargs):
kwargs["linkage"] = "complete"
return linkage_tree(*args, **kwargs)
def _average_linkage(*args, **kwargs):
kwargs["linkage"] = "average"
return linkage_tree(*args, **kwargs)
def _single_linkage(*args, **kwargs):
kwargs["linkage"] = "single"
return linkage_tree(*args, **kwargs)
_TREE_BUILDERS = dict(
ward=ward_tree,
complete=_complete_linkage,
average=_average_linkage,
single=_single_linkage,
)
###############################################################################
# Functions for cutting hierarchical clustering tree
def _hc_cut(n_clusters, children, n_leaves):
"""Function cutting the ward tree for a given number of clusters.
Parameters
----------
n_clusters : int or ndarray
The number of clusters to form.
children : ndarray of shape (n_nodes-1, 2)
The children of each non-leaf node. Values less than `n_samples`
correspond to leaves of the tree which are the original samples.
A node `i` greater than or equal to `n_samples` is a non-leaf
node and has children `children_[i - n_samples]`. Alternatively
at the i-th iteration, children[i][0] and children[i][1]
are merged to form node `n_samples + i`.
n_leaves : int
Number of leaves of the tree.
Returns
-------
labels : array [n_samples]
Cluster labels for each point.
"""
if n_clusters > n_leaves:
raise ValueError(
"Cannot extract more clusters than samples: "
f"{n_clusters} clusters were given for a tree with {n_leaves} leaves."
)
# In this function, we store nodes as a heap to avoid recomputing
# the max of the nodes: the first element is always the smallest
# We use negated indices as heaps work on smallest elements, and we
# are interested in largest elements
# children[-1] is the root of the tree
nodes = [-(max(children[-1]) + 1)]
for _ in range(n_clusters - 1):
# As we have a heap, nodes[0] is the smallest element
these_children = children[-nodes[0] - n_leaves]
# Insert the 2 children and remove the largest node
heappush(nodes, -these_children[0])
heappushpop(nodes, -these_children[1])
label = np.zeros(n_leaves, dtype=np.intp)
for i, node in enumerate(nodes):
label[_hierarchical._hc_get_descendent(-node, children, n_leaves)] = i
return label
###############################################################################
class AgglomerativeClustering(ClusterMixin, BaseEstimator):
"""
Agglomerative Clustering.
Recursively merges pair of clusters of sample data; uses linkage distance.
Read more in the :ref:`User Guide <hierarchical_clustering>`.
Parameters
----------
n_clusters : int or None, default=2
The number of clusters to find. It must be ``None`` if
``distance_threshold`` is not ``None``.
metric : str or callable, default="euclidean"
Metric used to compute the linkage. Can be "euclidean", "l1", "l2",
"manhattan", "cosine", or "precomputed". If linkage is "ward", only
"euclidean" is accepted. If "precomputed", a distance matrix is needed
as input for the fit method. If connectivity is None, linkage is
"single" and affinity is not "precomputed" any valid pairwise distance
metric can be assigned.
.. versionadded:: 1.2
memory : str or object with the joblib.Memory interface, default=None
Used to cache the output of the computation of the tree.
By default, no caching is done. If a string is given, it is the
path to the caching directory.
connectivity : array-like, sparse matrix, or callable, default=None
Connectivity matrix. Defines for each sample the neighboring
samples following a given structure of the data.
This can be a connectivity matrix itself or a callable that transforms
the data into a connectivity matrix, such as derived from
`kneighbors_graph`. Default is ``None``, i.e, the
hierarchical clustering algorithm is unstructured.
For an example of connectivity matrix using
:class:`~sklearn.neighbors.kneighbors_graph`, see
:ref:`sphx_glr_auto_examples_cluster_plot_agglomerative_clustering.py`.
compute_full_tree : 'auto' or bool, default='auto'
Stop early the construction of the tree at ``n_clusters``. This is
useful to decrease computation time if the number of clusters is not
small compared to the number of samples. This option is useful only
when specifying a connectivity matrix. Note also that when varying the
number of clusters and using caching, it may be advantageous to compute
the full tree. It must be ``True`` if ``distance_threshold`` is not
``None``. By default `compute_full_tree` is "auto", which is equivalent
to `True` when `distance_threshold` is not `None` or that `n_clusters`
is inferior to the maximum between 100 or `0.02 * n_samples`.
Otherwise, "auto" is equivalent to `False`.
linkage : {'ward', 'complete', 'average', 'single'}, default='ward'
Which linkage criterion to use. The linkage criterion determines which
distance to use between sets of observation. The algorithm will merge
the pairs of cluster that minimize this criterion.
- 'ward' minimizes the variance of the clusters being merged.
- 'average' uses the average of the distances of each observation of
the two sets.
- 'complete' or 'maximum' linkage uses the maximum distances between
all observations of the two sets.
- 'single' uses the minimum of the distances between all observations
of the two sets.
.. versionadded:: 0.20
Added the 'single' option
For examples comparing different `linkage` criteria, see
:ref:`sphx_glr_auto_examples_cluster_plot_linkage_comparison.py`.
distance_threshold : float, default=None
The linkage distance threshold at or above which clusters will not be
merged. If not ``None``, ``n_clusters`` must be ``None`` and
``compute_full_tree`` must be ``True``.
.. versionadded:: 0.21
compute_distances : bool, default=False
Computes distances between clusters even if `distance_threshold` is not
used. This can be used to make dendrogram visualization, but introduces
a computational and memory overhead.
.. versionadded:: 0.24
For an example of dendrogram visualization, see
:ref:`sphx_glr_auto_examples_cluster_plot_agglomerative_dendrogram.py`.
Attributes
----------
n_clusters_ : int
The number of clusters found by the algorithm. If
``distance_threshold=None``, it will be equal to the given
``n_clusters``.
labels_ : ndarray of shape (n_samples)
Cluster labels for each point.
n_leaves_ : int
Number of leaves in the hierarchical tree.
n_connected_components_ : int
The estimated number of connected components in the graph.
.. versionadded:: 0.21
``n_connected_components_`` was added to replace ``n_components_``.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
children_ : array-like of shape (n_samples-1, 2)
The children of each non-leaf node. Values less than `n_samples`
correspond to leaves of the tree which are the original samples.
A node `i` greater than or equal to `n_samples` is a non-leaf
node and has children `children_[i - n_samples]`. Alternatively
at the i-th iteration, children[i][0] and children[i][1]
are merged to form node `n_samples + i`.
distances_ : array-like of shape (n_nodes-1,)
Distances between nodes in the corresponding place in `children_`.
Only computed if `distance_threshold` is used or `compute_distances`
is set to `True`.
See Also
--------
FeatureAgglomeration : Agglomerative clustering but for features instead of
samples.
ward_tree : Hierarchical clustering with ward linkage.
Examples
--------
>>> from sklearn.cluster import AgglomerativeClustering
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [4, 2], [4, 4], [4, 0]])
>>> clustering = AgglomerativeClustering().fit(X)
>>> clustering
AgglomerativeClustering()
>>> clustering.labels_
array([1, 1, 1, 0, 0, 0])
"""
_parameter_constraints: dict = {
"n_clusters": [Interval(Integral, 1, None, closed="left"), None],
"metric": [
StrOptions(set(_VALID_METRICS) | {"precomputed"}),
callable,
],
"memory": [str, HasMethods("cache"), None],
"connectivity": ["array-like", "sparse matrix", callable, None],
"compute_full_tree": [StrOptions({"auto"}), "boolean"],
"linkage": [StrOptions(set(_TREE_BUILDERS.keys()))],
"distance_threshold": [Interval(Real, 0, None, closed="left"), None],
"compute_distances": ["boolean"],
}
def __init__(
self,
n_clusters=2,
*,
metric="euclidean",
memory=None,
connectivity=None,
compute_full_tree="auto",
linkage="ward",
distance_threshold=None,
compute_distances=False,
):
self.n_clusters = n_clusters
self.distance_threshold = distance_threshold
self.memory = memory
self.connectivity = connectivity
self.compute_full_tree = compute_full_tree
self.linkage = linkage
self.metric = metric
self.compute_distances = compute_distances
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None):
"""Fit the hierarchical clustering from features, or distance matrix.
Parameters
----------
X : array-like, shape (n_samples, n_features) or \
(n_samples, n_samples)
Training instances to cluster, or distances between instances if
``metric='precomputed'``.
y : Ignored
Not used, present here for API consistency by convention.
Returns
-------
self : object
Returns the fitted instance.
"""
X = validate_data(self, X, ensure_min_samples=2)
return self._fit(X)
def _fit(self, X):
"""Fit without validation
Parameters
----------
X : ndarray of shape (n_samples, n_features) or (n_samples, n_samples)
Training instances to cluster, or distances between instances if
``metric='precomputed'``.
Returns
-------
self : object
Returns the fitted instance.
"""
memory = check_memory(self.memory)
if not ((self.n_clusters is None) ^ (self.distance_threshold is None)):
raise ValueError(
"Exactly one of n_clusters and "
"distance_threshold has to be set, and the other "
"needs to be None."
)
if self.distance_threshold is not None and not self.compute_full_tree:
raise ValueError(
"compute_full_tree must be True if distance_threshold is set."
)
if self.linkage == "ward" and self.metric != "euclidean":
raise ValueError(
f"{self.metric} was provided as metric. Ward can only "
"work with euclidean distances."
)
tree_builder = _TREE_BUILDERS[self.linkage]
connectivity = self.connectivity
if self.connectivity is not None:
if callable(self.connectivity):
connectivity = self.connectivity(X)
connectivity = check_array(
connectivity, accept_sparse=["csr", "coo", "lil"]
)
n_samples = len(X)
compute_full_tree = self.compute_full_tree
if self.connectivity is None:
compute_full_tree = True
if compute_full_tree == "auto":
if self.distance_threshold is not None:
compute_full_tree = True
else:
# Early stopping is likely to give a speed up only for
# a large number of clusters. The actual threshold
# implemented here is heuristic
compute_full_tree = self.n_clusters < max(100, 0.02 * n_samples)
n_clusters = self.n_clusters
if compute_full_tree:
n_clusters = None
# Construct the tree
kwargs = {}
if self.linkage != "ward":
kwargs["linkage"] = self.linkage
kwargs["affinity"] = self.metric
distance_threshold = self.distance_threshold
return_distance = (distance_threshold is not None) or self.compute_distances
out = memory.cache(tree_builder)(
X,
connectivity=connectivity,
n_clusters=n_clusters,
return_distance=return_distance,
**kwargs,
)
(self.children_, self.n_connected_components_, self.n_leaves_, parents) = out[
:4
]
if return_distance:
self.distances_ = out[-1]
if self.distance_threshold is not None: # distance_threshold is used
self.n_clusters_ = (
np.count_nonzero(self.distances_ >= distance_threshold) + 1
)
else: # n_clusters is used
self.n_clusters_ = self.n_clusters
# Cut the tree
if compute_full_tree:
self.labels_ = _hc_cut(self.n_clusters_, self.children_, self.n_leaves_)
else:
labels = _hierarchical.hc_get_heads(parents, copy=False)
# copy to avoid holding a reference on the original array
labels = np.copy(labels[:n_samples])
# Reassign cluster numbers
self.labels_ = np.searchsorted(np.unique(labels), labels)
return self
def fit_predict(self, X, y=None):
"""Fit and return the result of each sample's clustering assignment.
In addition to fitting, this method also return the result of the
clustering assignment for each sample in the training set.
Parameters
----------
X : array-like of shape (n_samples, n_features) or \
(n_samples, n_samples)
Training instances to cluster, or distances between instances if
``affinity='precomputed'``.
y : Ignored
Not used, present here for API consistency by convention.
Returns
-------
labels : ndarray of shape (n_samples,)
Cluster labels.
"""
return super().fit_predict(X, y)
class FeatureAgglomeration(
ClassNamePrefixFeaturesOutMixin, AgglomerationTransform, AgglomerativeClustering
):
"""Agglomerate features.
Recursively merges pair of clusters of features.
Refer to
:ref:`sphx_glr_auto_examples_cluster_plot_feature_agglomeration_vs_univariate_selection.py`
for an example comparison of :class:`FeatureAgglomeration` strategy with a
univariate feature selection strategy (based on ANOVA).
Read more in the :ref:`User Guide <hierarchical_clustering>`.
Parameters
----------
n_clusters : int or None, default=2
The number of clusters to find. It must be ``None`` if
``distance_threshold`` is not ``None``.
metric : str or callable, default="euclidean"
Metric used to compute the linkage. Can be "euclidean", "l1", "l2",
"manhattan", "cosine", or "precomputed". If linkage is "ward", only
"euclidean" is accepted. If "precomputed", a distance matrix is needed
as input for the fit method.
.. versionadded:: 1.2
memory : str or object with the joblib.Memory interface, default=None
Used to cache the output of the computation of the tree.
By default, no caching is done. If a string is given, it is the
path to the caching directory.
connectivity : array-like, sparse matrix, or callable, default=None
Connectivity matrix. Defines for each feature the neighboring
features following a given structure of the data.
This can be a connectivity matrix itself or a callable that transforms
the data into a connectivity matrix, such as derived from
`kneighbors_graph`. Default is `None`, i.e, the
hierarchical clustering algorithm is unstructured.
compute_full_tree : 'auto' or bool, default='auto'
Stop early the construction of the tree at `n_clusters`. This is useful
to decrease computation time if the number of clusters is not small
compared to the number of features. This option is useful only when
specifying a connectivity matrix. Note also that when varying the
number of clusters and using caching, it may be advantageous to compute
the full tree. It must be ``True`` if ``distance_threshold`` is not
``None``. By default `compute_full_tree` is "auto", which is equivalent
to `True` when `distance_threshold` is not `None` or that `n_clusters`
is inferior to the maximum between 100 or `0.02 * n_samples`.
Otherwise, "auto" is equivalent to `False`.
linkage : {"ward", "complete", "average", "single"}, default="ward"
Which linkage criterion to use. The linkage criterion determines which
distance to use between sets of features. The algorithm will merge
the pairs of cluster that minimize this criterion.
- "ward" minimizes the variance of the clusters being merged.
- "complete" or maximum linkage uses the maximum distances between
all features of the two sets.
- "average" uses the average of the distances of each feature of
the two sets.
- "single" uses the minimum of the distances between all features
of the two sets.
pooling_func : callable, default=np.mean
This combines the values of agglomerated features into a single
value, and should accept an array of shape [M, N] and the keyword
argument `axis=1`, and reduce it to an array of size [M].
distance_threshold : float, default=None
The linkage distance threshold at or above which clusters will not be
merged. If not ``None``, ``n_clusters`` must be ``None`` and
``compute_full_tree`` must be ``True``.
.. versionadded:: 0.21
compute_distances : bool, default=False
Computes distances between clusters even if `distance_threshold` is not
used. This can be used to make dendrogram visualization, but introduces
a computational and memory overhead.
.. versionadded:: 0.24
Attributes
----------
n_clusters_ : int
The number of clusters found by the algorithm. If
``distance_threshold=None``, it will be equal to the given
``n_clusters``.
labels_ : array-like of (n_features,)
Cluster labels for each feature.
n_leaves_ : int
Number of leaves in the hierarchical tree.
n_connected_components_ : int
The estimated number of connected components in the graph.
.. versionadded:: 0.21
``n_connected_components_`` was added to replace ``n_components_``.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
children_ : array-like of shape (n_nodes-1, 2)
The children of each non-leaf node. Values less than `n_features`
correspond to leaves of the tree which are the original samples.
A node `i` greater than or equal to `n_features` is a non-leaf
node and has children `children_[i - n_features]`. Alternatively
at the i-th iteration, children[i][0] and children[i][1]
are merged to form node `n_features + i`.
distances_ : array-like of shape (n_nodes-1,)
Distances between nodes in the corresponding place in `children_`.
Only computed if `distance_threshold` is used or `compute_distances`
is set to `True`.
See Also
--------
AgglomerativeClustering : Agglomerative clustering samples instead of
features.
ward_tree : Hierarchical clustering with ward linkage.
Examples
--------
>>> import numpy as np
>>> from sklearn import datasets, cluster
>>> digits = datasets.load_digits()
>>> images = digits.images
>>> X = np.reshape(images, (len(images), -1))
>>> agglo = cluster.FeatureAgglomeration(n_clusters=32)
>>> agglo.fit(X)
FeatureAgglomeration(n_clusters=32)
>>> X_reduced = agglo.transform(X)
>>> X_reduced.shape
(1797, 32)
"""
_parameter_constraints: dict = {
"n_clusters": [Interval(Integral, 1, None, closed="left"), None],
"metric": [
StrOptions(set(_VALID_METRICS) | {"precomputed"}),
callable,
],
"memory": [str, HasMethods("cache"), None],
"connectivity": ["array-like", "sparse matrix", callable, None],
"compute_full_tree": [StrOptions({"auto"}), "boolean"],
"linkage": [StrOptions(set(_TREE_BUILDERS.keys()))],
"pooling_func": [callable],
"distance_threshold": [Interval(Real, 0, None, closed="left"), None],
"compute_distances": ["boolean"],
}
def __init__(
self,
n_clusters=2,
*,
metric="euclidean",
memory=None,
connectivity=None,
compute_full_tree="auto",
linkage="ward",
pooling_func=np.mean,
distance_threshold=None,
compute_distances=False,
):
super().__init__(
n_clusters=n_clusters,
memory=memory,
connectivity=connectivity,
compute_full_tree=compute_full_tree,
linkage=linkage,
metric=metric,
distance_threshold=distance_threshold,
compute_distances=compute_distances,
)
self.pooling_func = pooling_func
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None):
"""Fit the hierarchical clustering on the data.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data.
y : Ignored
Not used, present here for API consistency by convention.
Returns
-------
self : object
Returns the transformer.
"""
X = validate_data(self, X, ensure_min_features=2)
super()._fit(X.T)
self._n_features_out = self.n_clusters_
return self
@property
def fit_predict(self):
"""Fit and return the result of each sample's clustering assignment."""
raise AttributeError
|